|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Schiffman M, Wentzensen N, Wacholder S,
Kinney W, Gage JC and Castle PE: Human papillomavirus testing in
the prevention of cervical cancer. J Natl Cancer Inst. 103:368–383.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
zur Hausen H: Papillomaviruses and cancer:
From basic studies to clinical application. Nat Rev Cancer.
2:342–350. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lu Z and Chen J: Introduction of WHO
classification of tumours of female reproductive organs, fourth
edition. Zhonghua Bing Li Xue Za Zhi. 43:649–650. 2014.(In
Chinese). PubMed/NCBI
|
|
6
|
Dalla Palma P, Giorgi Rossi P, Collina G,
Buccoliero AM, Ghiringhello B, Gilioli E, Onnis GL, Aldovini D,
Galanti G, Casadei G, et al: The reproducibility of CIN diagnoses
among different pathologists: Data from histology reviews from a
multicenter randomized study. Am J Clin Pathol. 132:125–132. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang SK, Kang LN, Chang IJ, Zhao FH, Hu
SY, Chen W, Shi JF, Zhang X, Pan QJ, Li SM and Qiao YL: The natural
history of cervical cancer in Chinese women: Results from an
11-year follow-up study in China using a multistate model. Cancer
Epidemiol Biomarkers Prev. 23:1298–1305. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Tainio K, Athanasiou A, Tikkinen KAO,
Aaltonen R, Cardenas J, Hernandes, Glazer-Livson S, Jakobsson M,
Joronen K, Kiviharju M, et al: Clinical course of untreated
cervical intraepithelial neoplasia grade 2 under active
surveillance: Systematic review and meta-analysis. BMJ.
360:k4992018. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Policht FA, Song M, Sitailo S, O'Hare A,
Ashfaq R, Muller CY, Morrison LE, King W and Sokolova IA: Analysis
of genetic copy number changes in cervical disease progression. BMC
Cancer. 10:4322010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rodolakis A, Biliatis I, Symiakaki H,
Kershnar E, Kilpatrick MW, Haidopoulos D, Thomakos N and Antsaklis
A: Role of chromosome 3q26 gain in predicting progression of
cervical dysplasia. Int J Gynecol Cancer. 22:742–747. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Koeneman MM, Ovestad IT, Janssen EAM,
Ummelen M, Kruitwagen RFPM, Hopman AH and Kruse AJ: Gain of
chromosomal region 3q26 as a prognostic biomarker for high-grade
cervical intraepithelial neoplasia: Literature overview and pilot
study. Pathol Oncol Res. 25:549–557. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kudela E, Visnovsky J, Balharek T,
Farkasova A, Zubor P, Plank L and Danko J: Different amplification
patterns of 3q26 and 5p15 regions in cervical intraepithelial
neoplasia and cervical cancer. Ann Diagn Pathol. 35:16–20. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cezar-Dos-Santos F, Ferreira RS, Okuyama
NCM, Trugilo KP, Sena MM, Pereira ER, Pereira APL, Watanabe MAE and
de Oliveira KB: FOXP3 immunoregulatory gene variants are
independent predictors of human papillomavirus infection and
cervical cancer precursor lesions. J Cancer Res Clin Oncol.
145:2013–2025. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Isakova J, Vinnikov D, Bukuev N,
Talaibekova E and Aldasheva N: TP53 Codon 72 polymorphism and human
papilloma virus-associated cervical cancer in Kyrgyz women. Asian
Pac J Cancer Prev. 20:1057–1062. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen B, Jiao Y, Yaolong F, Li T, Liu Y,
Wang M, Xiuli G and Feng X: The POLR2E rs3787016 polymorphism is
strongly associated with the risk of female breast and cervical
cancer. Pathol Res Pract. 215:1061–1065. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sui S, Chen H, Han L, Wang L, Niyazi M and
Zhu K: Correlation of APOBEC3G polymorphism with human
papillomavirus (HPV) persistent infection and progression of
cervical lesions. Med Sci Monit. 25:6990–6997. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang L, Zhao W, Hong J, Niu F, Li J, Zhang
S and Jin T: Association between IL1B gene and cervical cancer
susceptibility in Chinese Uygur population: A case-control study.
