You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Dong G, Zhang S, Shen S, Sun L, Wang X, Wang H, Wu J, Liu T, Wang C, Wang H, et al: SPATS2, negatively regulated by miR-145-5p, promotes hepatocellular carcinoma progression through regulating cell cycle. Cell Death Dis. 11:8372020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang FP, Huang YP, Luo WX, Deng WY, Liu CQ, Xu LB and Liu C: Construction of a risk score prognosis model based on hepatocellular carcinoma microenvironment. World J Gastroenterol. 26:134–153. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XF, Yang X, Jia HL, Zhu WW, Lu L, Shi W, Zhang H, Chen JH, Tao YF, Wang ZX, et al: Bcl-2 expression is a poor predictor for hepatocellular carcinoma prognosis of andropause-age patients. Cancer Biol Med. 13:459–468. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gnoni A, Santini D, Scartozzi M, Russo A, Licchetta A, Palmieri V, Lupo L, Faloppi L, Palasciano G, Memeo V, et al: Hepatocellular carcinoma treatment over sorafenib: Epigenetics, microRNAs and microenvironment. Is there a light at the end of the tunnel? Expert Opin Ther Targets. 19:1623–1635. 2015. View Article : Google Scholar | |
|
Paget S: The distribution of secondary growth in cancer. Lancet. 1:571–573. 1889. View Article : Google Scholar | |
|
Sainz B and Heeschen C: Standing out from the crowd: Cancer stem cells in hepatocellular carcinoma. Cancer Cell. 23:431–433. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li J and Zhu Y: Recent advances in liver cancer stem cells: Non-coding RNAs, oncogenes and oncoproteins. Front Cell Dev Biol. 8:5483352020. View Article : Google Scholar : PubMed/NCBI | |
|
Kakinuma T and Hwang ST: Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol. 79:639–651. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Nagarsheth N, Wicha MS and Zou W: Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 17:559–572. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Griffith JW, Sokol CL and Luster AD: Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu Rev Immunol. 32:659–702. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sakai N, Yoshidome H, Shida T, Kimura F, Shimizu H, Ohtsuka M, Takeuchi D, Sakakibara M and Miyazaki M: CXCR4/CXCL12 expression profile is associated with tumor microenvironment and clinical outcome of liver metastases of colorectal cancer. Clin Exp Metastasis. 29:101–110. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Rezaeeyan H, Shirzad R, McKee TD and Saki N: Role of chemokines in metastatic niche: New insights along with a diagnostic and prognostic approach. APMIS. 126:359–370. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Raffaella B and Graham GJ: Atypical chemokine receptors and their roles in the resolution of the inflammatory response. Front Immunol. 7:2242016.PubMed/NCBI | |
|
Saaber F, Schütz D, Miess E, Abe P, Desikan S, Ashok Kumar P, Balk S, Huang K, Beaulieu JM, Schulz S and Stumm R: ACKR3 regulation of neuronal migration requires ACKR3 phosphorylation, but not β-Arrestin. Cell Rep. 26:1473–1488.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Purvanov V, Matti C, Samson GPB, Kindinger I and Legler DF: Fluorescently tagged CCL19 and CCL21 to monitor CCR7 and ACKR4 functions. Int J Mol Sci. 19:38762018. View Article : Google Scholar | |
|
Matti C, D'Uonnolo G, Artinger M, Melgrati S, Salnikov A, Thelen S, Purvanov V, Strobel TD, Spannagel L, Thelen M and Legler DF: CCL20 is a novel ligand for the scavenging atypical chemokine receptor 4. J Leukoc Biol. 107:1137–1154. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Do HTT, Lee CH and Cho J: Chemokines and their receptors: Multifaceted roles in cancer progression and potential value as cancer prognostic markers. Cancers (Basel). 12:2872020. View Article : Google Scholar | |
|
