Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2020 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review)

  • Authors:
    • Rui Li
    • Wang Wang
    • Ye Yang
    • Chunyan Gu
  • View Affiliations / Copyright

    Affiliations: Large Data Center, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
  • Pages: 2325-2336
    |
    Published online on: October 12, 2020
       https://doi.org/10.3892/or.2020.7803
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glucose‑6‑phosphate dehydrogenase (G6PD) is a cytoplasmic enzyme found in human erythrocytes that provides reduced NADPH for cell metabolism. Glutathione produced by the G6PD pathway can reduce the degree of harm caused by reactive oxygen species such as oxygen‑containing free radicals, peroxides and lipid peroxides. Investigation of G6PD has long focused on hemolysis, jaundice and other diseases caused by defects in its function. However, increased mRNA expression levels of G6PD are predictive of adverse clinical outcomes in cancer patients, including increased drug resistance, migration or proliferation of tumor cells. Mutations in the G6PD gene affect protein expression and activity, and alters the balance of redox states, leading to disease. However, the association between G6PD and tumors is incompletely understood. The aim of the present review was to summarize the current body of knowledge on the role of G6PD in tumor progression and the possible regulatory mechanisms involved. It is hypothesized that G6PD will prove to be of value as a target of cancer treatment in the near future.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Luzzatto L and Arese P: Favism and Glucose-6-phosphate dehydrogenase deficiency. N Engl J Med. 378:60–71. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Yang HC, Wu YH, Liu HY, Stern A and Chiu DT: What has passed is prolog: New cellular and physiological roles of G6PD. Free Radic Res. 50:1047–1064. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Luzzatto L and Seneca E: G6PD deficiency: A classic example of pharmacogenetics with on-going clinical implications. Br J Haematol. 164:469–480. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Longo L, Vanegas OC, Patel M, Rosti V, Li H, Waka J, Merghoub T, Pandolfi PP, Notaro R, Manova K and Luzzatto L: Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J. 21:4229–4239. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Sun L, Suo C, Li ST, Zhang H and Gao P: Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer. 1870:51–66. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Ho HY, Cheng ML and Chiu DT: Glucose-6-phosphate dehydrogenase-beyond the realm of red cell biology. Free Radic Res. 48:1028–1048. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Heymann AD, Cohen Y and Chodick G: Glucose-6-phosphate dehydrogenase deficiency and type 2 diabetes. Diabetes Care. 35:e582012. View Article : Google Scholar : PubMed/NCBI

8 

Carette C, Dubois-Laforgue D, Gautier JF and Timsit J: Diabetes mellitus and glucose-6-phosphate dehydrogenase deficiency: from one crisis to another. Diabetes Metab. 37:79–82. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Wan GH, Tsai SC and Chiu DT: Decreased blood activity of glucose-6-phosphate dehydrogenase associates with increased risk for diabetes mellitus. Endocrine. 19:191–195. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Fang Z, Jiang C, Feng Y, Chen R, Lin X, Zhang Z, Han L, Chen X, Li H, Guo Y and Jiang W: Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells. Biochim Biophys Acta. 1863:2245–2254. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Chen X, Xu Z, Zhu Z, Chen A, Fu G, Wang Y, Pan H and Jin B: Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro. Int J Oncol. 53:1703–1712. 2018.PubMed/NCBI

12 

Ai G, Dachineni R, Kumar DR, Alfonso LF, Marimuthu S and Bhat GJ: Aspirin inhibits glucose-6-phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites. Mol Med Rep. 14:1726–1732. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Chen J, Cao S, Situ B, Zhong J, Hu Y, Li S, Huang J, Xu J, Wu S, Lin J, et al: Metabolic reprogramming-based characterization of circulating tumor cells in prostate cancer. J Exp Clin Cancer Res. 37:1272018. View Article : Google Scholar : PubMed/NCBI

14 

Spencer NY and Stanton RC: Glucose 6-phosphate dehydrogenase and the kidney. Curr Opin Nephrol Hypertens. 26:43–49. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Shan CL, Lu Z, Li Z, Sheng H, Fan J, Qi Q, Liu S and Zhang S: 4-hydroxyphenylpyruvate dioxygenase promotes lung cancer growth via pentose phosphate pathway (PPP) flux mediated by LKB1-AMPK/HDAC10/G6PD axis. Cell Death Dis. 10:5252019. View Article : Google Scholar : PubMed/NCBI