Mol Genet Genomic Med. 7:e7792019. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yang S, Zhao J and Li L: NAD(P)H: Quinone
oxidoreductase 1 gene rs1800566 polymorphism increases the risk of
cervical cancer in a Chinese Han sample: A STROBE-complaint
case-control study. Medicine (Baltimore). 99:e199412020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hu S, Pu D, Xia X, Guo B and Zhang C:
CTLA-4 rs5742909 polymorphism and cervical cancer risk: A
meta-analysis. Medicine (Baltimore). 99:e194332020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ye F, Wang H, Liu J, Cheng Q, Chen X and
Chen H: Genetic variants of the dUTPase-encoding gene DUT increase
HR-HPV infection rate and cervical squamous cell carcinoma risk.
Sci Rep. 9:5132019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sakane J, Taniyama K, Miyamoto K, Saito A,
Kuraoka K, Nishimura T, Sentani K, Oue N and Yasui W: Aberrant DNA
methylation of DLX4 and SIM1 is a predictive marker for disease
progression of uterine cervical low-grade squamous intraepithelial
lesion. Diagn Cytopathol. 43:462–470. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Luan T, Hua Q, Liu X, Xu P, Gu Y, Qian H,
Yan L, Xu X, Geng R, Zeng X and Li P: PAX1 methylation as a
potential biomarker to predict the progression of cervical
intraepithelial neoplasia: A Meta-analysis of related studies. Int
J Gynecol Cancer. 27:1480–1488. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang J, Yao T, Lin Z and Gao Y: Aberrant
Methylation of MEG3 functions as a potential plasma-based biomarker
for cervical cancer. Sci Rep. 7:62712017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Rogeri CD, Silveira HCS, Causin RL, Villa
LL, Stein MD, de Carvalho AC, Arantes LM, Scapulatempo-Neto C,
Possati-Resende JC, Antoniazzi M, et al: Methylation of the
hsa-miR-124, SOX1, TERT, and LMX1A genes as biomarkers for
precursor lesions in cervical cancer. Gynecol Oncol. 150:545–551.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Verlaat W, Snijders PJ, Novianti PW,
Wilting SM, De Strooper LM, Trooskens G, Vandersmissen J, Van
Criekinge W, Wisman GB, Meijer CJ, et al: Genome-wide DNA
methylation profiling reveals methylation markers associated with
3q gain for detection of cervical precancer and cancer. Clin Cancer
Res. 23:3813–3822. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
De Strooper LM, Berkhof J, Steenbergen RD,
Lissenberg-Witte BI, Snijders PJ, Meijer CJ and Heideman DA:
Cervical cancer risk in HPV-positive women after a negative
FAM19A4/mir124-2 methylation test: A post hoc analysis in the
POBASCAM trial with 14 year follow-up. Int J Cancer. 143:1541–1548.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Beyer S, Zhu J, Mayr D, Kuhn C, Schulze S,
Hofmann S, Dannecker C, Jeschke U and Kost BP: Histone H3 Acetyl K9
and Histone H3 Tri Methyl K4 as prognostic markers for patients
with cervical cancer. Int J Mol Sci. 18:4772017. View Article : Google Scholar
|
|
28
|
Zhang L, Tian S, Pei M, Zhao M, Wang L,
Jiang Y, Yang T, Zhao J, Song L and Yang X: Crosstalk between
histone modification and DNA methylation orchestrates the
epigenetic regulation of the costimulatory factors, Tim3 and
galectin9, in cervical cancer. Oncol Rep. 42:2655–2669.
