Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2021 Volume 45 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 45 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of chemokines in hepatocellular carcinoma (Review)

  • Authors:
    • Dongdong Xue
    • Ya Zheng
    • Junye Wen
    • Jingzhao Han
    • Hongfang Tuo
    • Yifan Liu
    • Yanhui Peng
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China, Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China
    Copyright: © Xue et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 809-823
    |
    Published online on: December 22, 2020
       https://doi.org/10.3892/or.2020.7906
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges for the treatment of HCC is the prevention or management of recurrence and metastasis of HCC. It has been found that chemokines and their receptors serve a pivotal role in HCC progression. In the present review, the literature on the multifactorial roles of exosomes in HCC from PubMed, Cochrane library and Embase were obtained, with a specific focus on the functions and mechanisms of chemokines in HCC. To date, >50 chemokines have been found, which can be divided into four families: CXC, CX3C, CC and XC, according to the different positions of the conserved N‑terminal cysteine residues. Chemokines are involved in the inflammatory response, tumor immune response, proliferation, invasion and metastasis via modulation of various signaling pathways. Thus, chemokines and their receptors directly or indirectly shape the tumor cell microenvironment, and regulate the biological behavior of the tumor. In addition, the potential application of chemokines in chemotaxis of exosomes as drug vehicles is discussed. Exosomes containing chemokines or expressing receptors for chemokines may improve chemotaxis to HCC and may thus be exploited for targeted drug delivery.
View Figures

Figure 1

Figure 2

View References

1 

Dong G, Zhang S, Shen S, Sun L, Wang X, Wang H, Wu J, Liu T, Wang C, Wang H, et al: SPATS2, negatively regulated by miR-145-5p, promotes hepatocellular carcinoma progression through regulating cell cycle. Cell Death Dis. 11:8372020. View Article : Google Scholar : PubMed/NCBI

2 

Zhang FP, Huang YP, Luo WX, Deng WY, Liu CQ, Xu LB and Liu C: Construction of a risk score prognosis model based on hepatocellular carcinoma microenvironment. World J Gastroenterol. 26:134–153. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Zhang XF, Yang X, Jia HL, Zhu WW, Lu L, Shi W, Zhang H, Chen JH, Tao YF, Wang ZX, et al: Bcl-2 expression is a poor predictor for hepatocellular carcinoma prognosis of andropause-age patients. Cancer Biol Med. 13:459–468. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Gnoni A, Santini D, Scartozzi M, Russo A, Licchetta A, Palmieri V, Lupo L, Faloppi L, Palasciano G, Memeo V, et al: Hepatocellular carcinoma treatment over sorafenib: Epigenetics, microRNAs and microenvironment. Is there a light at the end of the tunnel? Expert Opin Ther Targets. 19:1623–1635. 2015. View Article : Google Scholar

5 

Paget S: The distribution of secondary growth in cancer. Lancet. 1:571–573. 1889. View Article : Google Scholar

6 

Sainz B and Heeschen C: Standing out from the crowd: Cancer stem cells in hepatocellular carcinoma. Cancer Cell. 23:431–433. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Li J and Zhu Y: Recent advances in liver cancer stem cells: Non-coding RNAs, oncogenes and oncoproteins. Front Cell Dev Biol. 8:5483352020. View Article : Google Scholar : PubMed/NCBI

8 

Kakinuma T and Hwang ST: Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol. 79:639–651. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Nagarsheth N, Wicha MS and Zou W: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Griffith JW, Sokol CL and Luster AD: Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu Rev Immunol. 32:659–702. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Sakai N, Yoshidome H, Shida T, Kimura F, Shimizu H, Ohtsuka M, Takeuchi D, Sakakibara M and Miyazaki M: CXCR4/CXCL12 expression profile is associated with tumor microenvironment and clinical outcome of liver metastases of colorectal cancer. Clin Exp Metastasis. 29:101–110. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Rezaeeyan H, Shirzad R, McKee TD and Saki N: Role of chemokines in metastatic niche: New insights along with a diagnostic and prognostic approach. APMIS. 126:359–370. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Raffaella B and Graham GJ: Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol. 7:2242016.PubMed/NCBI

14 

Saaber F, Schütz D, Miess E, Abe P, Desikan S, Ashok Kumar P, Balk S, Huang K, Beaulieu JM, Schulz S and Stumm R: ACKR3 regulation of neuronal migration requires ACKR3 phosphorylation, but not β-Arrestin. Cell Rep. 26:1473–1488.e9. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Purvanov V, Matti C, Samson GPB, Kindinger I and Legler DF: Fluorescently tagged CCL19 and CCL21 to monitor CCR7 and ACKR4 functions. Int J Mol Sci. 19:38762018. View Article : Google Scholar

16 

Matti C, D'Uonnolo G, Artinger M, Melgrati S, Salnikov A, Thelen S, Purvanov V, Strobel TD, Spannagel L, Thelen M and Legler DF: CCL20 is a novel ligand for the scavenging atypical chemokine receptor 4. J Leukoc Biol. 107:1137–1154. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Do HTT, Lee CH and Cho J: Chemokines and their receptors: Multifaceted roles in cancer progression and potential value as cancer prognostic markers. Cancers (Basel). 12:2872020. View Article : Google Scholar