Ozakyol A: Global epidemiology of hepatocellular carcinoma (HCC Epidemiology). J Gastrointest Cancer. 48:238–240. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Giannelli G, Rani B, Dituri F, Cao Y and Palasciano G: Moving towards personalised therapy in patients with hepatocellular carcinoma: The role of the microenvironment. Gut. 63:1668–1676. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Marra F and Tacke F: Roles for chemokines in liver disease. Gastroenterology. 147:577–594.e1. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL, Koh HY, Li LL, Lee D, Lo RC, Wong CM, et al: Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology. 64:797–813. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kryczek I, Wang L, Wu K, Li W, Zhao E, Cui T, Wei S, Liu Y, Wang Y, Vatan L, et al: Inflammatory regulatory T cells in the microenvironments of ulcerative colitis and colon carcinoma. Oncoimmunology. 5:e11054302016. View Article : Google Scholar : PubMed/NCBI | |
|
Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, Huang E, Greenson J, Chang A, Roliński J, et al: IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol. 186:4388–4395. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Han KQ, He XQ, Ma MY, Guo XD, Zhang XM, Chen J, Han H, Zhang WW, Zhu QG, Nian H and Ma LJ: Inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma. World J Gastroenterol. 21:4864–4874. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, et al: Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer. 126:1095–1108. 2010.PubMed/NCBI | |
|
Zhang H, He G, Kong Y, Chen Y, Wang B, Sun X, Jia B, Xie X, Wang X, Chen D, et al: Tumour-activated liver stromal cells regulate myeloid-derived suppressor cells accumulation in the liver. Clin Exp Immunol. 188:96–108. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsukada K, Irimura T, Shibahara N, Nakayama T, Yoshie O, et al: Chemokine CXCL16 suppresses liver metastasis of colorectal cancer via augmentation of tumor-infiltrating natural killer T cells in a murine model. Oncol Rep. 29:975–982. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, Tsukada K, Irimura T, Shibahara N, Takasaki I, et al: CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer. 14:9492014. View Article : Google Scholar : PubMed/NCBI | |
|
Adamski V, Hattermann K, Kubelt C, Cohrs G, Lucius R, Synowitz M, Sebens S and Held-Feindt J: Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1. Oncogene. 39:4421–4435. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Takiguchi G, Nishita M, Kurita K, Kakeji Y and Minami Y: Wnt5a-Ror2 signaling in mesenchymal stem cells promotes proliferation of gastric cancer cells by activating CXCL16-CXCR6 axis. Cancer Sci. 107:290–297. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Shi JY, Yang LX, Wang ZC, Wang LY, Zhou J, Wang XY, Shi GM, Ding ZB, Ke AW, Dai Z, et al: CC chemokine receptor-like 1 functions as a tumour suppressor by impairing CCR7-related chemotaxis in hepatocellular carcinoma. J Pathol. 235:546–558. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shi JY, Duan M, Sun QM, Yang L, Wang ZC, Mynbaev OA, He YF, Wang LY, Zhou J, Tang QQ, et al: Naive Treg-like CCR7+ mononuclear cells indicate unfavorable prognosis in hepatocellular carcinoma. Tumour Biol. 37:9909–9917. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wong HS, Jaumouillé V, Heit B, Doodnauth SA, Patel S, Huang YW, Grinstein S and Robinson LA: Cytoskeletal confinement of CX3CL1 limits its susceptibility to proteolytic cleavage by ADAM10. Mol Biol Cell. 25:3884–3899. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sun C, Hu A, Wang S, Tian B, Jiang L, Liang Y, Wang H and Dong J: ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int J Oncol. 57:249–263. 2020.PubMed/NCBI | |
|
Liu W, Jiang L, Bian C, Liang Y, Xing R, Yishakea M and Dong J: Role of CX3CL1 in diseases. Arch Immunol Ther Exp (Warsz). 64:371–383. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu P, Liang Y, Jiang L, Wang H, Wang S and Dong J: CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int J Oncol. 53:1544–1556. 2018.PubMed/NCBI | |
