|
1
|
Luzzatto L and Arese P: Favism and
Glucose-6-phosphate dehydrogenase deficiency. N Engl J Med.
378:60–71. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yang HC, Wu YH, Liu HY, Stern A and Chiu
DT: What has passed is prolog: New cellular and physiological roles
of G6PD. Free Radic Res. 50:1047–1064. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Luzzatto L and Seneca E: G6PD deficiency:
A classic example of pharmacogenetics with on-going clinical
implications. Br J Haematol. 164:469–480. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Longo L, Vanegas OC, Patel M, Rosti V, Li
H, Waka J, Merghoub T, Pandolfi PP, Notaro R, Manova K and Luzzatto
L: Maternally transmitted severe glucose 6-phosphate dehydrogenase
deficiency is an embryonic lethal. EMBO J. 21:4229–4239. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sun L, Suo C, Li ST, Zhang H and Gao P:
Metabolic reprogramming for cancer cells and their
microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta
Rev Cancer. 1870:51–66. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ho HY, Cheng ML and Chiu DT:
Glucose-6-phosphate dehydrogenase-beyond the realm of red cell
biology. Free Radic Res. 48:1028–1048. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Heymann AD, Cohen Y and Chodick G:
Glucose-6-phosphate dehydrogenase deficiency and type 2 diabetes.
Diabetes Care. 35:e582012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Carette C, Dubois-Laforgue D, Gautier JF
and Timsit J: Diabetes mellitus and glucose-6-phosphate
dehydrogenase deficiency: from one crisis to another. Diabetes
Metab. 37:79–82. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wan GH, Tsai SC and Chiu DT: Decreased
blood activity of glucose-6-phosphate dehydrogenase associates with
increased risk for diabetes mellitus. Endocrine. 19:191–195. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fang Z, Jiang C, Feng Y, Chen R, Lin X,
Zhang Z, Han L, Chen X, Li H, Guo Y and Jiang W: Effects of G6PD
activity inhibition on the viability, ROS generation and mechanical
properties of cervical cancer cells. Biochim Biophys Acta.
1863:2245–2254. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen X, Xu Z, Zhu Z, Chen A, Fu G, Wang Y,
Pan H and Jin B: Modulation of G6PD affects bladder cancer via ROS
accumulation and the AKT pathway in vitro. Int J Oncol.
53:1703–1712. 2018.PubMed/NCBI
|
|
12
|
Ai G, Dachineni R, Kumar DR, Alfonso LF,
Marimuthu S and Bhat GJ: Aspirin inhibits glucose-6-phosphate
dehydrogenase activity in HCT 116 cells through acetylation:
Identification of aspirin-acetylated sites. Mol Med Rep.
14:1726–1732. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen J, Cao S, Situ B, Zhong J, Hu Y, Li
S, Huang J, Xu J, Wu S, Lin J, et al: Metabolic reprogramming-based
characterization of circulating tumor cells in prostate cancer. J
Exp Clin Cancer Res. 37:1272018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Spencer NY and Stanton RC: Glucose
6-phosphate dehydrogenase and the kidney. Curr Opin Nephrol
Hypertens. 26:43–49. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shan CL, Lu Z, Li Z, Sheng H, Fan J, Qi Q,
Liu S and Zhang S: 4-hydroxyphenylpyruvate dioxygenase promotes
lung cancer growth via pentose phosphate pathway (PPP) flux
mediated by LKB1-AMPK/HDAC10/G6PD axis. Cell Death Dis. 10:5252019.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xu Y, Gao W, Zhang Y, Wu S, Liu Y, Deng X,
Xie L, Yang J, Yu H, Su J and Sun L: ABT737 reverses cisplatin
resistance by targeting glucose metabolism of human ovarian cancer
cells. Int J Oncol. 53:1055–1068. 2018.PubMed/NCBI
|
|
17
|
Minchenko OH, Garmash IA, Minchenko DO,
Kuznetsova AY and Ratushna OO: Inhibition of IRE1 modifie s hypoxic
regulation of G6PD, GPI, TKT, TALDO1, PGLS and RPIA genes
expression in U87 glioma cells. Ukr Biochem J. 89:38–49. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kiani F, Schwarzl S, Fischer S and Efferth
T: Three-dimensional modeling of Glucose-6-phosphate
dehydrogenase-deficient variants from German ancestry. PLoS One.
