Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2020 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 44 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review)

  • Authors:
    • Rui He
    • Suya Du
    • Tiantian Lei
    • Xiaofang Xie
    • Yi Wang
  • View Affiliations / Copyright

    Affiliations: Department of Union, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China, Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing 400013, P.R. China, Department of Medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China, Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
    Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2373-2385
    |
    Published online on: October 20, 2020
       https://doi.org/10.3892/or.2020.7817
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glycogen synthase kinase 3β (GSK 3β), a multifunctional serine and threonine kinase, plays a critical role in a variety of cellular activities, including signaling transduction, protein and glycogen metabolism, cell proliferation, cell differentiation, and apoptosis. Therefore, aberrant regulation of GSK 3β results in a broad range of human diseases, such as tumors, diabetes, inflammation and neurodegenerative diseases. Accumulating evidence has suggested that GSK 3β is correlated with tumorigenesis and progression. However, GSK 3β is controversial due to its bifacial roles of tumor suppression and activation. In addition, overexpression of GSK 3β is involved in tumor growth, whereas it contributes to the cell sensitivity to chemotherapy. However, the underlying regulatory mechanisms of GSK 3β in tumorigenesis remain obscure and require further in‑depth investigation. In this review, we comprehensively summarize the roles of GSK 3β in tumorigenesis and oncotherapy, and focus on its potentials as an available target in oncotherapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Grimes CA and Jope RS: The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 65:391–426. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Doble BW and Woodgett JR: GSK-3: Tricks of the trade for a multi-tasking kinase. J Cell Sci. 116:1175–1186. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Embi N, Rylatt DB and Cohen P: Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 107:519–527. 1980. View Article : Google Scholar : PubMed/NCBI

4 

Woodgett JR: Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9:2431–2438. 1990. View Article : Google Scholar : PubMed/NCBI

5 

Thotala DK and Yazlovitskaya EM: GSK3B (glycogen synthase kinase 3 beta). Atlas Genet Cytogenet Oncol Haematol. 15:7–10. 2011.

6 

Jope RS and Johnson GV: The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 29:95–102. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Fang X, Yu SX, Lu Y, Bast RC Jr, Woodgett JR and Mills GB: Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA. 97:11960–11965. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Cross DA, Alessi DR, Cohen P, Andjelkovich M and Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378:785–789. 1995. View Article : Google Scholar : PubMed/NCBI

9 

Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE and Birnbaum MJ: The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem. 274:17934–17940. 1999. View Article : Google Scholar : PubMed/NCBI

10 

Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE and Thotala D: GSK-3β: A bifunctional role in cell death pathways. Int J Cell Biol. 2012:9307102012. View Article : Google Scholar : PubMed/NCBI

11 

Amar S, Belmaker RH and Agam G: The possible involvement of glycogen synthase kinase-3 (GSK-3) in diabetes, cancer and central nervous system diseases. Curr Pharm Des. 17:2264–2277. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Jope RS, Yuskaitis CJ and Beurel E: Glycogen synthase kinase-3 (GSK3): Inflammation, diseases, and therapeutics. Neurochem Res. 32:577–595. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Luo J: The role of GSK3beta in the development of the central nervous system. Front Biol (Beijing). 7:212–220. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Luo J: Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett. 273:194–200. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Chiara F and Rasola A: GSK-3 and mitochondria in cancer cells. Front Oncol. 3:162013. View Article : Google Scholar : PubMed/NCBI

16 

Naito S, Bilim V, Yuuki K, Ugolkov A, Motoyama T, Nagaoka A, Kato T and Tomita Y: Glycogen synthase kinase-3beta: A prognostic marker and a potential therapeutic target in human bladder cancer. Clin Cancer Res. 16:5124–5132. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Tang QL, Xie XB, Wang J, Chen Q, Han AJ, Zou CY, Yin JQ, Liu DW, Liang Y, Zhao ZQ, et al: Glycogen synthase kinase-3β, NF-κB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Inst. 104:749–763. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Majewska E and Szeliga M: AKT/GSK3β signaling in glioblastoma. Neurochem Res. 42:918–924. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Domoto T, Pyko IV, Furuta T, Miyashita K, Uehara M, Shimasaki T, Nakada M and Minamoto T: Glycogen synthase kinase-3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci. 107:1363–1372. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J and Fine HA: Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res. 68:6643–6651. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Najib S and Sánchez-Margalet V: Homocysteine thiolactone inhibits insulin-stimulated DNA and protein synthesis: Possible role of mitogen-activated protein kinase (MAPK), glycogen synthase kinase-3 (GSK-3) and p70 S6K phosphorylation. J Mol Endocrinol. 34:119–126. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Eldar-Finkelman H, Seger R, Vandenheede JR and Krebs EG: Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J Biol Chem. 270:987–990. 1995. View Article : Google Scholar : PubMed/NCBI