|
Liang Y, Yi L, Liu P, Jiang L, Wang H, Hu A, Sun C and Dong J: CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway. J Cancer. 9:3603–3612. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng J, Yang M, Shao J, Miao Y, Han J and Du J: Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Mol Cancer. 12:1412013. View Article : Google Scholar : PubMed/NCBI | |
|
Chen EB, Zhou ZJ, Xiao K, Zhu GQ, Yang Y, Wang B, Zhou SL, Chen Q, Yin D, Wang Z, et al: The miR-561-5p/CX3CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX3CR1+ natural killer cells infiltration. Theranostics. 9:4779–4794. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Miao S, Lu M, Liu Y, Shu D, Zhu Y, Song W, Ma Y, Ma R, Zhang B, Fang C and Ming ZY: Platelets are recruited to hepatocellular carcinoma tissues in a CX3CL1-CX3CR1 dependent manner and induce tumour cell apoptosis. Mol Oncol. 14:2546–2559. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida T, Imai T, Takagi S, Nishimura M, Ishikawa I, Yaoi T and Yoshie O: Structure and expression of two highly related genes encoding SCM-1/human lymphotactin. FEBS Lett. 395:82–88. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Lei Y and Takahama Y: XCL1 and XCR1 in the immune system. Microbes Infect. 14:262–267. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yamazaki C, Sugiyama M, Ohta T, Hemmi H, Hamada E, Sasaki I, Fukuda Y, Yano T, Nobuoka M, Hirashima T, et al: Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J Immunol. 190:6071–6082. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Khurram SA, Whawell SA, Bingle L, Murdoch C, McCabe BM and Farthing PM: Functional expression of the chemokine receptor XCR1 on oral epithelial cells. J Pathol. 221:153–163. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gantsev SK, Umezawa K, Islamgulov DV, Khusnutdinova EK, Ishmuratova RS, Frolova VY and Kzyrgalin SR: The role of inflammatory chemokines in lymphoid neoorganogenesis in breast cancer. Biomed Pharmacother. 67:363–366. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kim M, Rooper L, Xie J, Rayahin J, Burdette JE, Kajdacsy-Balla AA and Barbolina MV: The lymphotactin receptor is expressed in epithelial ovarian carcinoma and contributes to cell migration and proliferation. Mol Cancer Res. 10:1419–1429. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Han S, Wu Z, Han Z, Yan W, Liu T, Wei H, Song D, Zhou W, Yang X and Xiao J: XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer. Biochem Biophys Res Commun. 464:635–641. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yanru W, Zhenyu B, Zhengchuan N, Qi Q, Chunmin L and Weiqiang Y: Transcriptomic analyses of chemokines reveal that down-regulation of XCR1 is associated with advanced hepatocellular carcinoma. Biochem Biophys Res Commun. 496:1314–1321. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li X: The inducers of immunogenic cell death for tumor immunotherapy. Tumori. 104:1–8. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Mizumoto Y, Hemmi H, Katsuda M, Miyazawa M, Kitahata Y, Miyamoto A, Nakamori M, Ojima T, Matsuda K, Nakamura M, et al: Anticancer effects of chemokine-directed antigen delivery to a cross-presenting dendritic cell subset with immune checkpoint blockade. Br J Cancer. 122:1185–1193. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Spranger S and Gajewski TF: A new paradigm for tumor immune escape: β-catenin-driven immune exclusion. J Immunother Cancer. 3:432015. View Article : Google Scholar : PubMed/NCBI | |
|
Botelho NK, Tschumi BO, Hubbell JA, Swartz MA, Donda A and Romero P: Combination of synthetic long peptides and XCL1 fusion proteins results in superior tumor control. Front Immunol. 10:2942019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen K, Wu Z, Zhao H, Wang Y, Ge Y, Wang D, Li Z, An C, Liu Y, Wang F, et al: XCL1/Glypican-3 fusion gene immunization generates potent antitumor cellular immunity and enhances Anti-PD-1 efficacy. Cancer Immunol Res. 8:81–93. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Audsley KM, McDonnell AM and Waithman J: Cross-presenting XCR1+ dendritic cells as targets for cancer immunotherapy. Cells. 9:5652020. View Article : Google Scholar | |