2:e6252007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kotaka M, Gover S, Vandeputte-Rutten L, Au
SW, Lam VM and Adams MJ: Structural studies of glucose-6-phosphate
and NADP+ binding to human glucose-6-phosphate
dehydrogenase. Acta Crystallogr D Biol Crystallogr. 61:495–504.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Au SW, Gover S, Lam VM and Adams MJ: Human
glucose-6-phosphate dehydrogenase: The crystal structure reveals a
structural NADP(+) molecule and provides insights into enzyme
deficiency. Structure. 8:293–303. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Stanton RC: Glucose-6-phosphate
dehydrogenase, NADPH, and cell survival. IUBMB life. 64:362–369.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Minucci A, Moradkhani K, Hwang MJ, Zuppi
C, Giardina B and Capoluongo E: Glucose-6-phosphate dehydrogenase
(G6PD) mutations database: Review of the ‘old’ and update of the
new mutations. Blood Cells Mol Dis. 48:154–165. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ramos-Montoya A, Lee WN, Bassilian S, Lim
S, Trebukhina RV, Kazhyna MV, Ciudad CJ, Noé V, Centelles JJ and
Cascante M: Pentose phosphate cycle oxidative and nonoxidative
balance: A new vulnerable target for overcoming drug resistance in
cancer. Int J Cancer. 119:2733–2741. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Brizel DM, Schroeder T, Scher RL, Walenta
S, Clough RW, Dewhirst MW and Mueller-Klieser W: Elevated tumor
lactate concentrations predict for an increased risk of metastases
in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 51:349–353.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Seyfried TN, Sanderson TM, El-Abbadi MM,
McGowan R and Mukherjee P: Role of glucose and ketone bodies in the
metabolic control of experimental brain cancer. Br J Cancer.
89:1375–1382. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Xu RH, Pelicano H, Zhou Y, Carew JS, Feng
L, Bhalla KN, Keating MJ and Huang P: Inhibition of glycolysis in
cancer cells: A novel strategy to overcome drug resistance
associated with mitochondrial respiratory defect and hypoxia.
Cancer Res. 65:613–621. 2005.PubMed/NCBI
|
|
27
|
Patra KC and Hay N: The pentose phosphate
pathway and cancer. Trends Biochem Sci. 39:347–354. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cernaj IE: Simultaneous dual targeting of
Par-4 and G6PD: A promising new approach in cancer therapy?
Quintessence of a literature review on survival requirements of
tumor cells. Cancer Cell Int. 16:872016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ho HY, Cheng ML and Chiu DT:
Glucose-6-phosphate dehydrogenase-from oxidative stress to cellular
functions and degenerative diseases. Redox Rep. 12:109–118. 2013.
View Article : Google Scholar
|
|
30
|
Rao X, Duan X, Mao W, Li X, Li Z, Li Q,
Zheng Z, Xu H, Chen M, Wang PG, et al: O-GlcNAcylation of G6PD
promotes the pentose phosphate pathway and tumor growth. Nat
Commun. 6:84682015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jin ES, Sherry AD and Malloy CR:
Interaction between the pentose phosphate pathway and
gluconeogenesis from glycerol in the liver. J Biol Chem.
289:32593–32603. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Park YJ, Choe SS, Sohn JH and Kim JB: The
role of glucose-6-phosphate dehydrogenase in adipose tissue
inflammation in obesity. Adipocyte. 6:147–153. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Keran EE and Barker KL: Regulation of
glucose-6-phosphate dehydrogenase activity in uterine tissue in
organ culture. Endocrinology. 99:1386–1397. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chandra R, Villanueva E, Feketova E,
Machiedo GW, Haskó G, Deitch EA and Spolarics Z: Endotoxemia
down-regulates bone marrow lymphopoiesis but stimulates
myelopoiesis: The effect of G6PD deficiency. J Leukoc Biol.