23 

Hartigan JA, Xiong WC and Johnson GV: Glycogen synthase kinase 3beta is tyrosine phosphorylated by PYK2. Biochem Biophys Res Commun. 284:485–489. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Hartigan JA and Johnson GV: Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 3beta-dependent pathway. J Biol Chem. 274:21395–21401. 1999. View Article : Google Scholar : PubMed/NCBI

25 

Takahashi-Yanaga F, Shiraishi F, Hirata M, Miwa Y, Morimoto S and Sasaguri T: Glycogen synthase kinase-3beta is tyrosine-phosphorylated by MEK1 in human skin fibroblasts. Biochem Biophys Res Commun. 316:411–415. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Bijur GN and Jope RS: Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport. 14:2415–2419. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Diehl JA, Cheng M, Roussel MF and Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12:3499–3511. 1998. View Article : Google Scholar : PubMed/NCBI

28 

Manoukian AS and Woodgett JR: Role of glycogen synthase kinase-3 in cancer: Regulation by Wnts and other signaling pathways. Adv Cancer Res. 84:203–229. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Valvezan AJ, Zhang F, Diehl JA and Klein PS: Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity. J Biol Chem. 287:3823–3832. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Peifer M and Polakis P: Wnt signaling in oncogenesis and embryogenesis-a look outside the nucleus. Science. 287:1606–1609. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Lustig B and Behrens J: The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol. 129:199–221. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Giles RH, van Es JH and Clevers H: Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 1653:1–24. 2003.PubMed/NCBI

33 

Watcharasit P, Bijur GN, Zmijewski JW, Song L, Zmijewska A, Chen X, Johnson GV and Jope RS: Direct, activating interaction between glycogen synthase kinase-3beta and p53 after DNA damage. Proc Natl Acad Sci USA. 99:7951–7955. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Watcharasit P, Bijur GN, Song L, Zhu J, Chen X and Jope RS: Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem. 278:48872–48879. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Lang UE, Kocabayoglu P, Cheng GZ, Ghiassi-Nejad Z, Muñoz U, Vetter D, Eckstein DA, Hannivoort RA, Walsh MJ and Friedman SL: GSK3β phosphorylation of the KLF6 tumor suppressor promotes its transactivation of p21. Oncogene. 32:4557–4564. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Lin J, Song T, Li C and Mao W: GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys Acta Mol Cell Res. 1867:1186592020. View Article : Google Scholar : PubMed/NCBI

37 

Wang L, Lin HK, Hu YC, Xie S, Yang L and Chang C: Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells. J Biol Chem. 279:32444–32452. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, Mai M, Takahashi Y and Minamoto T: Deregulated GSK3beta activity in colorectal cancer: Its association with tumor cell survival and proliferation. Biochem Biophys Res Commun. 334:1365–1373. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Takahashi-Yanaga F and Sasaguri T: GSK-3beta regulates cyclin D1 expression: A new target for chemotherapy. Cell Signal. 20:581–589. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Verras M and Sun Z: Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett. 237:22–32. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Sharma M, Chuang WW and Sun Z: Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem. 277:30935–30941. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Quintayo MA, Munro AF, Thomas J, Kunkler IH, Jack W, Kerr GR, Dixon JM, Chetty U and Bartlett JM: GSK3β and cyclin D1 expression predicts outcome in early breast cancer patients. Breast Cancer Res Treat. 136:161–168. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Wang Y, Lam JB, Lam KS, Liu J, Lam MC, Hoo RL, Wu D, Cooper GJ and Xu A: Adiponectin modulates the glycogen synthase kinase-3beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res. 66:11462–11470. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Baral R, Patnaik S and Das BR: Co-overexpression of p53 and c-myc proteins linked with advanced stages of betel- and tobacco-related oral squamous cell carcinomas from eastern India. Eur J Oral Sci. 106:907–913. 2010. View Article : Google Scholar

45 

de Sousa SO, Mesquita RA, Pinto DS Jr and Gutkind S: Immunolocalization of c-Fos and c-Jun in human oral mucosa and in oral squamous cell carcinoma. J Oral Pathol Med. 31:78–81. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Franz M, Spiegel K, Umbreit C, Richter P, Codina-Canet C, Berndt A, Altendorf-Hofmann A, Koscielny S, Hyckel P, Kosmehl H, et al: Expression of Snail is associated with myofibroblast phenotype development in oral squamous cell carcinoma. Histochem Cell Biol. 131:651–660. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Iwai S, Katagiri W, Kong C, Amekawa S, Nakazawa M and Yura Y: Mutations of the APC, beta-catenin, and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 131:773–782. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Buss H, Dörrie A, Schmitz ML, Frank R, Livingstone M, Resch K and Kracht M: Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem. 279:49571–49574. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Goto H, Kawano K, Kobayashi I, Sakai H and Yanagisawa S: Expression of cyclin D1 and GSK-3beta and their predictive value of prognosis in squamous cell carcinomas of the tongue. Oral Oncol. 38:549–556. 2002. View Article : Google Scholar : PubMed/NCBI