18 

Ozakyol A: Global epidemiology of hepatocellular carcinoma (HCC Epidemiology). J Gastrointest Cancer. 48:238–240. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Giannelli G, Rani B, Dituri F, Cao Y and Palasciano G: Moving towards personalised therapy in patients with hepatocellular carcinoma: The role of the microenvironment. Gut. 63:1668–1676. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Marra F and Tacke F: Roles for chemokines in liver disease. Gastroenterology. 147:577–594.e1. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL, Koh HY, Li LL, Lee D, Lo RC, Wong CM, et al: Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology. 64:797–813. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Kryczek I, Wang L, Wu K, Li W, Zhao E, Cui T, Wei S, Liu Y, Wang Y, Vatan L, et al: Inflammatory regulatory T cells in the microenvironments of ulcerative colitis and colon carcinoma. Oncoimmunology. 5:e11054302016. View Article : Google Scholar : PubMed/NCBI

23 

Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, Huang E, Greenson J, Chang A, Roliński J, et al: IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol. 186:4388–4395. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Han KQ, He XQ, Ma MY, Guo XD, Zhang XM, Chen J, Han H, Zhang WW, Zhu QG, Nian H and Ma LJ: Inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma. World J Gastroenterol. 21:4864–4874. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, et al: Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer. 126:1095–1108. 2010.PubMed/NCBI

26 

Zhang H, He G, Kong Y, Chen Y, Wang B, Sun X, Jia B, Xie X, Wang X, Chen D, et al: Tumour-activated liver stromal cells regulate myeloid-derived suppressor cells accumulation in the liver. Clin Exp Immunol. 188:96–108. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsukada K, Irimura T, Shibahara N, Nakayama T, Yoshie O, et al: Chemokine CXCL16 suppresses liver metastasis of colorectal cancer via augmentation of tumor-infiltrating natural killer T cells in a murine model. Oncol Rep. 29:975–982. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, Tsukada K, Irimura T, Shibahara N, Takasaki I, et al: CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer. 14:9492014. View Article : Google Scholar : PubMed/NCBI

29 

Adamski V, Hattermann K, Kubelt C, Cohrs G, Lucius R, Synowitz M, Sebens S and Held-Feindt J: Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1. Oncogene. 39:4421–4435. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Takiguchi G, Nishita M, Kurita K, Kakeji Y and Minami Y: Wnt5a-Ror2 signaling in mesenchymal stem cells promotes proliferation of gastric cancer cells by activating CXCL16-CXCR6 axis. Cancer Sci. 107:290–297. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Shi JY, Yang LX, Wang ZC, Wang LY, Zhou J, Wang XY, Shi GM, Ding ZB, Ke AW, Dai Z, et al: CC chemokine receptor-like 1 functions as a tumour suppressor by impairing CCR7-related chemotaxis in hepatocellular carcinoma. J Pathol. 235:546–558. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Shi JY, Duan M, Sun QM, Yang L, Wang ZC, Mynbaev OA, He YF, Wang LY, Zhou J, Tang QQ, et al: Naive Treg-like CCR7+ mononuclear cells indicate unfavorable prognosis in hepatocellular carcinoma. Tumour Biol. 37:9909–9917. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Wong HS, Jaumouillé V, Heit B, Doodnauth SA, Patel S, Huang YW, Grinstein S and Robinson LA: Cytoskeletal confinement of CX3CL1 limits its susceptibility to proteolytic cleavage by ADAM10. Mol Biol Cell. 25:3884–3899. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Sun C, Hu A, Wang S, Tian B, Jiang L, Liang Y, Wang H and Dong J: ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int J Oncol. 57:249–263. 2020.PubMed/NCBI

35 

Liu W, Jiang L, Bian C, Liang Y, Xing R, Yishakea M and Dong J: Role of CX3CL1 in diseases. Arch Immunol Ther Exp (Warsz). 64:371–383. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Liu P, Liang Y, Jiang L, Wang H, Wang S and Dong J: CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int J Oncol. 53:1544–1556. 2018.PubMed/NCBI

37 

Liang Y, Yi L, Liu P, Jiang L, Wang H, Hu A, Sun C and Dong J: CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway. J Cancer. 9:3603–3612. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Zheng J, Yang M, Shao J, Miao Y, Han J and Du J: Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Mol Cancer. 12:1412013. View Article : Google Scholar : PubMed/NCBI

39 

Chen EB, Zhou ZJ, Xiao K, Zhu GQ, Yang Y, Wang B, Zhou SL, Chen Q, Yin D, Wang Z, et al: The miR-561-5p/CX3CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX3CR1+ natural killer cells infiltration. Theranostics. 9:4779–4794. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Miao S, Lu M, Liu Y, Shu D, Zhu Y, Song W, Ma Y, Ma R, Zhang B, Fang C and Ming ZY: Platelets are recruited to hepatocellular carcinoma tissues in a CX3CL1-CX3CR1 dependent manner and induce tumour cell apoptosis. Mol Oncol. 14:2546–2559. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Yoshida T, Imai T, Takagi S, Nishimura M, Ishikawa I, Yaoi T and Yoshie O: Structure and expression of two highly related genes encoding SCM-1/human lymphotactin. FEBS Lett. 395:82–88. 1996. View Article : Google Scholar : PubMed/NCBI