83:1541–1550. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
van Zwieten R, Verhoeven AJ and Roos D:
Inborn defects in the antioxidant systems of human red blood cells.
Free Radic Biol Med. 67:377–386. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schulze A and Harris AL: How cancer
metabolism is tuned for proliferation and vulnerable to disruption.
Nature. 491:364–373. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Martinez-Outschoorn UE, Peiris-Pages M,
Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A
therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Icard P, Shulman S, Farhat D, Steyaert JM,
Alifano M and Lincet H: How the Warburg effect supports
aggressiveness and drug resistance of cancer cells? Drug Resist
Updat. 38:1–11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Boroughs LK and DeBerardinis RJ: Metabolic
pathways promoting cancer cell survival and growth. Nat Cell Biol.
17:351–359. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pfeiffer T, Schuster S and Bonhoeffer S:
Cooperation and competition in the evolution of ATP-producing
pathways. Science. 292:504–507. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cox E and Bonner J: Ecology. The
advantages of togetherness. Science. 292:448–449. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Israelsen WJ and Vander Heiden MG: ATP
consumption promotes cancer metabolism. Cell. 143:669–671. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ju HQ, Lu YX, Wu QN, Liu J, Zeng ZL, Mo
HY, Chen Y, Tian T, Wang Y, Kang TB, et al: Disrupting
G6PD-mediated Redox homeostasis enhances chemosensitivity in
colorectal cancer. Oncogene. 36:6282–6292. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
McBrayer SK, Yarrington M, Qian J, Feng G,
Shanmugam M, Gandhi V, Krett NL and Rosen ST: Integrative gene
expression profiling reveals G6PD-mediated resistance to
RNA-directed nucleoside analogues in B-cell neoplasms. PLoS One.
7:e414552012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY,
Zhou Z, Gou XM, Wu XH, Yu XY and Huang YH: Nrf2 promotes breast
cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis.
J Cell Mol Med. 23:3451–3463. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang J, Yuan W and Chen Z, Wu S, Chen J,
Ge J, Hou F and Chen Z: Overexpression of G6PD is associated with
poor clinical outcome in gastric cancer. Tumour Biol. 33:95–101.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang X, Li X, Zhang X, Fan R, Gu H, Shi Y
and Liu H: Glucose-6-phosphate dehydrogenase expression is
correlated with poor clinical prognosis in esophageal squamous cell
carcinoma. Eur J Surg Oncol. 41:1293–1299. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang HC, Chen TL, Wu YH, Cheng KP, Lin YH,
Cheng ML, Ho HY, Lo SJ and Chiu DT: Glucose 6-phosphate
dehydrogenase deficiency enhances germ cell apoptosis and causes
defective embryogenesis in Caenorhabditis elegans. Cell Death Dis.
4:e6162013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wu YH, Lee YH, Shih HY, Chen SH, Cheng YC
and Tsun-Yee Chiu D: Glucose-6-phosphate dehydrogenase is
indispensable in embryonic development by modulation of
epithelial-mesenchymal transition via the NOX/Smad3/miR-200b axis.