50 

Mishra A, Bharti AC, Saluja D and Das BC: Transactivation and expression patterns of Jun and Fos/AP-1 super-family proteins in human oral cancer. Int J Cancer. 126:819–829. 2010.PubMed/NCBI

51 

Mishra R: Glycogen synthase kinase 3 beta: Can it be a target for oral cancer. Mol Cancer. 9:1442010. View Article : Google Scholar : PubMed/NCBI

52 

Bauer K, Dowejko A, Bosserhoff AK, Reichert TE and Bauer RJ: P-cadherin induces an epithelial-like phenotype in oral squamous cell carcinoma by GSK-3beta-mediated Snail phosphorylation. Carcinogenesis. 30:1781–1788. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Kornberg LJ: Focal adhesion kinase expression in oral cancers. Head Neck. 20:634–639. 1998. View Article : Google Scholar : PubMed/NCBI

54 

Ko BS, Chang TC, Chen CH, Liu CC, Kuo CC, Hsu C, Shen YC, Shen TL, Golubovskaya VM, Chang CC, et al: Bortezomib suppresses focal adhesion kinase expression via interrupting nuclear factor-kappa B. Life Sci. 86:199–206. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Takeuchi H, Taoka R, Mmeje CO, Jinesh GG, Safe S and Kamat AM: CDODA-Me decreases specificity protein transcription factors and induces apoptosis in bladder cancer cells through induction of reactive oxygen species. Urol Oncol. 34:337.e11–e18. 2016. View Article : Google Scholar

56 

Miller WP, Toro AL, Barber AJ and Dennis MD: REDD1 Activates a ROS-generating feedback loop in the retina of diabetic mice. Invest Ophthalmol Vis Sci. 60:2369–2379. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Deng S, Dai G, Chen S, Nie Z, Zhou J, Fang H and Peng H: Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomed Pharmacother. 110:602–608. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Ziober BL, Silverman SS Jr and Kramer RH: Adhesive mechanisms regulating invasion and metastasis in oral cancer. Crit Rev Oral Biol Med. 12:499–510. 2001. View Article : Google Scholar : PubMed/NCBI

59 

Erdem NF, Carlson ER, Gerard DA and Ichiki AT: Characterization of 3 oral squamous cell carcinoma cell lines with different invasion and/or metastatic potentials. J Oral Maxillofac Surg. 65:1725–1733. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Zhao J and Liao K: Expression of macrophage migration inhibitory factor in esophageal squamous cell carcinoma and normal esophageal tissue. Acta Acad Med Mil Tertiae. 29:740–742. 2008.

61 

Liu RM, Sun DN, Jiao YL, Wang P, Zhang J, Wang M, Ma J, Sun M, Gu BL, Chen P, et al: Macrophage migration inhibitory factor promotes tumor aggressiveness of esophageal squamous cell carcinoma via activation of Akt and inactivation of GSK3β. Cancer Lett. 412:289–296. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Wang H, Wang HS, Zhou BH, Li CL, Zhang F, Wang XF, Zhang G, Bu XZ, Cai SH and Du J: Epithelial-mesenchymal transition (EMT) induced by TNF-α requires AKT/GSK-3β-mediated stabilization of snail in colorectal cancer. PLoS One. 8:e566642013. View Article : Google Scholar : PubMed/NCBI

63 

Kao SH, Wang WL, Chen CY, Chang YL, Wu YY, Wang YT, Wang SP, Nesvizhskii AI, Chen YJ, Hong TM and Yang PC: GSK3β controls epithelial-mesenchymal transition and tumor metastasis by CHIP-mediated degradation of Slug. Oncogene. 33:3172–3182. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A, Kawakami K and Minamoto T: Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci. 98:1388–1393. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Vidri RJ and Fitzgerald TL: GSK-3: An important kinase in colon and pancreatic cancers. Biochim Biophys Acta Mol Cell Res. 1867:1186262020. View Article : Google Scholar : PubMed/NCBI