42 

Lei Y and Takahama Y: XCL1 and XCR1 in the immune system. Microbes Infect. 14:262–267. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Yamazaki C, Sugiyama M, Ohta T, Hemmi H, Hamada E, Sasaki I, Fukuda Y, Yano T, Nobuoka M, Hirashima T, et al: Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J Immunol. 190:6071–6082. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Khurram SA, Whawell SA, Bingle L, Murdoch C, McCabe BM and Farthing PM: Functional expression of the chemokine receptor XCR1 on oral epithelial cells. J Pathol. 221:153–163. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Gantsev SK, Umezawa K, Islamgulov DV, Khusnutdinova EK, Ishmuratova RS, Frolova VY and Kzyrgalin SR: The role of inflammatory chemokines in lymphoid neoorganogenesis in breast cancer. Biomed Pharmacother. 67:363–366. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Kim M, Rooper L, Xie J, Rayahin J, Burdette JE, Kajdacsy-Balla AA and Barbolina MV: The lymphotactin receptor is expressed in epithelial ovarian carcinoma and contributes to cell migration and proliferation. Mol Cancer Res. 10:1419–1429. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Wang T, Han S, Wu Z, Han Z, Yan W, Liu T, Wei H, Song D, Zhou W, Yang X and Xiao J: XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer. Biochem Biophys Res Commun. 464:635–641. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Yanru W, Zhenyu B, Zhengchuan N, Qi Q, Chunmin L and Weiqiang Y: Transcriptomic analyses of chemokines reveal that down-regulation of XCR1 is associated with advanced hepatocellular carcinoma. Biochem Biophys Res Commun. 496:1314–1321. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Li X: The inducers of immunogenic cell death for tumor immunotherapy. Tumori. 104:1–8. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Mizumoto Y, Hemmi H, Katsuda M, Miyazawa M, Kitahata Y, Miyamoto A, Nakamori M, Ojima T, Matsuda K, Nakamura M, et al: Anticancer effects of chemokine-directed antigen delivery to a cross-presenting dendritic cell subset with immune checkpoint blockade. Br J Cancer. 122:1185–1193. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Spranger S and Gajewski TF: A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. J Immunother Cancer. 3:432015. View Article : Google Scholar : PubMed/NCBI

52 

Botelho NK, Tschumi BO, Hubbell JA, Swartz MA, Donda A and Romero P: Combination of synthetic long peptides and XCL1 fusion proteins results in superior tumor control. Front Immunol. 10:2942019. View Article : Google Scholar : PubMed/NCBI

53 

Chen K, Wu Z, Zhao H, Wang Y, Ge Y, Wang D, Li Z, An C, Liu Y, Wang F, et al: XCL1/Glypican-3 fusion gene immunization generates potent antitumor cellular immunity and enhances Anti-PD-1 efficacy. Cancer Immunol Res. 8:81–93. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Audsley KM, McDonnell AM and Waithman J: Cross-presenting XCR1+ dendritic cells as targets for cancer immunotherapy. Cells. 9:5652020. View Article : Google Scholar

55 

Wylie B, Read J, Buzzai AC, Wagner T, Troy N, Syn G, Stone SR, Foley B, Bosco A, Cruickshank MN, et al: CD8+XCR1neg dendritic cells express high levels of toll-like receptor 5 and a unique complement of endocytic receptors. Front Immunol. 9:29902019. View Article : Google Scholar : PubMed/NCBI

56 

Qin CJ, Zhao LH, Zhou X, Zhang HL, Wen W, Tang L, Zeng M, Wang MD, Fu GB, Huang S, et al: Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett. 420:26–37. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Giles AJ, Reid CM, Evans JD, Murgai M, Vicioso Y, Highfill SL, Kasai M, Vahdat L, Mackall CL, Lyden D, et al: Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res. 76:1335–1347. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, et al: CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76:5671–5682. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Qi S, Perrino S, Miao X, Lamarche-Vane N and Brodt P: The chemokine CCL7 regulates invadopodia maturation and MMP-9 mediated collagen degradation in liver-metastatic carcinoma cells. Cancer Lett. 483:98–113. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Wu Q, Chen JX, Chen Y, Cai LL, Wang XZ, Guo WH and Zheng JF: The chemokine receptor CCR10 promotes inflammation-driven hepatocarcinogenesis via PI3K/Akt pathway activation. Cell Death Dis. 9:2322018. View Article : Google Scholar : PubMed/NCBI

