Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
July-2020 Volume 44 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 44 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis

  • Authors:
    • Chenggong Tu
    • Yongjiang Zheng
    • Hui Zhang
    • Jinheng Wang
  • View Affiliations / Copyright

    Affiliations: Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China, Department of Hematology, The Third Affiliated Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510630, P.R. China
    Copyright: © Tu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 224-240
    |
    Published online on: April 21, 2020
       https://doi.org/10.3892/or.2020.7587
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Immune checkpoint blockade endows patients with unparalleled success in conquering cancer. Unfortunately, inter‑individual heterogeneity causes failure in controlling tumors in many patients. Emerging mass cytometry technology is capable of revealing a multiscale onco‑immune landscape that improves the efficacy of cancer immunotherapy. We introduced mass cytometry to determine the personalized immune checkpoint status in bone marrow and peripheral blood samples from 3 patients with multiple myeloma, amyloid light‑chain amyloidosis, and solitary bone plasmacytoma and 1 non‑hematologic malignancy patient. The expression of 18 immune regulatory receptors and ligands on 17 defined cell populations was simultaneously examined. By single‑cell analyses, we identified the T cell clusters that serve as immunosuppressive signal source and revealed integrated immune checkpoint axes of individuals, thereby providing multiple potential immunotherapeutic targets, including programmed cell death protein 1 (PD‑1), inducible co‑stimulator (ICOS), and cluster of differentiation 28 (CD28), for each patient. Distinguishing the cell populations that function as providers and receivers of the immune checkpoint signals demonstrated a distinct cross‑interaction network of immunomodulatory signals in individuals. These in‑depth personalized data demonstrate mass cytometry as a powerful innovation to discover the systematical immune status in the primary and peripheral tumor microenvironment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Newell EW and Cheng Y: Mass cytometry: Blessed with the curse of dimensionality. Nat Immunol. 17:890–895. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Spitzer MH and Nolan GP: Mass cytometry: Single cells, many features. Cell. 165:780–791. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Wang Z, Gerstein M and Snyder M: RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet. 10:57–63. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Stegle O, Teichmann SA and Marioni JC: Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 16:133–145. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Bendall SC, Simonds EF, Qiu P, Amir el-AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, et al: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 332:687–696. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, Simonds EF, Bendall SC, Sachs K, Krutzik PO and Nolan GP: Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 30:858–867. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Bendall SC, Davis KL, Amir el-AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP and Pe'er D: Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 157:714–725. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Good Z, Sarno J, Jager A, Samusik N, Aghaeepour N, Simonds EF, White L, Lacayo NJ, Fantl WJ, Fazio G, et al: Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat Med. 24:474–483. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Behbehani GK, Bendall SC, Clutter MR, Fantl WJ and Nolan GP: Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A. 81:552–566. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Knapp DJ, Hammond CA, Aghaeepour N, Miller PH, Pellacani D, Beer PA, Sachs K, Qiao W, Wang W, Humphries RK, et al: Distinct signaling programs control human hematopoietic stem cell survival and proliferation. Blood. 129:307–318. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Porpiglia E, Samusik N, Ho ATV, Cosgrove BD, Mai T, Davis KL, Jager A, Nolan GP, Bendall SC, Fantl WJ and Blau HM: High-resolution myogenic lineage mapping by single-cell mass cytometry. NaT Cell Biol. 19:558–567. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD, Sachs K, Nolan GP and Plevritis SK: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 29:886–891. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Amir el-AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP and Pe'er D: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 31:545–552. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, et al: Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell. 169:750–765.e17. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Minn AJ and Wherry EJ: combination cancer therapies with immune checkpoint blockade: Convergence on interferon signaling. Cell. 165:272–275. 2016. View Article : Google Scholar : PubMed/NCBI

16 

June CH, O'Connor RS, Kawalekar OU, Ghassemi S and Milone MC: CAR T cell immunotherapy for human cancer. Science. 359:1361–1365. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Syn NL, Teng MWL, Mok TSK and Soo RA: De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18:e731–e741. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Dougall WC, Roman Aguilera A and Smyth MJ: Dual targeting of RANKL and PD-1 with a bispecific antibody improves anti-tumor immunity. Clin Transl Immunol. 8:e010812019. View Article : Google Scholar