66 

Huang W, Chang HY, Fei T, Wu H and Chen YG: GSK3 beta mediates suppression of cyclin D2 expression by tumor suppressor PTEN. Oncogene. 26:2471–2482. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Ban JO, Oh JH, Son SM, Won D, Song HS, Han SB, Moon DC, Kang KW, Song MJ and Hong JT: Troglitazone, a PPAR agonist, inhibits human prostate cancer cell growth through inactivation of NFΚB via suppression of GSK-3β expression. Cancer Biol Ther. 12:288–296. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Ban JO, Kwak DH, Oh JH, Park EJ, Cho MC, Song HS, Song MJ, Han SB, Moon DC, Kang KW and Hong JT: Suppression of NF-kappaB and GSK-3beta is involved in colon cancer cell growth inhibition by the PPAR agonist troglitazone. Chem Biol Interact. 188:75–85. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Ghosh JC and Altieri DC: Activation of p53-dependent apoptosis by acute ablation of glycogen synthase kinase-3beta in colorectal cancer cells. Clin Cancer Res. 11:4580–4588. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Perse M and Cerar A: Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J Biomed Biotechnol. 2011:4739642011. View Article : Google Scholar : PubMed/NCBI

71 

Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST and Billadeau DD: Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: Association with kinase activity and tumor dedifferentiation. Clin Cancer Res. 12:5074–5081. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Zhou W, Wang L, Gou SM, Wang TL, Zhang M, Liu T and Wang CY: ShRNA silencing glycogen synthase kinase-3 beta inhibits tumor growth and angiogenesis in pancreatic cancer. Cancer Lett. 316:178–186. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Cao Q, Lu X and Feng YJ: Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res. 16:671–677. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Miyashita K, Kawakami K, Nakada M, Mai W, Shakoori A, Fujisawa H, Hayashi Y, Hamada J and Minamoto T: Potential therapeutic effect of glycogen synthase kinase 3beta inhibition against human glioblastoma. Clin Cancer Res. 15:887–897. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Yang Y, Lei T, Du S, Tong R, Wang H, Yang J, Huang J, Sun M, Wang Y and Dong Z: Nuclear GSK3β induces DNA double-strand break repair by phosphorylating 53BP1 in glioblastoma. Int J Oncol. 52:709–720. 2018.PubMed/NCBI

76 

Nishimura H, Nakamura O, Yamagami Y, Mori M, Horie R, Fukuoka N and Yamamoto T: GSK-3 inhibitor inhibits cell proliferation and induces apoptosis in human osteosarcoma cells. Oncol Rep. 35:2348–2354. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Kerkela R, Kockeritz L, Macaulay K, Zhou J, Doble BW, Beahm C, Greytak S, Woulfe K, Trivedi CM, Woodgett JR, et al: Deletion of GSK-3beta in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. J Clin Invest. 118:3609–3618. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O and Woodgett JR: Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 406:86–90. 2000. View Article : Google Scholar : PubMed/NCBI

79 

McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R and Alessi DR: Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J. 24:1571–1583. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC and Cleary ML: Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature. 455:1205–1209. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Vigneron F, Dos Santos P, Lemoine S, Bonnet M, Tariosse L, Couffinhal T, Duplaà C and Jaspard-Vinassa B: GSK-3β at the crossroads in the signalling of heart preconditioning: Implication of mTOR and Wnt pathways. Cardiovasc Res. 90:49–56. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Fu Y, Hu D, Qiu J, Xie X, Ye F and Lu WG: Overexpression of glycogen synthase kinase-3 in ovarian carcinoma cells with acquired paclitaxel resistance. Int J Gynecol Cancer. 21:439–444. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Grassilli E, Narloch R, Federzoni E, Ianzano L, Pisano F, Giovannoni R, Romano G, Masiero L, Leone BE, Bonin S, et al: Inhibition of GSK3B bypass drug resistance of p53-null colon carcinomas by enabling necroptosis in response to chemotherapy. Clin Cancer Res. 19:3820–3831. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Kawazoe H, Bilim VN, Ugolkov AV, Yuuki K, Naito S, Nagaoka A, Kato T and Tomita Y: GSK-3 inhibition in vitro and in vivo enhances antitumor effect of sorafenib in renal cell carcinoma (RCC). Biochem Biophys Res Commun. 423:490–495. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Cai G, Wang J, Xin X, Ke Z and Luo J: Phosphorylation of glycogen synthase kinase-3 beta at serine 9 confers cisplatin resistance in ovarian cancer cells. Int J Oncol. 31:657–662. 2007.PubMed/NCBI

86 

Beurel E, Kornprobst M, Blivet-Van Eggelpoël MJ, Cadoret A, Capeau J and Desbois-Mouthon C: GSK-3beta reactivation with LY294002 sensitizes hepatoma cells to chemotherapy-induced apoptosis. Int J Oncol. 27:215–222. 2005.PubMed/NCBI