2019.PubMed/NCBI
|
|
29
|
Shi Y, Ma HL, Zhuang YW, Wang XX, Jiang Y
and Xu HE: C10ORF12 modulates PRC2 histone methyltransferase
activity and H3K27me3 levels. Acta Pharmacol Sin. 40:1457–1465.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Egger G, Liang G, Aparicio A and Jones PA:
Epigenetics in human disease and prospects for epigenetic therapy.
Nature. 429:457–463. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zeng K, Zheng W, Mo X, Liu F, Li M, Liu Z,
Zhang W and Hu X: Dysregulated microRNAs involved in the
progression of cervical neoplasm. Arch Gynecol Obstet. 292:905–913.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhu Y, Han Y, Tian T, Su P, Jin G, Chen J
and Cao Y: MiR-21-5p, miR-34a, and human telomerase RNA component
as surrogate markers for cervical cancer progression. Pathol Res
Pract. 214:374–379. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sommerova L, Anton M, Bouchalova P,
Jasickova H, Rak V, Jandakova E, Selingerova I, Bartosik M,
Vojtesek B and Hrstka R: The role of miR-409-3p in regulation of
HPV16/18-E6 mRNA in human cervical high-grade squamous
intraepithelial lesions. Antiviral Res. 163:185–192. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jin Y, Zhou X, Yao X, Zhang Z, Cui M and
Lin Y: MicroRNA-612 inhibits cervical cancer progression by
targeting NOB1. J Cell Mol Med. 24:3149–3156. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhao XQ, Tang H, Yang J, Gu XY, Wang SM
and Ding Y: MicroRNA-15a-5p down-regulation inhibits cervical
cancer by targeting TP53INP1 in vitro. Eur Rev Med Pharmacol Sci.
23:8219–8229. 2019.PubMed/NCBI
|
|
36
|
Sun Y, Cheng Y, Zhang Y and Han K:
MicroRNA-889-3p targets FGFR2 to inhibit cervical cancer cell
viability and invasion. Exp Ther Med. 18:1440–1448. 2019.PubMed/NCBI
|
|
37
|
Yu Y, Zhao JD and Yang H: MiR-299-3p
inhibits proliferation and invasion of cervical cancer cell via
targeting TCF4. Eur Rev Med Pharmacol Sci. 23:5621–5627.
2019.PubMed/NCBI
|
|
38
|
Ma J, Zhang F and Sun P: miR-140-3p
impedes the proliferation of human cervical cancer cells by
targeting RRM2 to induce cell-cycle arrest and early apoptosis.
Bioorg Med Chem. 28:1152832020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kapora E, Feng S, Liu W, Sakhautdinova I,
Gao B and Tan W: MicroRNA-505-5p functions as a tumor suppressor by
targeting cyclin-dependent kinase 5 in cervical cancer. Biosci Rep.
39:BSR201912212019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Meng F, Ou J, Liu J, Li X, Meng Y, Yan L,
Deng P and Sun B: MicroRNA-877 is downregulated in cervical cancer
and directly targets MACC1 to inhibit cell proliferation and
invasion. Exp Ther Med. 18:3650–3658. 2019.PubMed/NCBI
|
|
41
|
Hu QL, Xu ZP, Lan YF and Li B: miR-636
represses cell survival by targeting CDK6/Bcl-2 in cervical cancer.
Kaohsiung J Med Sci. 36:328–335. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wu J, Zhao Y, Li F and Qiao B: MiR-144-3p:
A novel tumor suppressor targeting MAPK6 in cervical cancer. J
Physiol Biochem. 75:143–152. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ji X, Guo H, Yin S and Du H: miR-139-5p
functions as a tumor suppressor in cervical cancer by targeting
TCF4 and inhibiting Wnt/β-catenin signaling. Onco Targets Ther.
12:7739–7748. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Xu J, Wang H, Wang H, Chen Q, Zhang L,
Song C, Zhou Q and Hong Y: The inhibition of miR-126 in cell
migration and invasion of cervical cancer through regulating ZEB1.