|
Wylie B, Read J, Buzzai AC, Wagner T, Troy N, Syn G, Stone SR, Foley B, Bosco A, Cruickshank MN, et al: CD8+XCR1neg dendritic cells express high levels of toll-like receptor 5 and a unique complement of endocytic receptors. Front Immunol. 9:29902019. View Article : Google Scholar : PubMed/NCBI | |
|
Qin CJ, Zhao LH, Zhou X, Zhang HL, Wen W, Tang L, Zeng M, Wang MD, Fu GB, Huang S, et al: Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett. 420:26–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Giles AJ, Reid CM, Evans JD, Murgai M, Vicioso Y, Highfill SL, Kasai M, Vahdat L, Mackall CL, Lyden D, et al: Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res. 76:1335–1347. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, et al: CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76:5671–5682. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qi S, Perrino S, Miao X, Lamarche-Vane N and Brodt P: The chemokine CCL7 regulates invadopodia maturation and MMP-9 mediated collagen degradation in liver-metastatic carcinoma cells. Cancer Lett. 483:98–113. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Q, Chen JX, Chen Y, Cai LL, Wang XZ, Guo WH and Zheng JF: The chemokine receptor CCR10 promotes inflammation-driven hepatocarcinogenesis via PI3K/Akt pathway activation. Cell Death Dis. 9:2322018. View Article : Google Scholar : PubMed/NCBI | |
|
Hippe A, Braun SA, Oláh P, Gerber PA, Schorr A, Seeliger S, Holtz S, Jannasch K, Pivarcsi A, Buhren B, et al: EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. Br J Cancer. 123:942–954. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Du D, Liu Y, Qian H, Zhang B, Tang X, Zhang T and Liu W: The effects of the CCR6/CCL20 biological axis on the invasion and metastasis of hepatocellular carcinoma. Int J Mol Sci. 15:6441–6452. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Huang F and Geng XP: Chemokines and hepatocellular carcinoma. World J Gastroenterol. 16:1832–1836. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Tan H, Wang S and Zhao L: A tumour-promoting role of Th9 cells in hepatocellular carcinoma through CCL20 and STAT3 pathways. Clin Exp Pharmacol Physiol. 44:213–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L and Coukos G: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 475:226–230. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Zhou Z, Lu S, Huang X, Zhang C, Jiang R, Yao A, Sun B and Wang X: Chemokine CCL15 mediates migration of human bone marrow-derived mesenchymal stem cells toward hepatocellular carcinoma. Stem Cells. 34:1112–1122. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Singh SK, Mishra MK, Eltoum IA, Bae S, Lillard JW Jr and Singh R: CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep. 8:13232018. View Article : Google Scholar : PubMed/NCBI | |
|
Singh SK, Mishra MK, Rivers BM, Gordetsky JB, Bae S and Singh R: Biological and clinical significance of the CCR5/CCL5 axis in hepatocellular carcinoma. Cancers (Basel). 12:8832020. View Article : Google Scholar | |
|
Sasaki R, Devhare PB, Steele R, Ray R and Ray RB: Hepatitis C virus-induced CCL5 secretion from macrophages activates hepatic stellate cells. Hepatology. 66:746–757. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
González-Martín A, Mira E and Mañes S: CCR5 in cancer immunotherapy: More than an ‘attractive’ receptor for T cells. Oncoimmunology. 1:106–108. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang T, Zhan Q, Peng X, Qiu Z and Zhao T: CCL2 influences the sensitivity of lung cancer A549 cells to docetaxel. Oncol Lett. 16:1267–1274. 2018.PubMed/NCBI | |
|