Cell Death Dis. 9:102018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cairns RA, Harris IS and Mak TW:
Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tong X, Zhao F and Thompson CB: The
molecular determinants of de novo nucleotide biosynthesis in cancer
cells. Curr Opin Genet Dev. 19:32–37. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Frederiks WM, Bosch KS, Hoeben KA, van
Marle J and Langbein S: Renal cell carcinoma and oxidative stress:
The lack of peroxisomes. Acta Histochem. 112:364–371. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chettimada S, Joshi SR, Alzoubi A, Gebb
SA, McMurtry IF, Gupte R and Gupte SA: Glucose-6-phosphate
dehydrogenase plays a critical role in hypoxia-induced
CD133+ progenitor cells self-renewal and stimulates
their accumulation in the lungs of pulmonary hypertensive rats. Am
J Physiol Lung Cell Mol Physiol. 307:L545–L556. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Peiró C, Romacho T, Azcutia V, Villalobos
L, Fernández E, Bolaños JP, Moncada S and Sánchez-Ferrer CF:
Inflammation, glucose, and vascular cell damage: The role of the
pentose phosphate pathway. Cardiovasc Diabetol. 15:822016.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu YH, Tseng CP, Cheng ML, Ho HY, Shih SR
and Chiu DT: Glucose-6-phosphate dehydrogenase deficiency enhances
human coronavirus 229E infection. J Infect Dis. 197:812–816. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Rostami-Far Z, Ghadiri K, Rostami-Far M,
Shaveisi-Zadeh F, Amiri A and Rahimian Zarif B: Glucose-6-phosphate
dehydrogenase deficiency (G6PD) as a risk factor of male neonatal
sepsis. J Med Life. 9:34–38. 2016.PubMed/NCBI
|
|
57
|
Zhao J, Zhang X, Guan T, Wang X, Zhang H,
Zeng X, Dai Q, Wang Y, Zhou L and Ma X: The association between
glucose-6-phosphate dehydrogenase deficiency and abnormal blood
pressure among prepregnant reproductive-age Chinese females.
Hypertens Res. 42:75–84. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li D, Zhu Y, Tang Q, Lu H, Li H, Yang Y,
Li Z and Tong S: A new G6PD knockdown tumor-cell line with reduced
proliferation and increased susceptibility to oxidative stress.
Cancer Biother Radiopharm. 24:81–90. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu
P, Chen KK, Lopez JP, Poon RT and Fan ST: Octamer 4 (Oct4) mediates
chemotherapeutic drug resistance in liver cancer cells through a
potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology.
52:528–539. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hong XH, Song RP, Song HW, Zheng T, Wang
J, Liang Y, Qi S, Lu Z, Song X, Jiang H, et al: PTEN antagonises
Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to
hepatocarcinogenesis. Gut. 63:1635–1647. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lu M, Lu L, Dong Q, Yu G, Chen J, Qin L,
Wang L, Zhu W and Jia H: Elevated G6PD expression contributes to
migration and invasion of hepatocellular carcinoma cells by
inducing epithelial-mesenchymal transition. Acta Biochim Biophys
Sin (Shanghai). 50:370–380. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hu H, Ding X, Yang Y, Zhang H, Li H, Tong
S, An X, Zhong Q, Liu X, Ma L, et al: Changes in
glucose-6-phosphate dehydrogenase expression results in altered
behavior of HBV-associated liver cancer cells. Am J Physiol
Gastrointest Liver Physiol. 307:G611–G622. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lima MS, Pereira RA, Costa RS, Tucci S,
Dantas M, Muglia VF, Ravinal RC and Barros-Silva GE: The prognostic
value of cyclin D1 in renal cell carcinoma. Int Urol Nephrol.
46:905–913. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lindblad P: Epidemiology of renal cell
carcinoma. Scand J Surg. 93:88–96. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chow WH, Dong LM and Devesa SS:
Epidemiology and risk factors for kidney cancer. Nat Rev Urol.
7:245–257. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Linehan WM, Srinivasan R and Schmidt LS:
The genetic basis of kidney cancer: A metabolic disease. Nat Rev
Urol. 7:277–285. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vavallo A, Simone S, Lucarelli G,
Rutigliano M, Galleggiante V, Grandaliano G, Gesualdo L, Campagna
M, Cariello M, Ranieri E, et al: Pre-existing type 2 diabetes
mellitus is an independent risk factor for mortality and
progression in patients with renal cell carcinoma. Medicine
(Baltimore). 93:e1832014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cancer Genome Atlas Research Network, .