61 

Hippe A, Braun SA, Oláh P, Gerber PA, Schorr A, Seeliger S, Holtz S, Jannasch K, Pivarcsi A, Buhren B, et al: EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. Br J Cancer. 123:942–954. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Du D, Liu Y, Qian H, Zhang B, Tang X, Zhang T and Liu W: The effects of the CCR6/CCL20 biological axis on the invasion and metastasis of hepatocellular carcinoma. Int J Mol Sci. 15:6441–6452. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Huang F and Geng XP: Chemokines and hepatocellular carcinoma. World J Gastroenterol. 16:1832–1836. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Tan H, Wang S and Zhao L: A tumour-promoting role of Th9 cells in hepatocellular carcinoma through CCL20 and STAT3 pathways. Clin Exp Pharmacol Physiol. 44:213–221. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L and Coukos G: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 475:226–230. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Gao Y, Zhou Z, Lu S, Huang X, Zhang C, Jiang R, Yao A, Sun B and Wang X: Chemokine CCL15 mediates migration of human bone marrow-derived mesenchymal stem cells toward hepatocellular carcinoma. Stem Cells. 34:1112–1122. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Singh SK, Mishra MK, Eltoum IA, Bae S, Lillard JW Jr and Singh R: CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep. 8:13232018. View Article : Google Scholar : PubMed/NCBI

68 

Singh SK, Mishra MK, Rivers BM, Gordetsky JB, Bae S and Singh R: Biological and clinical significance of the CCR5/CCL5 axis in hepatocellular carcinoma. Cancers (Basel). 12:8832020. View Article : Google Scholar

69 

Sasaki R, Devhare PB, Steele R, Ray R and Ray RB: Hepatitis C virus-induced CCL5 secretion from macrophages activates hepatic stellate cells. Hepatology. 66:746–757. 2017. View Article : Google Scholar : PubMed/NCBI

70 

González-Martín A, Mira E and Mañes S: CCR5 in cancer immunotherapy: More than an ‘attractive’ receptor for T cells. Oncoimmunology. 1:106–108. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Wang T, Zhan Q, Peng X, Qiu Z and Zhao T: CCL2 influences the sensitivity of lung cancer A549 cells to docetaxel. Oncol Lett. 16:1267–1274. 2018.PubMed/NCBI

72 

Pasquier J, Gosset M, Geyl C, Hoarau-Véchot J, Chevrot A, Pocard M, Mirshahi M, Lis R, Rafii A and Touboul C: CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer. Mol Cancer. 17:472018. View Article : Google Scholar : PubMed/NCBI

73 

Su S, Sun X, Zhang Q, Zhang Z and Chen J: CCL20 promotes ovarian cancer chemotherapy resistance by regulating ABCB1 expression. Cell Struct Funct. 44:21–28. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Vaquero J, Briz O, Herraez E, Muntané J and Marin JJ: Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. Biochim Biophys Acta. 1833:2212–2219. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Gu Y, Li X, Bi Y, Zheng Y, Wang J, Li X, Huang Z, Chen L and Huang Y and Huang Y: CCL14 is a prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY). 12:784–807. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Rodríguez-Perea AL, Rojas M and Velilla-Hernández PA: High concentrations of atorvastatin reduce in-vitro function of conventional T and regulatory T cells. Clin Exp Immunol. 196:237–248. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Zhu M, Xu W, Wei C, Huang J, Xu J, Zhang Y, Zhao Y, Chen J, Dong S, Liu B and Liang C: CCL14 serves as a novel prognostic factor and tumor suppressor of HCC by modulating cell cycle and promoting apoptosis. Cell Death Dis. 10:7962019. View Article : Google Scholar : PubMed/NCBI

78 

Zhang X, Wan JX, Ke ZP, Wang F, Chai HX and Liu JQ: TMEM88, CCL14 and CLEC3B as prognostic biomarkers for prognosis and palindromia of human hepatocellular carcinoma. Tumour Biol. 39:10104283177089002017. View Article : Google Scholar : PubMed/NCBI

79 

Wilson GC, Kuboki S, Freeman CM, Nojima H, Schuster RM, Edwards MJ and Lentsch AB: CXC chemokines function as a rheostat for hepatocyte proliferation and liver regeneration. PLoS One. 10:e01200922015. View Article : Google Scholar : PubMed/NCBI

80 

Vandercappellen J, Van Damme J and Struyf S: The role of CXC chemokines and their receptors in cancer. Cancer Lett. 267:226–244. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Liu G, Yang ZF, Zhou PY, Zhou C, Guan RY, Sun BY, Fan J, Zhou J, Yi Y and Qiu SJ: ROR-α-1 inhibits the proliferation, invasion, and migration of hepatocellular carcinoma MHCC97H via downregulation of chemokine CXCL5. Cytokine. 129:1550042020. View Article : Google Scholar : PubMed/NCBI

82 

Zhou SL, Zhou ZJ, Hu ZQ, Li X, Huang XW, Wang Z, Fan J, Dai Z and Zhou J: CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/Akt/GSK-3β/Snail signaling. Cancer Lettr. 358:124–135. 2015. View Article : Google Scholar