16 

Xu Y, Gao W, Zhang Y, Wu S, Liu Y, Deng X, Xie L, Yang J, Yu H, Su J and Sun L: ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells. Int J Oncol. 53:1055–1068. 2018.PubMed/NCBI

17 

Minchenko OH, Garmash IA, Minchenko DO, Kuznetsova AY and Ratushna OO: Inhibition of IRE1 modifie s hypoxic regulation of G6PD, GPI, TKT, TALDO1, PGLS and RPIA genes expression in U87 glioma cells. Ukr Biochem J. 89:38–49. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Kiani F, Schwarzl S, Fischer S and Efferth T: Three-dimensional modeling of Glucose-6-phosphate dehydrogenase-deficient variants from German ancestry. PLoS One. 2:e6252007. View Article : Google Scholar : PubMed/NCBI

19 

Kotaka M, Gover S, Vandeputte-Rutten L, Au SW, Lam VM and Adams MJ: Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr. 61:495–504. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Au SW, Gover S, Lam VM and Adams MJ: Human glucose-6-phosphate dehydrogenase: The crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Structure. 8:293–303. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Stanton RC: Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB life. 64:362–369. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B and Capoluongo E: Glucose-6-phosphate dehydrogenase (G6PD) mutations database: Review of the ‘old’ and update of the new mutations. Blood Cells Mol Dis. 48:154–165. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Ramos-Montoya A, Lee WN, Bassilian S, Lim S, Trebukhina RV, Kazhyna MV, Ciudad CJ, Noé V, Centelles JJ and Cascante M: Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. Int J Cancer. 119:2733–2741. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW and Mueller-Klieser W: Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 51:349–353. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R and Mukherjee P: Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 89:1375–1382. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ and Huang P: Inhibition of glycolysis in cancer cells: A novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 65:613–621. 2005.PubMed/NCBI

27 

Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Cernaj IE: Simultaneous dual targeting of Par-4 and G6PD: A promising new approach in cancer therapy? Quintessence of a literature review on survival requirements of tumor cells. Cancer Cell Int. 16:872016. View Article : Google Scholar : PubMed/NCBI

29 

Ho HY, Cheng ML and Chiu DT: Glucose-6-phosphate dehydrogenase-from oxidative stress to cellular functions and degenerative diseases. Redox Rep. 12:109–118. 2013. View Article : Google Scholar

30 

Rao X, Duan X, Mao W, Li X, Li Z, Li Q, Zheng Z, Xu H, Chen M, Wang PG, et al: O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun. 6:84682015. View Article : Google Scholar : PubMed/NCBI

31 

Jin ES, Sherry AD and Malloy CR: Interaction between the pentose phosphate pathway and gluconeogenesis from glycerol in the liver. J Biol Chem. 289:32593–32603. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Park YJ, Choe SS, Sohn JH and Kim JB: The role of glucose-6-phosphate dehydrogenase in adipose tissue inflammation in obesity. Adipocyte. 6:147–153. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Keran EE and Barker KL: Regulation of glucose-6-phosphate dehydrogenase activity in uterine tissue in organ culture. Endocrinology. 99:1386–1397. 1976. View Article : Google Scholar : PubMed/NCBI

34 

Chandra R, Villanueva E, Feketova E, Machiedo GW, Haskó G, Deitch EA and Spolarics Z: Endotoxemia down-regulates bone marrow lymphopoiesis but stimulates myelopoiesis: The effect of G6PD deficiency. J Leukoc Biol. 83:1541–1550. 2008. View Article : Google Scholar : PubMed/NCBI

35 

van Zwieten R, Verhoeven AJ and Roos D: Inborn defects in the antioxidant systems of human red blood cells. Free Radic Biol Med. 67:377–386. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Schulze A and Harris AL: How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 491:364–373. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M and Lincet H: How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 38:1–11. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Boroughs LK and DeBerardinis RJ: Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 17:351–359. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Pfeiffer T, Schuster S and Bonhoeffer S: Cooperation and competition in the evolution of ATP-producing pathways. Science. 292:504–507. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Cox E and Bonner J: Ecology. The advantages of togetherness. Science. 292:448–449. 2001. View Article : Google Scholar : PubMed/NCBI