Comprehensive molecular characterization of clear cell renal cell
carcinoma. Nature. 499:43–49. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang Q, Yi X, Yang Z, Han Q, Di X, Chen
F, Wang Y, Yi Z, Kuang Y and Zhu Y: Overexpression of G6PD
represents a potential prognostic factor in clear cell renal cell
carcinoma. J Cancer. 8:665–673. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang Q, Yang Z, Han Q, Bai H, Wang Y, Yi
X, Yi Z, Yang L, Jiang L, Song X, et al: G6PD promotes renal cell
carcinoma proliferation through positive feedback regulation of
p-STAT3. Oncotarget. 8:109043–109060. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL,
Stern A and Chiu DT: The redox role of G6PD in cell growth, cell
death, and cancer. Cells. 8:10552019. View Article : Google Scholar
|
|
72
|
Langbein S, Frederiks WM, zur Hausen A,
Popa J, Lehmann J, Weiss C, Alken P and Coy JF: Metastasis is
promoted by a bioenergetic switch: New targets for progressive
renal cell cancer. Int J Cancer. 122:2422–2428. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Shasha L, Priceman SJ, Xin H, Zhang W,
Deng J, Liu Y, Huang J, Zhu W, Chen M, Hu W, et al: Icaritin
inhibits JAK/STAT3 signaling and growth of renal cell carcinoma.
PLoS One. 8:e816572013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Xu SN, Wang TS, Li X and Wang YP: SIRT2
activates G6PD to enhance NADPH production and promote leukaemia
cell proliferation. Sci Rep. 6:327342016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Saito Y, Chapple RH, Lin A, Kitano A and
Nakada D: AMPK protects Leukemia-initiating cells in myeloid
leukemias from metabolic stress in the bone marrow. Cell Stem Cell.
17:585–596. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Xu Q, Simpson SE, Scialla TJ, Bagg A and
Carroll M: Survival of acute myeloid leukemia cells requires PI3
kinase activation. Blood. 102:972–980. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen Y, Xu Q, Ji D, Wei Y, Chen H, Li T,
Wan B, Yuan L, Huang R and Chen G: Inhibition of pentose phosphate
pathway suppresses acute myelogenous leukemia. Tumour Biol.
37:6027–6034. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lowman XH, McDonnell MA, Kosloske A,
Odumade OA, Jenness C, Karim CB, Jemmerson R and Kelekar A: The
proapoptotic function of Noxa in human leukemia cells is regulated
by the kinase Cdk5 and by glucose. Mol Cell. 40:823–833. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yamamoto T, Takano N, Ishiwata K, Ohmura
M, Nagahata Y, Matsuura T, Kamata A, Sakamoto K, Nakanishi T, Kubo
A, et al: Reduced methylation of PFKFB3 in cancer cells shunts
glucose towards the pentose phosphate pathway. Nat Commun.
5:34802014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shan C, Elf S, Ji Q, Kang HB, Zhou L,
Hitosugi T, Jin L, Lin R, Zhang L, Seo JH, et al: Lysine
acetylation activates 6-phosphogluconate dehydrogenase to promote
tumor growth. Mol Cell. 55:552–565. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Poulain L, Sujobert P, Zylbersztejn F,
Barreau S, Stuani L, Lambert M, Palama TL, Chesnais V, Birsen R,
Vergez F, et al: High mTORC1 activity drives glycolysis addiction
and sensitivity to G6PD inhibition in acute myeloid leukemia cells.