83 

Li XP, Yang XY, Biskup E, Zhou J, Li HL, Wu YF, Chen ML and Xu F: Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget. 6:22880–22889. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Yamamoto M, Kikuchi H, Ohta M, Kawabata T, Hiramatsu Y, Kondo K, Baba M, Kamiya K, Tanaka T, Kitagawa M and Konno H: TSU68 prevents liver metastasis of colon cancer xenografts by modulating the premetastatic niche. Cancer Res. 68:9754–9762. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Høyer-Hansen G, Eefsen RL, Reynolds AR and Brodt P: The multifaceted role of the microenvironment in liver metastasis: Biology and clinical implications. Cancer Res. 73:2031–2043. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Li L, Zhu YH, Li Y and Guan XY: Identification of chemokine CXCL10 in tumor microenvironment by antibody array as a prognostic marker in hepatocellular carcinoma. Neoplasma. 64:778–786. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Li B, Su H, Cao J and Zhang L: CXCL13 rather than IL-31 is a potential indicator in patients with hepatocellular carcinoma. Cytokine. 89:91–97. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Song X, Wang Z, Jin Y, Wang Y and Duan W: Loss of miR-532-5p in vitro promotes cell proliferation and metastasis by influencing CXCL2 expression in HCC. Am J Transl Res. 7:2254–2261. 2015.PubMed/NCBI

89 

Ding J, Xu K, Zhang J, Lin B, Wang Y, Yin S, Xie H, Zhou L and Zheng S: Overexpression of CXCL2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma. BMB Rep. 51:630–635. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Subat S, Mogushi K, Yasen M, Kohda T, Ishikawa Y and Tanaka H: Identification of genes and pathways, including the CXCL2 axis, altered by DNA methylation in hepatocellular carcinoma. J Cancer Res Clin Oncol. 145:675–684. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Shi A, Shi H, Dong L, Xu S, Jia M, Guo X and Wang T: CXCR7 as a chemokine receptor for SDF-1 promotes gastric cancer progression via MAPK pathways. Scand J Gastroenterol. 52:745–753. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Li D, Qu C, Ning Z, Wang H, Zang K, Zhuang L, Chen L, Wang P and Meng Z: Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts. Am J Cancer Res. 6:2192–2206. 2016.PubMed/NCBI

93 

Croker AK and Allan AL: Cancer stem cells: Implications for the progression and treatment of metastatic disease. J Cell Mol Med. 12:374–390. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Jahanban-Esfahlan R, de la Guardia M, Ahmadi D and Yousefi B: Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 233:2019–2031. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Teng F, Tian WY, Wang YM, Zhang YF, Guo F, Zhao J, Gao C and Xue FX: Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J Hematol Oncol. 9:82016. View Article : Google Scholar : PubMed/NCBI

96 

Wang C, Wang MD, Cheng P, Huang H, Dong W, Zhang WW, Li PP, Lin C, Pan ZY, Wu MC and Zhou WP: Hepatitis B virus X protein promotes the stem-like properties of OV6+ cancer cells in hepatocellular carcinoma. Cell Death Dis. 8:e25602017. View Article : Google Scholar : PubMed/NCBI

97 

Kaemmerer D, Schindler R, Mußbach F, Dahmen U, Altendorf-Hofmann A, Dirsch O, Sänger J, Schulz S and Lupp A: Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: Tumor capillaries as promising targets. BMC Cancer. 17:8962017. View Article : Google Scholar : PubMed/NCBI

98 

Li H, Yang W, Chen PW, Alizadeh H and Niederkorn JY: Inhibition of chemokine receptor expression on uveal melanomas by CXCR4 siRNA and its effect on uveal melanoma liver metastases. Invest Ophthalmol Vis Sci. 50:5522–5528. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Deol A, Abrams J, Masood A, Al-Kadhimi Z, Abidi MH, Ayash L, Lum LG, Ratanatharathorn V and Uberti JP: Long-term follow up of patients proceeding to transplant using plerixafor mobilized stem cells and incidence of secondary myelodysplastic syndrome/AML. Bone Marrow Transplant. 48:1112–1116. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Collins PJ, McCully ML, Martínez-Muñoz L, Santiago C, Wheeldon J, Caucheteux S, Thelen S, Cecchinato V, Laufer JM, Purvanov V, et al: Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J. 31:3084–3097. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Chen Y, Teng F, Wang G and Nie Z: Overexpression of CXCR7 induces angiogenic capacity of human hepatocellular carcinoma cells via the AKT signaling pathway. Oncol Rep. 36:2275–2281. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Lin L, Han MM, Wang F, Xu LL, Yu HX and Yang PY: CXCR7 stimulates MAPK signaling to regulate hepatocellular carcinoma progression. Cell Death Dis. 5:e14882014. View Article : Google Scholar : PubMed/NCBI

103 

Billottet C, Quemener C and Bikfalvi A: CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta. 1836:287–295. 2013.PubMed/NCBI

104 

Ma B, Khazali A and Wells A: CXCR3 in carcinoma progression. Histol Histopathol. 30:781–792. 2015.PubMed/NCBI