87 

Alao JP, Stavropoulou AV, Lam WF and Coombes RC: Role of glycogen synthase kinase 3 beta (GSK3beta) in mediating the cytotoxic effects of the histone deacetylase inhibitor trichostatin A (TSA) in MCF-7 breast cancer cells. Mol Cancer. 5:402006. View Article : Google Scholar : PubMed/NCBI

88 

Pyko IV, Nakada M, Sabit H, Teng L, Furuyama N, Hayashi Y, Kawakami K, Minamoto T, Fedulau AS and Hamada J: Glycogen synthase kinase 3β inhibition sensitizes human glioblastoma cells to temozolomide by affecting O6-methylguanine DNA methyltransferase promoter methylation via c-Myc signaling. Carcinogenesis. 34:2206–2217. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Shimasaki T, Ishigaki Y, Nakamura Y, Takata T, Nakaya N, Nakajima H, Sato I, Zhao X, Kitano A, Kawakami K, et al: Glycogen synthase kinase 3β inhibition sensitizes pancreatic cancer cells to gemcitabine. J Gastroenterol. 47:321–333. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Kitano A, Shimasaki T, Chikano Y, Nakada M, Hirose M, Higashi T, Ishigaki Y, Endo Y, Takino T, Sato H, et al: Aberrant glycogen synthase kinase 3β is involved in pancreatic cancer cell invasion and resistance to therapy. PLoS One. 8:e552892013. View Article : Google Scholar : PubMed/NCBI

91 

Maqbool M and Hoda N: GSK3 inhibitors in the therapeutic development of diabetes, cancer and neurodegeneration: Past, present and future. Curr Pharm Des. 23:4332–4350. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Bowden CL: Efficacy of lithium in mania and maintenance therapy of bipolar disorder. J Clin Psychiatry. 61 (Suppl 9):S35–S40. 2000.

93 

Del Grande C, Muti M, Musetti L, Pergentini I, Corsi M, Turri M, Soldani I, Corsini GU and Dell'Osso L: Long-term treatment of bipolar disorder: How should we use lithium salts? Riv Psichiatr. 47:515–526. 2012.(In Italian). PubMed/NCBI

94 

Clément-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssière B, Belleville C, Estrera K, Warman ML, Baron R and Rawadi G: Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA. 102:17406–17411. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Stump RJ, Lovicu FJ, Ang SL, Pandey SK and McAvoy JW: Lithium stabilizes the polarized lens epithelial phenotype and inhibits proliferation, migration, and epithelial mesenchymal transition. J Pathol. 210:249–257. 2010. View Article : Google Scholar

96 

Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB and Li B: Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate. 67:976–988. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Song L, Zhou T and Jope RS: Lithium facilitates apoptotic signaling induced by activation of the Fas death domain-containing receptor. BMC Neurosci. 5:202004. View Article : Google Scholar : PubMed/NCBI

98 

Karlovic D, Jakopec S, Dubravcic K, Batinic D, Buljan D and Osmak M: Lithium increases expression of p21 WAF/Cip1 and survivin in human glioblastoma cells. Cell Biol Toxicol. 23:83–90. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Neel BD, Lopez J, Chabadel A and Gillet G: Lithium suppresses motility and invasivity of v-src-transformed cells by glutathione-dependent activation of phosphotyrosine phosphatases. Oncogene. 28:3246–3260. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Hilliard T, Muehlbauer A, Gaisina I, Gaisin A, Gallier F, Kozikowski A and Burdette J: Novel glycogen synthase kinase 3beta inhibitors induce apoptosis in ovarian cancer. Biol Reprod. 83 (Suppl 1):S6912010. View Article : Google Scholar

101 

Rinnab L, Schütz SV, Diesch J, Schmid E, Küfer R, Hautmann RE, Spindler KD and Cronauer MV: Inhibition of glycogen synthase kinase-3 in androgen-responsive prostate cancer cell lines: Are GSK inhibitors therapeutically useful? Neoplasia. 10:624–634. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Schütz SV, Schrader AJ, Zengerling F, Genze F, Cronauer MV and Schrader M: Inhibition of glycogen synthase kinase-3β counteracts ligand-independent activity of the androgen receptor in castration resistant prostate cancer. PLoS One. 6:e253412011. View Article : Google Scholar : PubMed/NCBI

103 

Marchand B, Tremblay I, Cagnol S and Boucher MJ: Inhibition of glycogen synthase kinase-3 activity triggers an apoptotic response in pancreatic cancer cells through JNK-dependent mechanisms. Carcinogenesis. 33:529–537. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, et al: Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 7:793–803. 2000. View Article : Google Scholar : PubMed/NCBI