Hereditas. 156:112019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yuan M, Zhao S, Chen R, Wang G, Bie Y, Wu
Q and Cheng J: MicroRNA-138 inhibits tumor growth and enhances
chemosensitivity in human cervical cancer by targeting H2AX. Exp
Ther Med. 19:630–638. 2020.PubMed/NCBI
|
|
46
|
Li H, Wang J, Xu F, Wang L, Sun G, Wang J
and Yang Y: By downregulating PBX3, miR-526b suppresses the
epithelial-mesenchymal transition process in cervical cancer cells.
Future Oncol. 15:1577–1591. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang S, Gao B, Yang H, Liu X, Wu X and
Wang W: MicroRNA-432 is downregulated in cervical cancer and
directly targets FN1 to inhibit cell proliferation and invasion.
Oncol Lett. 18:1475–1482. 2019.PubMed/NCBI
|
|
48
|
Liu X, Gan L and Zhang J: miR-543
inhibites cervical cancer growth and metastasis by targeting TRPM7.
Chem Biol Interact. 302:83–92. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Fu Y, Meng Y, Gu X, Tian S, Hou X and Ji
M: miR-503 expression is downregulated in cervical cancer and
suppresses tumor growth by targeting AKT2. J Cell Biochem. Jan
29–2019.(Epub ahead of print). doi: 10.1002/jcb.28099. View Article : Google Scholar
|
|
50
|
Li J, Chu ZP, Han H, Zhang Y, Tian F,
Zhang JQ and Huang XH: Suppression of miR-93-5p inhibits high-risk
HPV-positive cervical cancer progression via targeting of BTG3. Hum
Cell. 32:160–171. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhu J and Han S: miR-150-5p promotes the
proliferation and epithelial-mesenchymal transition of cervical
carcinoma cells via targeting SRCIN1. Pathol Res Pract.
215:738–747. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Luo Q, Wang H and Li J: Serum miR-3142
could be used as a potential biomarker to screen cervical cancer
patients from healthy controls. Clin Lab. 65:2019. View Article : Google Scholar
|
|
53
|
Zheng M, Hou L, Ma Y, Zhou L, Wang F,
Cheng B, Wang W, Lu B, Liu P, Lu W and Lu Y: Exosomal let-7d-3p and
miR-30d-5p as diagnostic biomarkers for non-invasive screening of
cervical cancer and its precursors. Mol Cancer. 18:762019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hayes J, Peruzzi PP and Lawler S:
MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol
Med. 20:460–469. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Miyamoto S, Hasegawa J, Morioka M, Hirota
Y, Kushima M and Sekizawa A: The association between p16 and Ki-67
immunohistostaining and the progression of cervical intraepithelial
neoplasia grade 2. Int J Gynaecol Obstet. 134:45–48. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Miralpeix E, Genoves J, Maria Sole-Sedeno
J, Mancebo G, Lloveras B, Bellosillo B, Alameda F and Carreras R:
Usefulness of p16(INK4a) staining for managing histological
high-grade squamous intraepithelial cervical lesions. Mod Pathol.
30:304–310. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sagasta A, Castillo P, Saco A, Torne A,
Esteve R, Marimon L, Ordi J and Del Pino M: p16 staining has
limited value in predicting the outcome of histological low-grade
squamous intraepithelial lesions of the cervix. Mod Pathol.
29:51–59. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rodriguez-Trujillo A, Marti C, Angeles MA,
Sierra A, Esteve R, Saco A, Barnadas E, Marimon L, Nicolas I, Torne
A, et al: Value of HPV 16/18 genotyping and p16/Ki-67 dual staining
to predict progression to HSIL/CIN2+ in negative
cytologies from a colposcopy referral population. Am J Clin Pathol.