19 

Topalian SL, Taube JM, Anders RA and Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 16:275–287. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Oliver AJ, Davey AS, Keam SP, Mardiana S, Chan JD, von Scheidt B, Beavis PA, House IG, Van Audernaerde JR, Darcy PK, et al: Tissue-specific tumor microenvironments influence responses to immunotherapies. Clin Transl Immunol. 8:e10942019. View Article : Google Scholar

21 

Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G and Zitvogel L: Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -extrinsic factors. Immunity. 44:1255–1269. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Wilson RAM, Evans TRJ, Fraser AR and Nibbs RJB: Immune checkpoint inhibitors: New strategies to checkmate cancer. Clin Exp Immunol. 191:133–148. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A and Zagozdzon R: Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers. 11:17562019. View Article : Google Scholar

24 

Bhandaru M and Rotte A: monoclonal antibodies for the treatment of melanoma: Present and future strategies. Methods Mol Biol. 1904:83–108. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Rowshanravan B, Halliday N and Sansom DM: CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Ribas A and Wolchok JD: Cancer immunotherapy using checkpoint blockade. Science. 359:1350–1355. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Jiang C, Cao S, Li N, Jiang L and Sun T: PD-1 and PD-L1 correlated gene expression profiles and their association with clinical outcomes of breast cancer. Cancer Cell Int. 19:2332019. View Article : Google Scholar : PubMed/NCBI

28 

Wang X, Guo G, Guan H, Yu Y, Lu J and Yu J: Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res. 38:872019. View Article : Google Scholar : PubMed/NCBI

29 

Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA, et al: Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7:1420–1435. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H, et al: An immune atlas of clear cell renal cell carcinoma. Cell. 169:736–749.e18. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, Levesque MP and Becher B: High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 24:144–153. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Heher EC, Goes NB, Spitzer TR, Raje NS, Humphreys BD, Anderson KC and Richardson PG: Kidney disease associated with plasma cell dyscrasias. Blood. 116:1397–1404. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Suen H, Brown R, Yang S, Ho PJ, Gibson J and Joshua D: The failure of immune checkpoint blockade in multiple myeloma with PD-1 inhibitors in a phase 1 study. Leukemia. 29:1621–1622. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, Joyce RM, Wellenstein K, Keefe W, Schickler M, et al: PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother. 34:409–418. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Ray A, Das DS, Song Y, Richardson P, Munshi NC, Chauhan D and Anderson KC: Targeting PD1-PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia. 29:1441–1444. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Jelinek T, Paiva B and Hajek R: Update on PD-1/PD-L1 inhibitors in multiple myeloma. Front Immunol. 9:24312018. View Article : Google Scholar : PubMed/NCBI

37 

Kotecha N, Krutzik PO and Irish JM: Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom 10: Unit. 10:2010.

38 

Maecker HT, McCoy JP and Nussenblatt R: Standardizing immunophenotyping for the human immunology project. Nat Rev Immunol. 12:191–200. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van Valckenborgh E, Lahoutte T, De Wever O, Vanderkerken K and Menu E: Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 124:555–566. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Wang J, De Veirman K, Faict S, Frassanito MA, Ribatti D, Vacca A and Menu E: Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol. 239:162–173. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, Saudemont A and Quesnel B: Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 110:296–304. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, et al: PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2:261–268. 2001. View Article : Google Scholar : PubMed/NCBI

43 

Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, Greil R and Jöhrer K: T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol. 9:1162016. View Article : Google Scholar : PubMed/NCBI

44 

Mozaffari F, Hansson L, Kiaii S, Ju X, Rossmann ED, Rabbani H, Mellstedt H and Osterborg A: Signalling molecules and cytokine production in T cells of multiple myeloma-increased abnormalities with advancing stage. Br J Haematol. 124:315–324. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, Baiocchi RA, Zhang J, Yu J, Smith MK, et al: The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: A therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 116:2286–2294. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Dong W, Wu X, Ma S, Wang Y, Nalin AP, Zhu Z, Zhang J, Benson DM, He K, Caligiuri MA and Yu J: The mechanism of anti-PD-L1 antibody efficacy against PD-L1-negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov. 9:1422–1437. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Guo Y, Feng X, Jiang Y, Shi X, Xing X, Liu X, Li N, Fadeel B and Zheng C: PD1 blockade enhances cytotoxicity of in vitro expanded natural killer cells towards myeloma cells. Oncotarget. 7:48360–48374. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, Millenson MM, Cohen AD, Schuster SJ, Lebovic D, et al: Nivolumab in patients with relapsed or refractory hematologic malignancy: Preliminary results of a phase Ib study. J Clin Oncol. 34:2698–2704. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Rosenblatt J and Avigan D: Targeting the PD-1/PD-L1 axis in multiple myeloma: A dream or a reality? Blood. 129:275–279. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Esensten JH, Helou YA, Chopra G, Weiss A and Bluestone JA: CD28 costimulation: From mechanism to therapy. Immunity. 44:973–988. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Akbar AN and Henson SM: Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol. 11:289–295. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Paiva B, Mateos MV, Sanchez-Abarca LI, Puig N, Vidriales MB, López-Corral L, Corchete LA, Hernandez MT, Bargay J, de Arriba F, et al: Spanish myeloma group/program study and treatment of hematological malignancies cooperative study groups: Immune status of high-risk smoldering multiple myeloma patients and its therapeutic modulation under LenDex: A longitudinal analysis. Blood. 127:1151–1162. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I and Vale RD: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 355:1428–1433. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, et al: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 355:1423–1427. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Wikenheiser DJ and Stumhofer JS: ICOS co-stimulation: Friend or foe? Front Immunol. 7:3042016. View Article : Google Scholar : PubMed/NCBI