105 

Beurel E, Blivet-Van Eggelpoel MJ, Kornprobst M, Moritz S, Delelo R, Paye F, Housset C and Desbois-Mouthon C: Glycogen synthase kinase-3 inhibitors augment TRAIL-induced apoptotic death in human hepatoma cells. Biochem Pharmacol. 77:54–65. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Piazza F, Manni S, Tubi LQ, Montini B, Pavan L, Colpo A, Gnoato M, Cabrelle A, Adami F, Zambello R, et al: Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death. BMC Cancer. 10:5262010. View Article : Google Scholar : PubMed/NCBI

107 

Dickey A, Schleicher S, Leahy K, Hu R, Hallahan D and Thotala DK: GSK-3β inhibition promotes cell death, apoptosis, and in vivo tumor growth delay in neuroblastoma Neuro-2A cell line. J Neurooncol. 104:145–153. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Zhu Q, Yang J, Han S, Liu J, Holzbeierlein J, Thrasher JB and Li B: Suppression of glycogen synthase kinase 3 activity reduces tumor growth of prostate cancer in vivo. Prostate. 71:835–845. 2011. View Article : Google Scholar : PubMed/NCBI

109 

Yan P, Tang H, Chen X, Ji S, Jin W, Zhang J, Shen J, Deng H, Zhao X, Shen Q and Huang H: Tamoxifen attenuates dialysate-induced peritoneal fibrosis by inhibiting GSK-3β/β-catenin axis activation. Biosci Rep. 38:BSR201802402018. View Article : Google Scholar : PubMed/NCBI

110 

Tang YY, Sheng SY, Lu CG, Zhang YQ, Zou JY, Lei YY, Gu Y and Hong H: Effects of glycogen synthase kinase-3β inhibitor TWS119 on proliferation and cytokine production of TILs from human lung cancer. J Immunother. 41:319–328. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Guzmán EA, Johnson JD, Linley PA, Gunasekera SE and Wright AE: A novel activity from an old compound: Manzamine A reduces the metastatic potential of AsPC-1 pancreatic cancer cells and sensitizes them to TRAIL-induced apoptosis. Invest New Drugs. 29:777–785. 2011. View Article : Google Scholar : PubMed/NCBI

112 

Mamaghani S, Patel S and Hedley DW: Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy. BMC Cancer. 9:1322009. View Article : Google Scholar : PubMed/NCBI

113 

Gaisina IN, Gallier F, Ougolkov AV, Kim KH, Kurome T, Guo S, Holzle D, Luchini DN, Blond SY, Billadeau DD and Kozikowski AP: From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3beta inhibitors that suppress proliferation and survival of pancreatic cancer cells. J Med Chem. 52:1853–1863. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Kuroki H, Anraku T, Kazama A, Bilim V, Tasaki M, Schmitt D, Mazar AP, Giles FJ, Ugolkov A and Tomita Y: 9-ING-41, a small molecule inhibitor of GSK-3beta, potentiates the effects of anticancer therapeutics in bladder cancer. Sci Rep. 9:199772019. View Article : Google Scholar : PubMed/NCBI

115 

Anraku T, Kuroki H, Kazama A, Bilim V, Tasaki M, Schmitt D, Mazar A, Giles FJ, Ugolkov A and Tomita Y: Clinically relevant GSK3β inhibitor 9-ING-41 is active as a single agent and in combination with other antitumor therapies in human renal cancer. Int J Mol Med. 45:315–323. 2020.PubMed/NCBI

116 

Ugolkov AV, Bondarenko GI, Dubrovskyi O, Berbegall AP, Navarro S, Noguera R, O'Halloran TV, Hendrix MJ, Giles FJ and Mazar AP: 9-ING-41, a small-molecule glycogen synthase kinase-3 inhibitor, is active in neuroblastoma. Anticancer Drugs. 29:717–724. 2018.PubMed/NCBI

117 

Karmali R, Chukkapalli V, Gordon LI, Borgia JA, Ugolkov A, Mazar AP and Giles FJ: GSK-3β inhibitor, 9-ING-41, reduces cell viability and halts proliferation of B-cell lymphoma cell lines as a single agent and in combination with novel agents. Oncotarget. 8:114924–114934. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Ugolkov A, Gaisina I, Zhang JS, Billadeau DD, White K, Kozikowski A, Jain S, Cristofanilli M, Giles F, O'Halloran T, et al: GSK-3 inhibition overcomes chemoresistance in human breast cancer. Cancer Lett. 380:384–392. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Ugolkov A, Qiang W, Bondarenko G, Procissi D, Gaisina I, James CD, Chandler J, Kozikowski A, Gunosewoyo H, O'Halloran T, et al: Combination treatment with the GSK-3 Inhibitor 9-ING-41 and CCNU cures orthotopic chemoresistant glioblastoma in patient-derived xenograft models. Transl Oncol. 10:669–678. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Hilliard TS, Gaisina IN, Muehlbauer AG, Gaisin AM, Gallier F and Burdette JE: Glycogen synthase kinase 3β inhibitors induce apoptosis in ovarian cancer cells and inhibit in-vivo tumor growth. Anticancer Drugs. 22:978–985. 2011.PubMed/NCBI