Pasquier J, Gosset M, Geyl C, Hoarau-Véchot J, Chevrot A, Pocard M, Mirshahi M, Lis R, Rafii A and Touboul C: CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer. Mol Cancer. 17:472018. View Article : Google Scholar : PubMed/NCBI | |
|
Su S, Sun X, Zhang Q, Zhang Z and Chen J: CCL20 promotes ovarian cancer chemotherapy resistance by regulating ABCB1 expression. Cell Struct Funct. 44:21–28. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Vaquero J, Briz O, Herraez E, Muntané J and Marin JJ: Activation of the nuclear receptor FXR enhances hepatocyte chemoprotection and liver tumor chemoresistance against genotoxic compounds. Biochim Biophys Acta. 1833:2212–2219. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gu Y, Li X, Bi Y, Zheng Y, Wang J, Li X, Huang Z, Chen L and Huang Y and Huang Y: CCL14 is a prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY). 12:784–807. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-Perea AL, Rojas M and Velilla-Hernández PA: High concentrations of atorvastatin reduce in-vitro function of conventional T and regulatory T cells. Clin Exp Immunol. 196:237–248. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu M, Xu W, Wei C, Huang J, Xu J, Zhang Y, Zhao Y, Chen J, Dong S, Liu B and Liang C: CCL14 serves as a novel prognostic factor and tumor suppressor of HCC by modulating cell cycle and promoting apoptosis. Cell Death Dis. 10:7962019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Wan JX, Ke ZP, Wang F, Chai HX and Liu JQ: TMEM88, CCL14 and CLEC3B as prognostic biomarkers for prognosis and palindromia of human hepatocellular carcinoma. Tumour Biol. 39:10104283177089002017. View Article : Google Scholar : PubMed/NCBI | |
|
Wilson GC, Kuboki S, Freeman CM, Nojima H, Schuster RM, Edwards MJ and Lentsch AB: CXC chemokines function as a rheostat for hepatocyte proliferation and liver regeneration. PLoS One. 10:e01200922015. View Article : Google Scholar : PubMed/NCBI | |
|
Vandercappellen J, Van Damme J and Struyf S: The role of CXC chemokines and their receptors in cancer. Cancer Lett. 267:226–244. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Liu G, Yang ZF, Zhou PY, Zhou C, Guan RY, Sun BY, Fan J, Zhou J, Yi Y and Qiu SJ: ROR-α-1 inhibits the proliferation, invasion, and migration of hepatocellular carcinoma MHCC97H via downregulation of chemokine CXCL5. Cytokine. 129:1550042020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou SL, Zhou ZJ, Hu ZQ, Li X, Huang XW, Wang Z, Fan J, Dai Z and Zhou J: CXCR2/CXCL5 axis contributes to epithelial-mesenchymal transition of HCC cells through activating PI3K/Akt/GSK-3β/Snail signaling. Cancer Lettr. 358:124–135. 2015. View Article : Google Scholar | |
|
Li XP, Yang XY, Biskup E, Zhou J, Li HL, Wu YF, Chen ML and Xu F: Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma. Oncotarget. 6:22880–22889. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto M, Kikuchi H, Ohta M, Kawabata T, Hiramatsu Y, Kondo K, Baba M, Kamiya K, Tanaka T, Kitagawa M and Konno H: TSU68 prevents liver metastasis of colon cancer xenografts by modulating the premetastatic niche. Cancer Res. 68:9754–9762. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Høyer-Hansen G, Eefsen RL, Reynolds AR and Brodt P: The multifaceted role of the microenvironment in liver metastasis: Biology and clinical implications. Cancer Res. 73:2031–2043. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Zhu YH, Li Y and Guan XY: Identification of chemokine CXCL10 in tumor microenvironment by antibody array as a prognostic marker in hepatocellular carcinoma. Neoplasma. 64:778–786. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, Su H, Cao J and Zhang L: CXCL13 rather than IL-31 is a potential indicator in patients with hepatocellular carcinoma. Cytokine. 89:91–97. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Song X, Wang Z, Jin Y, Wang Y and Duan W: Loss of miR-532-5p in vitro promotes cell proliferation and metastasis by influencing CXCL2 expression in HCC. Am J Transl Res. 7:2254–2261. 2015.PubMed/NCBI | |