56 

Zhou DM, Xu YX, Zhang LY, Sun Y, Wang ZY, Yuan YQ and Fu JX: The role of follicular T helper cells in patients with malignant lymphoid disease. Hematology. 22:412–418. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Feyler S, Scott GB, Parrish C, Jarmin S, Evans P, Short M, McKinley K, Selby PJ and Cook G: Tumour cell generation of inducible regulatory T-cells in multiple myeloma is contact-dependent and antigen-presenting cell-independent. PLoS One. 7:e359812012. View Article : Google Scholar : PubMed/NCBI

58 

Scott GB, Carter C, Parrish C, Wood PM and Cook G: Downregulation of myeloma-induced ICOS-L and regulatory T cell generation by lenalidomide and dexamethasone therapy. Cell Immunol. 297:1–9. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Görgün G, Samur MK, Cowens KB, Paula S, Bianchi G, Anderson JE, White RE, Singh A, Ohguchi H, Suzuki R, et al: Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res. 21:4607–4618. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Perez-Gracia JL, Labiano S, Rodriguez-Ruiz ME, Sanmamed MF and Melero I: Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol. 27:89–97. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Goulding J, Tahiliani V and Salek-Ardakani S: OX40:OX40L axis: Emerging targets for improving poxvirus-based CD8(+) T-cell vaccines against respiratory viruses. Immunol Rev. 244:149–168. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Chester C, Sanmamed MF, Wang J and Melero I: Immunotherapy targeting 4-1BB: Mechanistic rationale, clinical results, and future strategies. Blood. 131:49–57. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Chao MP, Weissman IL and Majeti R: The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 24:225–232. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, Xu H, Peng H, Fu YX and Xu MM: CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med. 21:1209–1215. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Weiskopf K: Cancer immunotherapy targeting the CD47/SIRPα axis. Eur J Cancer. 76:100–109. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tu C, Zheng Y, Zhang H and Wang J: Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis. Oncol Rep 44: 224-240, 2020.
APA
Tu, C., Zheng, Y., Zhang, H., & Wang, J. (2020). Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis. Oncology Reports, 44, 224-240. https://doi.org/10.3892/or.2020.7587
MLA
Tu, C., Zheng, Y., Zhang, H., Wang, J."Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis". Oncology Reports 44.1 (2020): 224-240.
Chicago
Tu, C., Zheng, Y., Zhang, H., Wang, J."Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis". Oncology Reports 44, no. 1 (2020): 224-240. https://doi.org/10.3892/or.2020.7587
Copy and paste a formatted citation
x
Spandidos Publications style
Tu C, Zheng Y, Zhang H and Wang J: Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis. Oncol Rep 44: 224-240, 2020.
APA
Tu, C., Zheng, Y., Zhang, H., & Wang, J. (2020). Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis. Oncology Reports, 44, 224-240. https://doi.org/10.3892/or.2020.7587
MLA
Tu, C., Zheng, Y., Zhang, H., Wang, J."Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis". Oncology Reports 44.1 (2020): 224-240.
Chicago
Tu, C., Zheng, Y., Zhang, H., Wang, J."Exploration of the personalized immune checkpoint atlas of plasma cell dyscrasias patients using high‑dimensional single‑cell analysis". Oncology Reports 44, no. 1 (2020): 224-240. https://doi.org/10.3892/or.2020.7587
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team