Leukemia. 31:2326–2335. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hulleman E, Kazemier KM, Holleman A,
VanderWeele DJ, Rudin CM, Broekhuis MJ, Evans WE, Pieters R and Den
Boer ML: Inhibition of glycolysis modulates prednisolone resistance
in acute lymphoblastic leukemia cells. Blood. 113:2014–2021. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Meynet O, Bénetéau M, Jacquin MA, Pradelli
LA, Cornille A, Carles M and Ricci JE: Glycolysis inhibition
targets Mcl-1 to restore sensitivity of lymphoma cells to
ABT-737-induced apoptosis. Leukemia. 26:1145–1147. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gregory MA, D'Alessandro A,
Alvarez-Calderon F, Kim J, Nemkov T, Adane B, Rozhok AI, Kumar A,
Kumar V, Pollyea DA, et al: ATM/G6PD-driven redox metabolism
promotes FLT3 inhibitor resistance in acute myeloid leukemia. Proc
Natl Acad Sci USA. 113:E6669–E6678. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gottschalk S, Anderson N, Hainz C,
Eckhardt SG and Serkova NJ: Imatinib (STI571)-mediated changes in
glucose metabolism in human leukemia BCR-ABL-positive cells. Clin
Cancer Res. 10:6661–6668. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Karnauskas R, Niu Q, Talapatra S, Plas DR,
Greene ME, Crispino JD and Rudin CM: Bcl-x(L) and Akt cooperate to
promote leukemogenesis in vivo. Oncogene. 22:688–698. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ye H, Huang H, Cao F, Chen M, Zheng X and
Zhan R: HSPB1 enhances SIRT2-mediated G6PD activation and promotes
glioma cell proliferation. PLoS One. 11:e01642852016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tao L, Yu H, Liang R, Jia R, Wang J, Jiang
K and Wang Z: Rev-erbα inhibits proliferation by reducing
glycolytic flux and pentose phosphate pathway in human gastric
cancer cells. Oncogenesis. 8:572019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gu MJ, Huang QC, Bao CZ, Li YJ, Li XQ, Ye
D, Ye ZH, Chen K and Wang JB: Attributable causes of colorectal
cancer in China. BMC Cancer. 18:382018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang Y, Chen Z and Li J: The current
status of treatment for colorectal cancer in China: A systematic
review. Medicine (Baltimore). 96:e82422017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ishikawa M, Inoue T, Shirai T, Takamatsu
K, Kunihiro S, Ishii H and Nishikata T: Simultaneous expression of
cancer stem Cell-like properties and Cancer-associated
Fibroblast-like properties in a primary culture of breast cancer
cells. Cancers (Basel). 6:1570–1578. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tsouko E, Khan AS, White MA, Han JJ, Shi
Y, Merchant FA, Sharpe MA, Xin L and Frigo DE: Regulation of the
pentose phosphate pathway by an androgen Receptor-mTOR-mediated
mechanism and its role in prostate cancer cell growth. Oncogenesis.
3:e1032014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zampella EJ, Bradley EL Jr and Pretlow TG
II: Glucose-6-phosphate dehydrogenase: A possible clinical
indicator for prostatic carcinoma. Cancer. 49:384–387. 1982.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Pretlow TG II, Harris BE, Bradley EL Jr,
Bueschen AJ, Lloyd KL and Pretlow TP: Enzyme activities in
prostatic carcinoma related to Gleason grades. Cancer Res.
45:442–446. 1985.PubMed/NCBI
|
|
95
|
Ros S, Santos CR, Moco S, Baenke F, Kelly
G, Howell M, Zamboni N and Schulze A: Functional metabolic screen
identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as
an important regulator of prostate cancer cell survival. Cancer
Discov. 2:328–343. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kaushik AK, Vareed SK, Basu S, Putluri V,
Putluri N, Panzitt K, Brennan CA, Chinnaiyan AM, Vergara IA, Erho
N, et al: Metabolomic profiling identifies biochemical pathways
associated with Castration-resistant prostate cancer. J Proteome
Res. 13:1088–1100. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nna E, Tothill IE, Ludeman L and Bailey T:
Endogenous control genes in prostate cells: Evaluation of gene
expression using ‘Real-Time’ quantitative polymerase chain
reaction. Med Princ Pract. 19:433–439. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Frederiks WM, Vizan P, Bosch KS,
Vreeling-Sindelarova H, Boren J and Cascante M: Elevated activity
of the oxidative and non-oxidative pentose phosphate pathway in
(pre)neoplastic lesions in rat liver. Int J Exp Pathol. 89:232–240.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hu T, Zhang C, Tang Q, Su Y, Li B, Chen L,
Zhang Z, Cai T and Zhu Y: Variant G6PD levels promote tumor cell
proliferation or apoptosis via the STAT3/5 pathway in the human
melanoma xenograft mouse model. BMC Cancer. 13:2512013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Nobrega-Pereira S, Fernandez-Marcos PJ,
Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Viña J
and Serrano M: G6PD protects from oxidative damage and improves
healthspan in mice. Nat Commun. 7:108942016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Hamanaka RB and Chandel NS: Mitochondrial
reactive oxygen species regulate cellular signaling and dictate
biological outcomes. Trends Biochem Sci. 35:505–513. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Maryanovich M and Gross A: A ROS rheostat
for cell fate regulation. Trends Cell Biol. 23:129–134. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Weinberg F, Hamanaka R, Wheaton WW,
Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger
GR and Chandel NS: Mitochondrial metabolism and ROS generation are
essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA.