|
Ding J, Xu K, Zhang J, Lin B, Wang Y, Yin S, Xie H, Zhou L and Zheng S: Overexpression of CXCL2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma. BMB Rep. 51:630–635. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Subat S, Mogushi K, Yasen M, Kohda T, Ishikawa Y and Tanaka H: Identification of genes and pathways, including the CXCL2 axis, altered by DNA methylation in hepatocellular carcinoma. J Cancer Res Clin Oncol. 145:675–684. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shi A, Shi H, Dong L, Xu S, Jia M, Guo X and Wang T: CXCR7 as a chemokine receptor for SDF-1 promotes gastric cancer progression via MAPK pathways. Scand J Gastroenterol. 52:745–753. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Qu C, Ning Z, Wang H, Zang K, Zhuang L, Chen L, Wang P and Meng Z: Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts. Am J Cancer Res. 6:2192–2206. 2016.PubMed/NCBI | |
|
Croker AK and Allan AL: Cancer stem cells: Implications for the progression and treatment of metastatic disease. J Cell Mol Med. 12:374–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Jahanban-Esfahlan R, de la Guardia M, Ahmadi D and Yousefi B: Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 233:2019–2031. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Teng F, Tian WY, Wang YM, Zhang YF, Guo F, Zhao J, Gao C and Xue FX: Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J Hematol Oncol. 9:82016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Wang MD, Cheng P, Huang H, Dong W, Zhang WW, Li PP, Lin C, Pan ZY, Wu MC and Zhou WP: Hepatitis B virus X protein promotes the stem-like properties of OV6+ cancer cells in hepatocellular carcinoma. Cell Death Dis. 8:e25602017. View Article : Google Scholar : PubMed/NCBI | |
|
Kaemmerer D, Schindler R, Mußbach F, Dahmen U, Altendorf-Hofmann A, Dirsch O, Sänger J, Schulz S and Lupp A: Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: Tumor capillaries as promising targets. BMC Cancer. 17:8962017. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Yang W, Chen PW, Alizadeh H and Niederkorn JY: Inhibition of chemokine receptor expression on uveal melanomas by CXCR4 siRNA and its effect on uveal melanoma liver metastases. Invest Ophthalmol Vis Sci. 50:5522–5528. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Deol A, Abrams J, Masood A, Al-Kadhimi Z, Abidi MH, Ayash L, Lum LG, Ratanatharathorn V and Uberti JP: Long-term follow up of patients proceeding to transplant using plerixafor mobilized stem cells and incidence of secondary myelodysplastic syndrome/AML. Bone Marrow Transplant. 48:1112–1116. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Collins PJ, McCully ML, Martínez-Muñoz L, Santiago C, Wheeldon J, Caucheteux S, Thelen S, Cecchinato V, Laufer JM, Purvanov V, et al: Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J. 31:3084–3097. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Teng F, Wang G and Nie Z: Overexpression of CXCR7 induces angiogenic capacity of human hepatocellular carcinoma cells via the AKT signaling pathway. Oncol Rep. 36:2275–2281. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lin L, Han MM, Wang F, Xu LL, Yu HX and Yang PY: CXCR7 stimulates MAPK signaling to regulate hepatocellular carcinoma progression. Cell Death Dis. 5:e14882014. View Article : Google Scholar : PubMed/NCBI | |
|
Billottet C, Quemener C and Bikfalvi A: CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta. 1836:287–295. 2013.PubMed/NCBI | |
|
Ma B, Khazali A and Wells A: CXCR3 in carcinoma progression. Histol Histopathol. 30:781–792. 2015.PubMed/NCBI | |
|
Gao Q, Zhao YJ, Wang XY, Qiu SJ, Shi YH, Sun J, Yi Y, Shi JY, Shi GM, Ding ZB, et al: CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma. Cancer Res. 72:3546–3556. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Tian L, Xu Y, Zhang M, Xiang S, Zhao J and Wang Z: CXCR7 silencing inhibits the migration and invasion of human tumor endothelial cells derived from hepatocellular carcinoma by suppressing STAT3. Mol Med Rep. 18:1644–1650. 2018.PubMed/NCBI | |