42 

Israelsen WJ and Vander Heiden MG: ATP consumption promotes cancer metabolism. Cell. 143:669–671. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Ju HQ, Lu YX, Wu QN, Liu J, Zeng ZL, Mo HY, Chen Y, Tian T, Wang Y, Kang TB, et al: Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene. 36:6282–6292. 2017. View Article : Google Scholar : PubMed/NCBI

44 

McBrayer SK, Yarrington M, Qian J, Feng G, Shanmugam M, Gandhi V, Krett NL and Rosen ST: Integrative gene expression profiling reveals G6PD-mediated resistance to RNA-directed nucleoside analogues in B-cell neoplasms. PLoS One. 7:e414552012. View Article : Google Scholar : PubMed/NCBI

45 

Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, Gou XM, Wu XH, Yu XY and Huang YH: Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J Cell Mol Med. 23:3451–3463. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Wang J, Yuan W and Chen Z, Wu S, Chen J, Ge J, Hou F and Chen Z: Overexpression of G6PD is associated with poor clinical outcome in gastric cancer. Tumour Biol. 33:95–101. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Wang X, Li X, Zhang X, Fan R, Gu H, Shi Y and Liu H: Glucose-6-phosphate dehydrogenase expression is correlated with poor clinical prognosis in esophageal squamous cell carcinoma. Eur J Surg Oncol. 41:1293–1299. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Yang HC, Chen TL, Wu YH, Cheng KP, Lin YH, Cheng ML, Ho HY, Lo SJ and Chiu DT: Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans. Cell Death Dis. 4:e6162013. View Article : Google Scholar : PubMed/NCBI

49 

Wu YH, Lee YH, Shih HY, Chen SH, Cheng YC and Tsun-Yee Chiu D: Glucose-6-phosphate dehydrogenase is indispensable in embryonic development by modulation of epithelial-mesenchymal transition via the NOX/Smad3/miR-200b axis. Cell Death Dis. 9:102018. View Article : Google Scholar : PubMed/NCBI

50 

Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Tong X, Zhao F and Thompson CB: The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev. 19:32–37. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Frederiks WM, Bosch KS, Hoeben KA, van Marle J and Langbein S: Renal cell carcinoma and oxidative stress: The lack of peroxisomes. Acta Histochem. 112:364–371. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Chettimada S, Joshi SR, Alzoubi A, Gebb SA, McMurtry IF, Gupte R and Gupte SA: Glucose-6-phosphate dehydrogenase plays a critical role in hypoxia-induced CD133+ progenitor cells self-renewal and stimulates their accumulation in the lungs of pulmonary hypertensive rats. Am J Physiol Lung Cell Mol Physiol. 307:L545–L556. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Peiró C, Romacho T, Azcutia V, Villalobos L, Fernández E, Bolaños JP, Moncada S and Sánchez-Ferrer CF: Inflammation, glucose, and vascular cell damage: The role of the pentose phosphate pathway. Cardiovasc Diabetol. 15:822016. View Article : Google Scholar : PubMed/NCBI

55 

Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR and Chiu DT: Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection. J Infect Dis. 197:812–816. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Rostami-Far Z, Ghadiri K, Rostami-Far M, Shaveisi-Zadeh F, Amiri A and Rahimian Zarif B: Glucose-6-phosphate dehydrogenase deficiency (G6PD) as a risk factor of male neonatal sepsis. J Med Life. 9:34–38. 2016.PubMed/NCBI