121 

Jeffers A, Qin W, Owens S, Koenig KB, Komatsu S, Giles FJ, Schmitt DM, Idell S and Tucker TA: Glycogen synthase kinase-3β inhibition with 9-ING-41 attenuates the progression of pulmonary fibrosis. Sci Rep. 9:189252019. View Article : Google Scholar : PubMed/NCBI

122 

Gotschel F, Kern C, Lang S, Sparna T, Markmann C, Schwager J, McNelly S, von Weizsäcker F, Laufer S, Hecht A and Merfort I: Inhibition of GSK3 differentially modulates NF-kappaB, CREB, AP-1 and beta-catenin signaling in hepatocytes, but fails to promote TNF-alpha-induced apoptosis. Exp Cell Res. 314:1351–1366. 2008. View Article : Google Scholar : PubMed/NCBI

123 

Cheng Y, Pardo M, Armini RS, Martinez A, Mouhsine H, Zagury JF, Jope RS and Beurel E: Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior. Brain Behav Immun. 53:207–222. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Hoffmeister L, Diekmann M, Brand K and Huber R: GSK3: A kinase balancing promotion and resolution of inflammation. Cells. 9:8202020. View Article : Google Scholar

125 

Teng L, Meng Q, Lu J, Xie J, Wang Z, Liu Y and Wang D: Liquiritin modulates ERK and AKT/GSK-3β-dependent pathways to protect against glutamate-induced cell damage in differentiated PC12 cells. Mol Med Rep. 10:818–824. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Gerhardt D, Bertola G, Dietrich F, Figueiró F, Zanotto-Filho A, Moreira Fonseca JC, Morrone FB, Barrios CH, Battastini AM and Salbego CG: Boldine induces cell cycle arrest and apoptosis in T24 human bladder cancer cell line via regulation of ERK, AKT, and GSK-3β. Urol Oncol. 32:36.e1–e9. 2014. View Article : Google Scholar

127 

Kwon HJ, Kwon SJ, Lee H, Park HR, Choi GE, Kang SW, Kwon SW, Kim N, Lee SY, Ryu S, et al: NK cell function triggered by multiple activating receptors is negatively regulated by glycogen synthase kinase-3β. Cell Signal. 27:1731–1741. 2015. View Article : Google Scholar : PubMed/NCBI

128 

Fionda C, Soriani A, Zingoni A, Santoni A and Cippitelli M: NKG2D and DNAM-1 ligands: Molecular targets for NK cell-mediated immunotherapeutic intervention in multiple myeloma. Biomed Res Int. 2015:1786982015. View Article : Google Scholar : PubMed/NCBI

129 

Fionda C, Malgarini G, Soriani A, Zingoni A, Cecere F, Iannitto ML, Ricciardi MR, Federico V, Petrucci MT, Santoni A and Cippitelli M: Inhibition of glycogen synthase kinase-3 increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: Role of STAT3. J Immunol. 190:6662–6672. 2013. View Article : Google Scholar : PubMed/NCBI

130 

Parameswaran R, Ramakrishnan P, Moreton SA, Xia Z, Hou Y, Lee DA, Gupta K, deLima M, Beck RC and Wald DN: Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat Commun. 7:111542016. View Article : Google Scholar : PubMed/NCBI

131 

Cichocki F, Valamehr B, Bjordahl R, Zhang B, Rezner B, Rogers P, Gaidarova S, Moreno S, Tuininga K, Dougherty P, et al: GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer Res. 77:5664–5675. 2017. View Article : Google Scholar : PubMed/NCBI

132 

Ohteki T, Parsons M, Zakarian A, Jones RG, Nguyen LT, Woodgett JR and Ohashi PS: Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase GSK-3. J Exp Med. 192:99–104. 2000. View Article : Google Scholar : PubMed/NCBI

133 

Taylor A and Rudd CE: Glycogen synthase kinase 3 inactivation compensates for the lack of CD28 in the priming of CD8+ cytotoxic T-cells: Implications for anti-PD-1 immunotherapy. Front Immunol. 8:16532017. View Article : Google Scholar : PubMed/NCBI