105 

Gao Q, Zhao YJ, Wang XY, Qiu SJ, Shi YH, Sun J, Yi Y, Shi JY, Shi GM, Ding ZB, et al: CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma. Cancer Res. 72:3546–3556. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Wu Y, Tian L, Xu Y, Zhang M, Xiang S, Zhao J and Wang Z: CXCR7 silencing inhibits the migration and invasion of human tumor endothelial cells derived from hepatocellular carcinoma by suppressing STAT3. Mol Med Rep. 18:1644–1650. 2018.PubMed/NCBI

107 

Xu Y, Fang F, Jiao H, Zheng X, Huang L, Yi X and Zhao W: Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma. Cancer Immunol Immunother. 68:1959–1969. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Tian H, Huang P, Zhao Z, Tang W and Xia J: HIF-1α plays a role in the chemotactic migration of hepatocarcinoma cells through the modulation of CXCL6 expression. Cell Physiol Biochem. 34:1536–1546. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Shen H, Yao X, Li H, Li X, Zhang T, Sun Q, Ji C and Chen G: Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage. J Mol Neurosci. 64:421–430. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Halvaei S, Daryani S, Eslami-S Z, Samadi T, Jafarbeik-Iravani N, Bakhshayesh TO, Majidzadeh-A K and Esmaeili R: Exosomes in cancer liquid biopsy: A focus on breast cancer. Mol Ther Nucleic Acids. 10:131–141. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Anel A, Gallego-Lleyda A, de Miguel D, Naval J and Martínez-Lostao L: Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells. 8:1542019. View Article : Google Scholar

112 

Almeida VH, Rondon AMR, Gomes T and Monteiro RQ: Novel aspects of extracellular vesicles as mediators of cancer-associated thrombosis. Cells. 8:7162019. View Article : Google Scholar

113 

Rao PSS, O'Connell K and Finnerty TK: Potential role of extracellular vesicles in the pathophysiology of drug addiction. Mol Neurobiol. 55:6906–6913. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Kohama I, Kosaka N, Chikuda H and Ochiya T: An insight into the roles of MicroRNAs and exosomes in sarcoma. Cancers (Basel). 11:4282019. View Article : Google Scholar

115 

Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI

116 

Sun JF, Zhang D, Gao CJ, Zhang YW and Dai QS: Exosome-mediated MiR-155 transfer contributes to hepatocellular carcinoma cell proliferation by targeting PTEN. Med Sci Monit Basic Res. 25:218–228. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Lee JY and Kim HS: Extracellular vesicles in neurodegenerative diseases: A double-edged sword. Tissue Eng Regen Med. 14:667–678. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T and Duroux M: A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 1846:75–87. 2014.PubMed/NCBI

119 

Yi YW, Lee JH, Kim SY, Pack CG, Ha DH, Park SR, Youn J and Cho BS: Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 21:6652020. View Article : Google Scholar

120 

Wu P, Zhang B, Ocansey DKW, Xu W and Qian H: Extracellular vesicles: A bright star of nanomedicine. Biomaterials. 6:1204672020. View Article : Google Scholar

121 

Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, et al: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 12:655–664. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Si Y, Kim S, Zhang E, Tang Y, Jaskula-Sztul R, Markert JM, Chen H, Zhou L and Liu XM: Targeted exosomes for drug delivery: Biomanufacturing, surface tagging, and validation. Biotechnol J. 15:e19001632020. View Article : Google Scholar : PubMed/NCBI

123 

Prada I and Meldolesi J: Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets. Int J Mol Sci. 17:12962016. View Article : Google Scholar

124 

Nakase I and Futaki S: Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep. 5:101122015. View Article : Google Scholar : PubMed/NCBI

125 

Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P and Schiffelers RM: Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles. 5:310532016. View Article : Google Scholar : PubMed/NCBI

126 

Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T, Yao K, Kanda H, Ae K, Okawa A, et al: Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci USA. 115:2204–2209. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Luis-Ravelo D, Antón I, Zandueta C, Valencia K, Ormazábal C, Martínez-Canarias S, Guruceaga E, Perurena N, Vicent S, De Las Rivas J and Lecanda F: A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer. Oncogene. 33:5090–5099. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI

129 

Li H, Yang C, Shi Y and Zhao L: Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnology. 16:1032018. View Article : Google Scholar : PubMed/NCBI

130 

Viñas JL, Spence M, Gutsol A, Knoll W, Burger D, Zimpelmann J, Allan DS and Burns KD: Receptor-ligand interaction mediates targeting of endothelial colony forming cell-derived exosomes to the kidney after ischemic injury. Sci Rep. 8:163202018. View Article : Google Scholar : PubMed/NCBI

131 

Ciullo A, Biemmi V, Milano G, Bolis S, Cervio E, Fertig ET, Gherghiceanu M, Moccetti T, Camici GG, Vassalli G and Barile L: Exosomal expression of CXCR4 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci. 20:4682019. View Article : Google Scholar