57 

Zhao J, Zhang X, Guan T, Wang X, Zhang H, Zeng X, Dai Q, Wang Y, Zhou L and Ma X: The association between glucose-6-phosphate dehydrogenase deficiency and abnormal blood pressure among prepregnant reproductive-age Chinese females. Hypertens Res. 42:75–84. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Li D, Zhu Y, Tang Q, Lu H, Li H, Yang Y, Li Z and Tong S: A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress. Cancer Biother Radiopharm. 24:81–90. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, Lopez JP, Poon RT and Fan ST: Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology. 52:528–539. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Hong XH, Song RP, Song HW, Zheng T, Wang J, Liang Y, Qi S, Lu Z, Song X, Jiang H, et al: PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut. 63:1635–1647. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Lu M, Lu L, Dong Q, Yu G, Chen J, Qin L, Wang L, Zhu W and Jia H: Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition. Acta Biochim Biophys Sin (Shanghai). 50:370–380. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Hu H, Ding X, Yang Y, Zhang H, Li H, Tong S, An X, Zhong Q, Liu X, Ma L, et al: Changes in glucose-6-phosphate dehydrogenase expression results in altered behavior of HBV-associated liver cancer cells. Am J Physiol Gastrointest Liver Physiol. 307:G611–G622. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Lima MS, Pereira RA, Costa RS, Tucci S, Dantas M, Muglia VF, Ravinal RC and Barros-Silva GE: The prognostic value of cyclin D1 in renal cell carcinoma. Int Urol Nephrol. 46:905–913. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Lindblad P: Epidemiology of renal cell carcinoma. Scand J Surg. 93:88–96. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Chow WH, Dong LM and Devesa SS: Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 7:245–257. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Linehan WM, Srinivasan R and Schmidt LS: The genetic basis of kidney cancer: A metabolic disease. Nat Rev Urol. 7:277–285. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Vavallo A, Simone S, Lucarelli G, Rutigliano M, Galleggiante V, Grandaliano G, Gesualdo L, Campagna M, Cariello M, Ranieri E, et al: Pre-existing type 2 diabetes mellitus is an independent risk factor for mortality and progression in patients with renal cell carcinoma. Medicine (Baltimore). 93:e1832014. View Article : Google Scholar : PubMed/NCBI

68 

Cancer Genome Atlas Research Network, . Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 499:43–49. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Zhang Q, Yi X, Yang Z, Han Q, Di X, Chen F, Wang Y, Yi Z, Kuang Y and Zhu Y: Overexpression of G6PD represents a potential prognostic factor in clear cell renal cell carcinoma. J Cancer. 8:665–673. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Zhang Q, Yang Z, Han Q, Bai H, Wang Y, Yi X, Yi Z, Yang L, Jiang L, Song X, et al: G6PD promotes renal cell carcinoma proliferation through positive feedback regulation of p-STAT3. Oncotarget. 8:109043–109060. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A and Chiu DT: The redox role of G6PD in cell growth, cell death, and cancer. Cells. 8:10552019. View Article : Google Scholar

72 

Langbein S, Frederiks WM, zur Hausen A, Popa J, Lehmann J, Weiss C, Alken P and Coy JF: Metastasis is promoted by a bioenergetic switch: New targets for progressive renal cell cancer. Int J Cancer. 122:2422–2428. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Shasha L, Priceman SJ, Xin H, Zhang W, Deng J, Liu Y, Huang J, Zhu W, Chen M, Hu W, et al: Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS One. 8:e816572013. View Article : Google Scholar : PubMed/NCBI

74 

Xu SN, Wang TS, Li X and Wang YP: SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation. Sci Rep. 6:327342016. View Article : Google Scholar : PubMed/NCBI

75 

Saito Y, Chapple RH, Lin A, Kitano A and Nakada D: AMPK protects Leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow. Cell Stem Cell. 17:585–596. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Xu Q, Simpson SE, Scialla TJ, Bagg A and Carroll M: Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood. 102:972–980. 2003. View Article : Google Scholar : PubMed/NCBI

77 

Chen Y, Xu Q, Ji D, Wei Y, Chen H, Li T, Wan B, Yuan L, Huang R and Chen G: Inhibition of pentose phosphate pathway suppresses acute myelogenous leukemia. Tumour Biol. 37:6027–6034. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Lowman XH, McDonnell MA, Kosloske A, Odumade OA, Jenness C, Karim CB, Jemmerson R and Kelekar A: The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose. Mol Cell. 40:823–833. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T, Kamata A, Sakamoto K, Nakanishi T, Kubo A, et al: Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun. 5:34802014. View Article : Google Scholar : PubMed/NCBI