134 

Taylor A, Harker JA, Chanthong K, Stevenson PG, Zuniga EI and Rudd CE: Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of Co-receptor PD-1 to enhance CD8(+) cytolytic T cell responses. Immunity. 44:274–286. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Taylor A, Rothstein D and Rudd CE: Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy. Cancer Res. 78:706–717. 2018. View Article : Google Scholar : PubMed/NCBI

136 

Rudd CE, Chanthong K and Taylor A: Small molecule inhibition of GSK-3 specifically inhibits the transcription of inhibitory Co-receptor LAG-3 for enhanced anti-tumor immunity. Cell Rep. 30:2075–2082.e4. 2020. View Article : Google Scholar : PubMed/NCBI

137 

Zhang JY, Zhao YL, Lv YP, Cheng P, Chen W, Duan M, Teng YS, Wang TT, Peng LS, Mao FY, et al: Modulation of CD8+ memory stem T cell activity and glycogen synthase kinase 3β inhibition enhances anti-tumoral immunity in gastric cancer. Oncoimmunology. 7:e14129002018. View Article : Google Scholar : PubMed/NCBI

138 

Xia Y, Zhuo H, Lu Y, Deng L, Jiang R, Zhang L, Zhu Q, Pu L, Wang X and Lu L: Glycogen synthase kinase 3β inhibition promotes human iTreg differentiation and suppressive function. Immunol Res. 62:60–70. 2015. View Article : Google Scholar : PubMed/NCBI

139 

Sengupta S, Katz SC, Sengupta S and Sampath P: Glycogen synthase kinase 3 inhibition lowers PD-1 expression, promotes long-term survival and memory generation in antigen-specific CAR-T cells. Cancer Lett. 433:131–139. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Takeuchi H, Tanaka M, Tanaka A, Tsunemi A and Yamamoto H: Predominance of M2-polarized macrophages in bladder cancer affects angiogenesis, tumor grade and invasiveness. Oncol Lett. 11:3403–3408. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Wang G, Shi Y, Jiang X, Leak RK, Hu X, Wu Y, Pu H, Li WW, Tang B, Wang Y, et al: HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci USA. 112:2853–2858. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Mazor M, Kawano Y, Zhu H, Waxman J and Kypta RM: Inhibition of glycogen synthase kinase-3 represses androgen receptor activity and prostate cancer cell growth. Oncogene. 23:7882–7892. 2004. View Article : Google Scholar : PubMed/NCBI

143 

Goc A, Al-Husein B, Katsanevas K, Steinbach A, Lou U, Sabbineni H, DeRemer DL and Somanath PR: Targeting Src-mediated Tyr216 phosphorylation and activation of GSK-3 in prostate cancer cells inhibit prostate cancer progression in vitro and in vivo. Oncotarget. 5:775–787. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Yu XJ, Han QB, Wen ZS, Ma L, Gao J and Zhou GB: Gambogenic acid induces G1 arrest via GSK3β-dependent cyclin D1 degradation and triggers autophagy in lung cancer cells. Cancer Lett. 322:185–194. 2012. View Article : Google Scholar : PubMed/NCBI

145 

Kunnimalaiyaan S, Gamblin TC and Kunnimalaiyaan M: Glycogen synthase kinase-3 inhibitor AR-A014418 suppresses pancreatic cancer cell growth via inhibition of GSK-3-mediated Notch1 expression. HPB (Oxford). 17:770–776. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
He R, Du S, Lei T, Xie X and Wang Y: Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncol Rep 44: 2373-2385, 2020.
APA
He, R., Du, S., Lei, T., Xie, X., & Wang, Y. (2020). Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncology Reports, 44, 2373-2385. https://doi.org/10.3892/or.2020.7817
MLA
He, R., Du, S., Lei, T., Xie, X., Wang, Y."Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review)". Oncology Reports 44.6 (2020): 2373-2385.
Chicago
He, R., Du, S., Lei, T., Xie, X., Wang, Y."Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review)". Oncology Reports 44, no. 6 (2020): 2373-2385. https://doi.org/10.3892/or.2020.7817
Copy and paste a formatted citation
x
Spandidos Publications style
He R, Du S, Lei T, Xie X and Wang Y: Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncol Rep 44: 2373-2385, 2020.
APA
He, R., Du, S., Lei, T., Xie, X., & Wang, Y. (2020). Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review). Oncology Reports, 44, 2373-2385. https://doi.org/10.3892/or.2020.7817
MLA
He, R., Du, S., Lei, T., Xie, X., Wang, Y."Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review)". Oncology Reports 44.6 (2020): 2373-2385.
Chicago
He, R., Du, S., Lei, T., Xie, X., Wang, Y."Glycogen synthase kinase 3β in tumorigenesis and oncotherapy (Review)". Oncology Reports 44, no. 6 (2020): 2373-2385. https://doi.org/10.3892/or.2020.7817
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team