132 

Wei G, Jie Y, Haibo L, Chaoneng W, Dong H, Jianbing Z, Junjie G, Leilei M, Hongtao S, Yunzeng Z and Junbo G: Dendritic cells derived exosomes migration to spleen and induction of inflammation are regulated by CCR7. Sci Rep. 7:429962017. View Article : Google Scholar : PubMed/NCBI

133 

Longo V, Gnoni A, Casadei Gardini A, Pisconti S, Licchetta A, Scartozzi M, Memeo R, Palmieri VO, Aprile G, Santini D, et al: Immunotherapeutic approaches for hepatocellular carcinoma. Oncotarget. 8:33897–33910. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Liu YC, Yeh CT and Lin KH: Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells. 9:13312020. View Article : Google Scholar

135 

Liu LZ, Zhang Z, Zheng BH, Shi Y, Duan M, Ma LJ, Wang ZC, Dong LQ, Dong PP, Shi JY, et al: CCL15 recruits suppressive monocytes to facilitate Immune escape and disease progression in hepatocellular carcinoma. Hepatology. 69:143–159. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Sun F, Wang J, Sun Q, Li F, Gao H, Xu L, Zhang J, Sun X, Tian Y, Zhao Q, et al: Interleukin-8 promotes integrin β3 upregulation and cell invasion through PI3K/Akt pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 38:4492019. View Article : Google Scholar : PubMed/NCBI

137 

Li L, Xu L, Yan J, Zhen ZJ, Ji Y, Liu CQ, Lau WY, Zheng L and Xu J: CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1292015. View Article : Google Scholar : PubMed/NCBI

138 

Lu Y, Li S, Ma L, Li Y, Zhang X, Peng Q, Mo C, Huang L, Qin X and Liu Y: Type conversion of secretomes in a 3D TAM2 and HCC cell co-culture system and functional importance of CXCL2 in HCC. Sci Rep. 6:245582016. View Article : Google Scholar : PubMed/NCBI

139 

Zhang L, Zhang L, Li H, Ge C, Zhao F, Tian H, Chen T, Jiang G, Xie H, Cui Y, et al: CXCL3 contributes to CD133+ CSCs maintenance and forms a positive feedback regulation loop with CD133 in HCC via Erk1/2 phosphorylation. Sci Rep. 6:274262016. View Article : Google Scholar : PubMed/NCBI

140 

Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J and Zhou J: Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 56:2242–2254. 2012. View Article : Google Scholar : PubMed/NCBI

141 

Ding Q, Xia Y, Ding S, Lu P, Sun L and Liu M: An alternatively spliced variant of CXCR3 mediates the metastasis of CD133+ liver cancer cells induced by CXCL9. Oncotarget. 7:14405–14414. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Ouyang Y, Liu K, Hao M, Zheng R, Zhang C, Wu Y, Zhang X, Li N, Zheng J and Chen D: Radiofrequency ablation-increased CXCL10 is associated with earlier recurrence of hepatocellular carcinoma by promoting stemness. Tumour Biol. 37:3697–3704. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Ling CC, Ng KT, Shao Y, Geng W, Xiao JW, Liu H, Li CX, Liu XB, Ma YY, Yeung WH, et al: Post-transplant endothelial progenitor cell mobilization via CXCL10/CXCR3 signaling promotes liver tumor growth. J Hepatol. 60:103–109. 2014. View Article : Google Scholar : PubMed/NCBI

144 

Zhang Y, Zhao W, Li S, Lv M, Yang X, Li M and Zhang Z: CXCL11 promotes self-renewal and tumorigenicity of α2δ1+ liver tumor-initiating cells through CXCR3/ERK1/2 signaling. Cancer Lett. 449:163–171. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Li C, Kang D, Sun X, Liu Y, Wang J and Gao P: The effect of C-X-C motif chemokine 13 on hepatocellular carcinoma associates with Wnt signaling. Biomed Res Int. 2015:3454132015.PubMed/NCBI

146 

Deng L, Chen N, Li Y, Zheng H and Lei Q: CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta. 1806:42–49. 2010.PubMed/NCBI

147 

Yuan Y, Liu J, Liu Z, He Y, Zhang Z, Jiang C and Qian Q: Chemokine CCL3 facilitates the migration of hepatoma cells by changing the concentration intracellular Ca. Hepatol Res. 40:424–431. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Bai H, Weng Y, Bai S, Jiang Y, Li B, He F, Zhang R, Yan S, Deng F, Wang J and Shi Q: CCL5 secreted from bone marrow stromal cells stimulates the migration and invasion of Huh7 hepatocellular carcinoma cells via the PI3K-Akt pathway. Int J Oncol. 45:333–343. 2014. View Article : Google Scholar : PubMed/NCBI

149 

Liao WC, Yen HR, Liao CK, Tseng TJ, Lan CT and Liu CH: DSE regulates the malignant characters of hepatocellular carcinoma cells by modulating CCL5/CCR1 axis. Am J Cancer Res. 9:347–362. 2019.PubMed/NCBI

150 

Li Y, Wu J and Zhang P: CCL15/CCR1 axis is involved in hepatocellular carcinoma cells migration and invasion. Tumour Biol. 37:4501–4507. 2016. View Article : Google Scholar : PubMed/NCBI