80 

Shan C, Elf S, Ji Q, Kang HB, Zhou L, Hitosugi T, Jin L, Lin R, Zhang L, Seo JH, et al: Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell. 55:552–565. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Poulain L, Sujobert P, Zylbersztejn F, Barreau S, Stuani L, Lambert M, Palama TL, Chesnais V, Birsen R, Vergez F, et al: High mTORC1 activity drives glycolysis addiction and sensitivity to G6PD inhibition in acute myeloid leukemia cells. Leukemia. 31:2326–2335. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Hulleman E, Kazemier KM, Holleman A, VanderWeele DJ, Rudin CM, Broekhuis MJ, Evans WE, Pieters R and Den Boer ML: Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood. 113:2014–2021. 2009. View Article : Google Scholar : PubMed/NCBI

83 

Meynet O, Bénetéau M, Jacquin MA, Pradelli LA, Cornille A, Carles M and Ricci JE: Glycolysis inhibition targets Mcl-1 to restore sensitivity of lymphoma cells to ABT-737-induced apoptosis. Leukemia. 26:1145–1147. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Gregory MA, D'Alessandro A, Alvarez-Calderon F, Kim J, Nemkov T, Adane B, Rozhok AI, Kumar A, Kumar V, Pollyea DA, et al: ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia. Proc Natl Acad Sci USA. 113:E6669–E6678. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Gottschalk S, Anderson N, Hainz C, Eckhardt SG and Serkova NJ: Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res. 10:6661–6668. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Karnauskas R, Niu Q, Talapatra S, Plas DR, Greene ME, Crispino JD and Rudin CM: Bcl-x(L) and Akt cooperate to promote leukemogenesis in vivo. Oncogene. 22:688–698. 2003. View Article : Google Scholar : PubMed/NCBI

87 

Ye H, Huang H, Cao F, Chen M, Zheng X and Zhan R: HSPB1 enhances SIRT2-mediated G6PD activation and promotes glioma cell proliferation. PLoS One. 11:e01642852016. View Article : Google Scholar : PubMed/NCBI

88 

Tao L, Yu H, Liang R, Jia R, Wang J, Jiang K and Wang Z: Rev-erbα inhibits proliferation by reducing glycolytic flux and pentose phosphate pathway in human gastric cancer cells. Oncogenesis. 8:572019. View Article : Google Scholar : PubMed/NCBI

89 

Gu MJ, Huang QC, Bao CZ, Li YJ, Li XQ, Ye D, Ye ZH, Chen K and Wang JB: Attributable causes of colorectal cancer in China. BMC Cancer. 18:382018. View Article : Google Scholar : PubMed/NCBI

90 

Zhang Y, Chen Z and Li J: The current status of treatment for colorectal cancer in China: A systematic review. Medicine (Baltimore). 96:e82422017. View Article : Google Scholar : PubMed/NCBI

91 

Ishikawa M, Inoue T, Shirai T, Takamatsu K, Kunihiro S, Ishii H and Nishikata T: Simultaneous expression of cancer stem Cell-like properties and Cancer-associated Fibroblast-like properties in a primary culture of breast cancer cells. Cancers (Basel). 6:1570–1578. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, Sharpe MA, Xin L and Frigo DE: Regulation of the pentose phosphate pathway by an androgen Receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis. 3:e1032014. View Article : Google Scholar : PubMed/NCBI

93 

Zampella EJ, Bradley EL Jr and Pretlow TG II: Glucose-6-phosphate dehydrogenase: A possible clinical indicator for prostatic carcinoma. Cancer. 49:384–387. 1982. View Article : Google Scholar : PubMed/NCBI

94 

Pretlow TG II, Harris BE, Bradley EL Jr, Bueschen AJ, Lloyd KL and Pretlow TP: Enzyme activities in prostatic carcinoma related to Gleason grades. Cancer Res. 45:442–446. 1985.PubMed/NCBI