150:432–440. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Negri G, Bellisano G, Zannoni GF, Rivasi
F, Kasal A, Vittadello F, Antoniazzi S, Faa G, Ambu R and
Egarter-Vigl E: p16 ink4a and HPV L1 immunohistochemistry is
helpful for estimating the behavior of low-grade dysplastic lesions
of the cervix uteri. Am J Surg Pathol. 32:1715–1720. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hoshikawa S, Sano T, Yoshida T, Ito H,
Oyama T and Fukuda T: Immunohistological analysis of HPV L1 capsid
protein and p16 protein in low-grade dysplastic lesions of the
uterine cervix. Pathol Res Pract. 206:816–820. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jia WL, Ding L, Ren ZY, Wu TT, Zhao WM,
Fan SL and Wang JT: Effects of both folic acid, p16 protein
expression and their interaction on progression of cervical
cancerization. Zhonghua Liu Xing Bing Xue Za Zhi. 37:1647–1652.
2016.(In Chinese). PubMed/NCBI
|
|
62
|
Paquette C, Mills AM and Stoler MH:
Predictive value of cytokeratin 7 immunohistochemistry in cervical
low-grade squamous intraepithelial lesion as a marker for risk of
progression to a high-grade lesion. Am J Surg Pathol. 40:236–243.
2016.PubMed/NCBI
|
|
63
|
Mills AM, Paquette C, Terzic T, Castle PE
and Stoler MH: CK7 immunohistochemistry as a predictor of CIN1
progression: A retrospective study of patients from the
quadrivalent HPV vaccine trials. Am J Surg Pathol. 41:143–152.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cao L, Sun PL, Yao M, Chen S and Gao H:
Clinical significance of CK7, HPV-L1, and koilocytosis for patients
with cervical low-grade squamous intraepithelial lesions: A
retrospective analysis. Hum Pathol. 65:194–200. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wu Y, Gu TT and Zheng PS: CIP2A cooperates
with H-Ras to promote epithelial-mesenchymal transition in
cervical-cancer progression. Cancer Lett. 356:646–655. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cavatorta AL, Di Gregorio A, Bugnon
Valdano M, Marziali F, Cabral M, Bottai H, Cittadini J, Nocito AL
and Gardiol D: DLG1 polarity protein expression associates with the
disease progress of low-grade cervical intraepithelial lesions. Exp
Mol Pathol. 102:65–69. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang HR, Lai SY, Huang LJ, Zhang ZF, Liu
J, Zheng SR, Ding K, Bai X and Zhou JY: Myosin 1b promotes cell
proliferation, migration, and invasion in cervical cancer. Gynecol
Oncol. 149:188–197. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jin Y, Kim SC and Kim HJ, Ju W, Kim YH and
Kim HJ: Use of protein-based biomarkers of exfoliated cervical
cells for primary screening of cervical cancer. Arch Pharm Res.
41:438–449. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yang Y, Wu Q, Li N, Che S, Jin T, Nan Y,
Lin Z and Chen L: Upregulation of Tiam1 contributes to cervical
cancer disease progression and indicates poor survival outcome. Hum
Pathol. 75:179–188. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mizushima T, Asai-Sato M, Akimoto K,
Nagashima Y, Taguri M, Sasaki K, Nakaya MA, Asano R, Tokinaga A,
Kiyono T, et al: Aberrant expression of the cell polarity regulator
aPKCλ/ι is associated with disease progression in cervical
intraepithelial neoplasia (CIN): A possible marker for predicting
CIN prognosis. Int J Gynecol Pathol. 35:106–117. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hester A, Ritzer M, Kuhn C, Schmoeckel E,
Mayr D, Kolben T, Dannecker C, Mahner S, Jeschke U and Kolben TM:
The role of EP3-receptor expression in cervical dysplasia. J Cancer
Res Clin Oncol. 145:313–319. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sawada M, Oishi T, Komatsu H, Sato S,
Chikumi J, Nonaka M, Kudoh A, Osaku D and Harada T: Serum vascular
endothelial growth factor A and vascular endothelial growth factor
receptor 2 as prognostic biomarkers for uterine cervical cancer.