151 

Lu J, Yang Y, Yu P, Tao H, Lu X, Wang L, Liu D, Chen Y and Chen C: Bioinformatics analysis and significance of expression of CC chemokine ligand 23 (CCL23) in hepatocellular carcinoma. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 35:903–909. 2019.(In Chinese). PubMed/NCBI

152 

Zhuang H, Cao G, Kou C and Liu T: CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition in vitro through activation of the Hedgehog pathway. Oncol Rep. 39:21–30. 2018.PubMed/NCBI

153 

Jin L, Liu WR, Tian MX, Jiang XF, Wang H, Zhou PY, Ding ZB, Peng YF, Dai Z, Qiu SJ, et al: CCL24 contributes to HCC malignancy via RhoB-VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis. Oncotarget. 8:5135–5148. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Zhu F, Li X, Chen S, Zeng Q, Zhao Y and Luo F: Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol. 33:172016. View Article : Google Scholar : PubMed/NCBI

155 

Wiedemann GM, Röhrle N, Makeschin MC, Fesseler J, Endres S, Mayr D and Anz D: Peritumoural CCL1 and CCL22 expressing cells in hepatocellular carcinomas shape the tumour immune infiltrate. Pathology. 51:586–592. 2019. View Article : Google Scholar : PubMed/NCBI

156 

Cheng X, Wu H, Jin ZJ, Ma D, Yuen S, Jing XQ, Shi MM, Shen BY, Peng CH, Zhao R and Qiu WH: Up-regulation of chemokine receptor CCR4 is associated with Human Hepatocellular Carcinoma malignant behavior. Sci Rep. 7:123622017. View Article : Google Scholar : PubMed/NCBI

157 

Mukaida N, Sasaki SI and Baba T: CCL4 signaling in the tumor microenvironment. Adv Exp Med Biol. 1231:23–32. 2020. View Article : Google Scholar : PubMed/NCBI

158 

Luo KQ, Shi YN and Peng JC: The effect of chemokine CC motif ligand 19 on the proliferation and migration of hepatocellular carcinoma. Tumour Biol. 35:12575–12581. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Yang L, Chang Y and Cao P: CCR7 preservation via histone deacetylase inhibition promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells. Exp Cell Res. 371:231–237. 2018. View Article : Google Scholar : PubMed/NCBI

160 

Hou PP, Luo LJ, Chen HZ, Chen QT, Bian XL, Wu SF, Zhou JX, Zhao WX, Liu JM, Wang XM, et al: Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell. 78:1192–1206.e10. 2020. View Article : Google Scholar : PubMed/NCBI

161 

Xu B, Deng C, Wu X, Ji T, Zhao L, Han Y, Yang W, Qi Y, Wang Z, Yang Z and Yang Y: CCR9 and CCL25: A review of their roles in tumor promotion. J Cell Physiol. 235:9121–9132. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xue D, Zheng Y, Wen J, Han J, Tuo H, Liu Y and Peng Y: Role of chemokines in hepatocellular carcinoma (Review). Oncol Rep 45: 809-823, 2021.
APA
Xue, D., Zheng, Y., Wen, J., Han, J., Tuo, H., Liu, Y., & Peng, Y. (2021). Role of chemokines in hepatocellular carcinoma (Review). Oncology Reports, 45, 809-823. https://doi.org/10.3892/or.2020.7906
MLA
Xue, D., Zheng, Y., Wen, J., Han, J., Tuo, H., Liu, Y., Peng, Y."Role of chemokines in hepatocellular carcinoma (Review)". Oncology Reports 45.3 (2021): 809-823.
Chicago
Xue, D., Zheng, Y., Wen, J., Han, J., Tuo, H., Liu, Y., Peng, Y."Role of chemokines in hepatocellular carcinoma (Review)". Oncology Reports 45, no. 3 (2021): 809-823. https://doi.org/10.3892/or.2020.7906
Copy and paste a formatted citation
x
Spandidos Publications style
Xue D, Zheng Y, Wen J, Han J, Tuo H, Liu Y and Peng Y: Role of chemokines in hepatocellular carcinoma (Review). Oncol Rep 45: 809-823, 2021.
APA
Xue, D., Zheng, Y., Wen, J., Han, J., Tuo, H., Liu, Y., & Peng, Y. (2021). Role of chemokines in hepatocellular carcinoma (Review). Oncology Reports, 45, 809-823. https://doi.org/10.3892/or.2020.7906
MLA
Xue, D., Zheng, Y., Wen, J., Han, J., Tuo, H., Liu, Y., Peng, Y."Role of chemokines in hepatocellular carcinoma (Review)". Oncology Reports 45.3 (2021): 809-823.
Chicago
Xue, D., Zheng, Y., Wen, J., Han, J., Tuo, H., Liu, Y., Peng, Y."Role of chemokines in hepatocellular carcinoma (Review)". Oncology Reports 45, no. 3 (2021): 809-823. https://doi.org/10.3892/or.2020.7906
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team