95 

Ros S, Santos CR, Moco S, Baenke F, Kelly G, Howell M, Zamboni N and Schulze A: Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival. Cancer Discov. 2:328–343. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Kaushik AK, Vareed SK, Basu S, Putluri V, Putluri N, Panzitt K, Brennan CA, Chinnaiyan AM, Vergara IA, Erho N, et al: Metabolomic profiling identifies biochemical pathways associated with Castration-resistant prostate cancer. J Proteome Res. 13:1088–1100. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Nna E, Tothill IE, Ludeman L and Bailey T: Endogenous control genes in prostate cells: Evaluation of gene expression using ‘Real-Time’ quantitative polymerase chain reaction. Med Princ Pract. 19:433–439. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Frederiks WM, Vizan P, Bosch KS, Vreeling-Sindelarova H, Boren J and Cascante M: Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver. Int J Exp Pathol. 89:232–240. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Hu T, Zhang C, Tang Q, Su Y, Li B, Chen L, Zhang Z, Cai T and Zhu Y: Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model. BMC Cancer. 13:2512013. View Article : Google Scholar : PubMed/NCBI

100 

Nobrega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Viña J and Serrano M: G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun. 7:108942016. View Article : Google Scholar : PubMed/NCBI

101 

Hamanaka RB and Chandel NS: Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 35:505–513. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Maryanovich M and Gross A: A ROS rheostat for cell fate regulation. Trends Cell Biol. 23:129–134. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR and Chandel NS: Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 107:8788–8793. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Ying W: NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid Redox Signal. 10:179–206. 2008. View Article : Google Scholar : PubMed/NCBI

105 

Peter B, Bogan KL and Charles B: NAD+ metabolism in health and disease. Trends Biochem Sci. 32:12–19. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Berger F, Ramírez-Hernández MH and Ziegler M: The new life of a centenarian: Signalling functions of NAD(P). Trends Biochem Sci. 29:111–118. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Pollak N, Dölle C and Ziegler M: The power to reduce: Pyridine nucleotides-small molecules with a multitude of functions. Biochem J. 402:205–218. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Rastogi R, Geng X, Li F and Ding Y: NOX Activation by subunit interaction and underlying mechanisms in disease. Front Cell Neurosci. 10:3012017. View Article : Google Scholar : PubMed/NCBI

109 

Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K and Doroshow JH: NADPH Oxidases: A perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal. 20:2873–2889. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Prasad S, Gupta SC and Tyagi AK: Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Bedard K and Krause KH: The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol Rev. 87:245–313. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Mittler R: ROS are good. Trends Plant Sci. 22:11–19. 2017. View Article : Google Scholar : PubMed/NCBI

113 

de Atauri P, Benito A, Vizán P, Zanuy M, Mangues R, Marín S and Cascante M: Carbon metabolism and the sign of control coefficients in metabolic adaptations underlying K-ras transformation. Biochim Biophys Acta. 1807:746–754. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M and Yang X: p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol. 13:310–316. 2011. View Article : Google Scholar : PubMed/NCBI

115 

Fujita M, Imadome K, Endo S, Shoji Y, Yamada S and Imai T: Nitric oxide increases the invasion of pancreatic cancer cells via activation of the PI3K-AKT and RhoA pathways after carbon ion irradiation. FEBS Lett. 588:3240–3250. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Li W, Cao L, Han L, Xu Q and Ma Q: Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-NF-κB axis. Int J Oncol. 46:2613–2620. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Kong DH, Li S, Du ZX, Liu C, Liu BQ, Li C, Zong ZH and Wang HQ: BAG3 elevation inhibits cell proliferation via direct interaction with G6PD in hepatocellular carcinomas. Oncotarget. 7:700–711. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Rosati A, Graziano V, De Laurenzi V, Pascale M and Turco MC: BAG3: A multifaceted protein that regulates major cell pathways. Cell Death Dis. 2:e1412011. View Article : Google Scholar : PubMed/NCBI

119 

Behl C: BAG3 and friends: Co-chaperones in selective autophagy during aging and disease. Autophagy. 7:795–798. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Cai T, Kuang Y, Zhang C, Zhang Z, Chen L, Li B, Li Y, Wang Y, Yang H, Han Q and Zhu Y: Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species, c-SRC and SHP2. Am J Cancer Res. 5:1610–1620. 2015.PubMed/NCBI

121 

Hedberg Y, Ljungberg B, Roos G and Landberg G: Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray. Br J Cancer. 88:1417–1423. 2003. View Article : Google Scholar : PubMed/NCBI