Int J Clin Oncol. 24:1612–1619. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Maestri CA, Nisihara R, Mendes HW,
Jensenius J, Thiel S, Messias-Reason I and de Carvalho NS: MASP-1
and MASP-2 serum levels are associated with worse prognostic in
cervical cancer progression. Front Immunol. 9:27422018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pascoal-Xavier MA, Figueiredo AC, Gomes
LI, Peruhype-Magalhaes V, Calzavara-Silva CE, Costa MA, Reis IA,
Bonjardim CA, Kroon EG, Oliveira JG and Ferreira PC: RAP1 GTPase
overexpression is associated with cervical intraepithelial
neoplasia. PLoS One. 10:e01235312015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Fukazawa EM, Baiocchi G, Soares FA,
Kumagai LY, Faloppa CC, Badiglian-Filho L, Coelho FR, Goncalves WJ,
Costa RL and Goes JC: Cox-2, EGFR, and ERBB-2 expression in
cervical intraepithelial neoplasia and cervical cancer using an
automated imaging system. Int J Gynecol Pathol. 33:225–234. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Meng GZ, Zi Y, Li HQ, Huang M and Gao T:
Nucleolin expression is correlated with carcinogenesis and
progression of cervical squamous cell carcinoma. Nan Fang Yi Ke Da
Xue Xue Bao. 35:1511–1514. 2015.(In Chinese). PubMed/NCBI
|
|
77
|
Li N, Wang Y, Che S, Yang Y, Piao J, Liu S
and Lin Z: HBXIP over expression as an independent biomarker for
cervical cancer. Exp Mol Pathol. 102:133–137. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fan SL, Ding L, Ren ZY, Chen X, Sun XS, Li
CC, Liu CL, Jia WL, Li QL and Wang JT: Effect of extracellular
signal-regulated kinas 1/2 expression and HPV16 infection and their
interaction in progression of cervical cancerization. Zhonghua Liu
Xing Bing Xue Za Zhi. 38:96–101. 2017.(In Chinese). PubMed/NCBI
|
|
79
|
Iizuka T, Wakae K, Nakamura M, Kitamura K,
Ono M, Fujiwara H and Muramatsu M: APOBEC3G is increasingly
expressed on the human uterine cervical intraepithelial neoplasia
along with disease progression. Am J Reprod Immunol. 78:2017.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ding L, Feng MJ, Liu CL, Wang L, Song ZC,
Yang Q, Li XX, Song L, Gao W and Wang JT: Effect of hnRNP K and its
interaction with HPV16 on cervical intraepithelial neoplasia.
Zhonghua Liu Xing Bing Xue Za Zhi. 39:1630–1635. 2018.(In Chinese).
PubMed/NCBI
|
|
81
|
Ahn SY, Li C, Zhang X and Hyun YM:
Mitofusin-2 expression is implicated in cervical cancer
pathogenesis. Anticancer Res. 38:3419–3426. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chen Y, Wang H, Lin W and Shuai P: ADAR1
overexpression is associated with cervical cancer progression and
angiogenesis. Diagn Pathol. 12:122017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xing Y, Wang C and Wu J: Expression of
geminin, p16, and Ki67 in cervical intraepithelial neoplasm and
normal tissues. Medicine (Baltimore). 96:e73022017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Velez-Perez A, Wang XI, Li M and Zhang S:
SIRT1 overexpression in cervical squamous intraepithelial lesions
and invasive squamous cell carcinoma. Hum Pathol. 59:102–107. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Liu Y, Zhang J, Qian W, Dong Y, Yang Y,
Liu Z, Feng Y, Ma D, Zhang Z and Wu S: Gankyrin is frequently
overexpressed in cervical high grade disease and is associated with
cervical carcinogenesis and metastasis. PLoS One. 9:e950432014.
View Article : Google Scholar : PubMed/NCBI
|