107:8788–8793. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ying W: NAD+/NADH and
NADP+/NADPH in cellular functions and cell death:
Regulation and biological consequences. Antioxid Redox Signal.
10:179–206. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Peter B, Bogan KL and Charles B:
NAD+ metabolism in health and disease. Trends Biochem
Sci. 32:12–19. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Berger F, Ramírez-Hernández MH and Ziegler
M: The new life of a centenarian: Signalling functions of NAD(P).
Trends Biochem Sci. 29:111–118. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Pollak N, Dölle C and Ziegler M: The power
to reduce: Pyridine nucleotides-small molecules with a multitude of
functions. Biochem J. 402:205–218. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Rastogi R, Geng X, Li F and Ding Y: NOX
Activation by subunit interaction and underlying mechanisms in
disease. Front Cell Neurosci. 10:3012017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Meitzler JL, Antony S, Wu Y, Juhasz A, Liu
H, Jiang G, Lu J, Roy K and Doroshow JH: NADPH Oxidases: A
perspective on reactive oxygen species production in tumor biology.
Antioxid Redox Signal. 20:2873–2889. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Prasad S, Gupta SC and Tyagi AK: Reactive
oxygen species (ROS) and cancer: Role of antioxidative
nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Bedard K and Krause KH: The NOX family of
ROS-generating NADPH oxidases: Physiology and pathophysiology.
Physiol Rev. 87:245–313. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Mittler R: ROS are good. Trends Plant Sci.
22:11–19. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
de Atauri P, Benito A, Vizán P, Zanuy M,
Mangues R, Marín S and Cascante M: Carbon metabolism and the sign
of control coefficients in metabolic adaptations underlying K-ras
transformation. Biochim Biophys Acta. 1807:746–754. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Jiang P, Du W, Wang X, Mancuso A, Gao X,
Wu M and Yang X: p53 regulates biosynthesis through direct
inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol.
13:310–316. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Fujita M, Imadome K, Endo S, Shoji Y,
Yamada S and Imai T: Nitric oxide increases the invasion of
pancreatic cancer cells via activation of the PI3K-AKT and RhoA
pathways after carbon ion irradiation. FEBS Lett. 588:3240–3250.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Li W, Cao L, Han L, Xu Q and Ma Q:
Superoxide dismutase promotes the epithelial-mesenchymal transition
of pancreatic cancer cells via activation of the H2O2/ERK/NF-NF-κB
axis. Int J Oncol. 46:2613–2620. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kong DH, Li S, Du ZX, Liu C, Liu BQ, Li C,
Zong ZH and Wang HQ: BAG3 elevation inhibits cell proliferation via
direct interaction with G6PD in hepatocellular carcinomas.