122 

Sun X, Liu B, Wang J, Li J and Ji WY: Inhibition of p21-activated kinase 4 expression suppresses the proliferation of Hep-2 laryngeal carcinoma cells via activation of the ATM/Chk1/2/p53 pathway. Int J Oncol. 42:683–689. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Zhang X, Zhang X, Li Y, Shao Y, Xiao J, Zhu G and Li F: PAK4 regulates G6PD activity by p53 degradation involving colon cancer cell growth. Cell Death Dis. 8:e28202017. View Article : Google Scholar : PubMed/NCBI

124 

Ma X, Wang L, Huang D, Li Y, Yang D, Li T, Li F, Sun L, Wei H, He K, et al: Polo-like kinase 1 coordinates biosynthesis during cell cycle progression by directly activating pentose phosphate pathway. Nat Commun. 8:15062017. View Article : Google Scholar : PubMed/NCBI

125 

Gu Y, Mi W, Ge Y, Liu H, Fan Q, Han C, Yang J, Han F, Lu X and Yu W: GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res. 70:6344–6351. 2010. View Article : Google Scholar : PubMed/NCBI

126 

Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, Cong Q and Yu W: O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta. 1812:514–519. 2011. View Article : Google Scholar : PubMed/NCBI

127 

Tokuda K, Baron B, Yamashiro C, Kuramitsu Y, Kitagawa T, Kobayashi M, Sonoda KH and Kimura K: Up-regulation of the pentose phosphate pathway and HIF-1α expression during neural progenitor cell induction following glutamate treatment in rat ex vivo retina. Cell Biol Int. 44:137–144. 2020. View Article : Google Scholar

128 

Reina-Campos M, Moscat J and Diaz-Meco M: Metabolism shapes the tumor microenvironment. Curr Opin Cell Biol. 48:47–53. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Singh L, Aldosary S, Saeedan AS, Ansari MN and Kaithwas G: Prolyl hydroxylase 2: A promising target to inhibit hypoxia-induced cellular metabolism in cancer cells. Drug Discov Today. 23:1873–1882. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

131 

Cabrales P: RRx-001 acts as a dual small molecule checkpoint inhibitor by downregulating CD47 on cancer cells and SIRP-α on Monocytes/Macrophages. Transl Oncol. 12:626–632. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Yalcin O, Oronsky B, Carvalho LJ, Kuypers FA, Scicinski J and Cabrales P: From METS to malaria: RRx-001, a multi-faceted anticancer agent with activity in cerebral malaria. Malar J. 14:2182015. View Article : Google Scholar : PubMed/NCBI

133 

Das DS, Ray A, Das A, Song Y, Tian Z, Oronsky B, Richardson P, Scicinski J, Chauhan D and Anderson KC: A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia. 30:2187–2197. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Mele L, Paino F, Papaccio F, Regad T, Boocock D, Stiuso P, Lombardi A, Liccardo D, Aquino G, Barbieri A, et al: A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo. Cell Death Dis. 9:5722018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li R, Wang W, Yang Y and Gu C: Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review). Oncol Rep 44: 2325-2336, 2020.
APA
Li, R., Wang, W., Yang, Y., & Gu, C. (2020). Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review). Oncology Reports, 44, 2325-2336. https://doi.org/10.3892/or.2020.7803
MLA
Li, R., Wang, W., Yang, Y., Gu, C."Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review)". Oncology Reports 44.6 (2020): 2325-2336.
Chicago
Li, R., Wang, W., Yang, Y., Gu, C."Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review)". Oncology Reports 44, no. 6 (2020): 2325-2336. https://doi.org/10.3892/or.2020.7803
Copy and paste a formatted citation
x
Spandidos Publications style
Li R, Wang W, Yang Y and Gu C: Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review). Oncol Rep 44: 2325-2336, 2020.
APA
Li, R., Wang, W., Yang, Y., & Gu, C. (2020). Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review). Oncology Reports, 44, 2325-2336. https://doi.org/10.3892/or.2020.7803
MLA
Li, R., Wang, W., Yang, Y., Gu, C."Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review)". Oncology Reports 44.6 (2020): 2325-2336.
Chicago
Li, R., Wang, W., Yang, Y., Gu, C."Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review)". Oncology Reports 44, no. 6 (2020): 2325-2336. https://doi.org/10.3892/or.2020.7803
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team