|
Xu Y, Fang F, Jiao H, Zheng X, Huang L, Yi X and Zhao W: Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma. Cancer Immunol Immunother. 68:1959–1969. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tian H, Huang P, Zhao Z, Tang W and Xia J: HIF-1α plays a role in the chemotactic migration of hepatocarcinoma cells through the modulation of CXCL6 expression. Cell Physiol Biochem. 34:1536–1546. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shen H, Yao X, Li H, Li X, Zhang T, Sun Q, Ji C and Chen G: Role of exosomes derived from miR-133b modified MSCs in an experimental rat model of intracerebral hemorrhage. J Mol Neurosci. 64:421–430. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Halvaei S, Daryani S, Eslami-S Z, Samadi T, Jafarbeik-Iravani N, Bakhshayesh TO, Majidzadeh-A K and Esmaeili R: Exosomes in cancer liquid biopsy: A focus on breast cancer. Mol Ther Nucleic Acids. 10:131–141. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Anel A, Gallego-Lleyda A, de Miguel D, Naval J and Martínez-Lostao L: Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells. 8:1542019. View Article : Google Scholar | |
|
Almeida VH, Rondon AMR, Gomes T and Monteiro RQ: Novel aspects of extracellular vesicles as mediators of cancer-associated thrombosis. Cells. 8:7162019. View Article : Google Scholar | |
|
Rao PSS, O'Connell K and Finnerty TK: Potential role of extracellular vesicles in the pathophysiology of drug addiction. Mol Neurobiol. 55:6906–6913. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kohama I, Kosaka N, Chikuda H and Ochiya T: An insight into the roles of MicroRNAs and exosomes in sarcoma. Cancers (Basel). 11:4282019. View Article : Google Scholar | |
|
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun JF, Zhang D, Gao CJ, Zhang YW and Dai QS: Exosome-mediated MiR-155 transfer contributes to hepatocellular carcinoma cell proliferation by targeting PTEN. Med Sci Monit Basic Res. 25:218–228. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JY and Kim HS: Extracellular vesicles in neurodegenerative diseases: A double-edged sword. Tissue Eng Regen Med. 14:667–678. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T and Duroux M: A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 1846:75–87. 2014.PubMed/NCBI | |
|
Yi YW, Lee JH, Kim SY, Pack CG, Ha DH, Park SR, Youn J and Cho BS: Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 21:6652020. View Article : Google Scholar | |
|
Wu P, Zhang B, Ocansey DKW, Xu W and Qian H: Extracellular vesicles: A bright star of nanomedicine. Biomaterials. 6:1204672020. View Article : Google Scholar | |
|
Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, et al: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 12:655–664. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Si Y, Kim S, Zhang E, Tang Y, Jaskula-Sztul R, Markert JM, Chen H, Zhou L and Liu XM: Targeted exosomes for drug delivery: Biomanufacturing, surface tagging, and validation. Biotechnol J. 15:e19001632020. View Article : Google Scholar : PubMed/NCBI | |
|
Prada I and Meldolesi J: Binding and fusion of extracellular vesicles to the plasma membrane of their cell targets. Int J Mol Sci. 17:12962016. View Article : Google Scholar | |
|
Nakase I and Futaki S: Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep. 5:101122015. View Article : Google Scholar : PubMed/NCBI | |
|
Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P and Schiffelers RM: Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. J Extracell Vesicles. 5:310532016. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T, Yao K, Kanda H, Ae K, Okawa A, et al: Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci USA. 115:2204–2209. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Luis-Ravelo D, Antón I, Zandueta C, Valencia K, Ormazábal C, Martínez-Canarias S, Guruceaga E, Perurena N, Vicent S, De Las Rivas J and Lecanda F: A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer. Oncogene. 33:5090–5099. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Yang C, Shi Y and Zhao L: Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. J Nanobiotechnology. 16:1032018. View Article : Google Scholar : PubMed/NCBI | |