Oncotarget. 7:700–711. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Rosati A, Graziano V, De Laurenzi V,
Pascale M and Turco MC: BAG3: A multifaceted protein that regulates
major cell pathways. Cell Death Dis. 2:e1412011. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Behl C: BAG3 and friends: Co-chaperones in
selective autophagy during aging and disease. Autophagy. 7:795–798.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Cai T, Kuang Y, Zhang C, Zhang Z, Chen L,
Li B, Li Y, Wang Y, Yang H, Han Q and Zhu Y: Glucose-6-phosphate
dehydrogenase and NADPH oxidase 4 control STAT3 activity in
melanoma cells through a pathway involving reactive oxygen species,
c-SRC and SHP2. Am J Cancer Res. 5:1610–1620. 2015.PubMed/NCBI
|
|
121
|
Hedberg Y, Ljungberg B, Roos G and
Landberg G: Expression of cyclin D1, D3, E, and p27 in human renal
cell carcinoma analysed by tissue microarray. Br J Cancer.
88:1417–1423. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Sun X, Liu B, Wang J, Li J and Ji WY:
Inhibition of p21-activated kinase 4 expression suppresses the
proliferation of Hep-2 laryngeal carcinoma cells via activation of
the ATM/Chk1/2/p53 pathway. Int J Oncol. 42:683–689. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang X, Zhang X, Li Y, Shao Y, Xiao J,
Zhu G and Li F: PAK4 regulates G6PD activity by p53 degradation
involving colon cancer cell growth. Cell Death Dis. 8:e28202017.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ma X, Wang L, Huang D, Li Y, Yang D, Li T,
Li F, Sun L, Wei H, He K, et al: Polo-like kinase 1 coordinates
biosynthesis during cell cycle progression by directly activating
pentose phosphate pathway. Nat Commun. 8:15062017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Gu Y, Mi W, Ge Y, Liu H, Fan Q, Han C,
Yang J, Han F, Lu X and Yu W: GlcNAcylation plays an essential role
in breast cancer metastasis. Cancer Res. 70:6344–6351. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X,
Cong Q and Yu W: O-GlcNAcylation is a novel regulator of lung and
colon cancer malignancy. Biochim Biophys Acta. 1812:514–519. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Tokuda K, Baron B, Yamashiro C, Kuramitsu
Y, Kitagawa T, Kobayashi M, Sonoda KH and Kimura K: Up-regulation
of the pentose phosphate pathway and HIF-1α expression during
neural progenitor cell induction following glutamate treatment in
rat ex vivo retina. Cell Biol Int. 44:137–144. 2020. View Article : Google Scholar
|
|
128
|
Reina-Campos M, Moscat J and Diaz-Meco M:
Metabolism shapes the tumor microenvironment. Curr Opin Cell Biol.
48:47–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Singh L, Aldosary S, Saeedan AS, Ansari MN
and Kaithwas G: Prolyl hydroxylase 2: A promising target to inhibit
hypoxia-induced cellular metabolism in cancer cells. Drug Discov
Today. 23:1873–1882. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Cabrales P: RRx-001 acts as a dual small
molecule checkpoint inhibitor by downregulating CD47 on cancer
cells and SIRP-α on Monocytes/Macrophages. Transl Oncol.
12:626–632. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Yalcin O, Oronsky B, Carvalho LJ, Kuypers
FA, Scicinski J and Cabrales P: From METS to malaria: RRx-001, a
multi-faceted anticancer agent with activity in cerebral malaria.
Malar J. 14:2182015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Das DS, Ray A, Das A, Song Y, Tian Z,
Oronsky B, Richardson P, Scicinski J, Chauhan D and Anderson KC: A
novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis
and overcomes drug resistance in multiple myeloma cells. Leukemia.
30:2187–2197. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Mele L, Paino F, Papaccio F, Regad T,
Boocock D, Stiuso P, Lombardi A, Liccardo D, Aquino G, Barbieri A,
et al: A new inhibitor of glucose-6-phosphate dehydrogenase blocks
pentose phosphate pathway and suppresses malignant proliferation
and metastasis in vivo. Cell Death Dis. 9:5722018. View Article : Google Scholar : PubMed/NCBI
|