|
Viñas JL, Spence M, Gutsol A, Knoll W, Burger D, Zimpelmann J, Allan DS and Burns KD: Receptor-ligand interaction mediates targeting of endothelial colony forming cell-derived exosomes to the kidney after ischemic injury. Sci Rep. 8:163202018. View Article : Google Scholar : PubMed/NCBI | |
|
Ciullo A, Biemmi V, Milano G, Bolis S, Cervio E, Fertig ET, Gherghiceanu M, Moccetti T, Camici GG, Vassalli G and Barile L: Exosomal expression of CXCR4 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci. 20:4682019. View Article : Google Scholar | |
|
Wei G, Jie Y, Haibo L, Chaoneng W, Dong H, Jianbing Z, Junjie G, Leilei M, Hongtao S, Yunzeng Z and Junbo G: Dendritic cells derived exosomes migration to spleen and induction of inflammation are regulated by CCR7. Sci Rep. 7:429962017. View Article : Google Scholar : PubMed/NCBI | |
|
Longo V, Gnoni A, Casadei Gardini A, Pisconti S, Licchetta A, Scartozzi M, Memeo R, Palmieri VO, Aprile G, Santini D, et al: Immunotherapeutic approaches for hepatocellular carcinoma. Oncotarget. 8:33897–33910. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu YC, Yeh CT and Lin KH: Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells. 9:13312020. View Article : Google Scholar | |
|
Liu LZ, Zhang Z, Zheng BH, Shi Y, Duan M, Ma LJ, Wang ZC, Dong LQ, Dong PP, Shi JY, et al: CCL15 recruits suppressive monocytes to facilitate Immune escape and disease progression in hepatocellular carcinoma. Hepatology. 69:143–159. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun F, Wang J, Sun Q, Li F, Gao H, Xu L, Zhang J, Sun X, Tian Y, Zhao Q, et al: Interleukin-8 promotes integrin β3 upregulation and cell invasion through PI3K/Akt pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 38:4492019. View Article : Google Scholar : PubMed/NCBI | |
|
Li L, Xu L, Yan J, Zhen ZJ, Ji Y, Liu CQ, Lau WY, Zheng L and Xu J: CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1292015. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Li S, Ma L, Li Y, Zhang X, Peng Q, Mo C, Huang L, Qin X and Liu Y: Type conversion of secretomes in a 3D TAM2 and HCC cell co-culture system and functional importance of CXCL2 in HCC. Sci Rep. 6:245582016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Zhang L, Li H, Ge C, Zhao F, Tian H, Chen T, Jiang G, Xie H, Cui Y, et al: CXCL3 contributes to CD133+ CSCs maintenance and forms a positive feedback regulation loop with CD133 in HCC via Erk1/2 phosphorylation. Sci Rep. 6:274262016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J and Zhou J: Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 56:2242–2254. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Q, Xia Y, Ding S, Lu P, Sun L and Liu M: An alternatively spliced variant of CXCR3 mediates the metastasis of CD133+ liver cancer cells induced by CXCL9. Oncotarget. 7:14405–14414. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ouyang Y, Liu K, Hao M, Zheng R, Zhang C, Wu Y, Zhang X, Li N, Zheng J and Chen D: Radiofrequency ablation-increased CXCL10 is associated with earlier recurrence of hepatocellular carcinoma by promoting stemness. Tumour Biol. 37:3697–3704. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ling CC, Ng KT, Shao Y, Geng W, Xiao JW, Liu H, Li CX, Liu XB, Ma YY, Yeung WH, et al: Post-transplant endothelial progenitor cell mobilization via CXCL10/CXCR3 signaling promotes liver tumor growth. J Hepatol. 60:103–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zhao W, Li S, Lv M, Yang X, Li M and Zhang Z: CXCL11 promotes self-renewal and tumorigenicity of α2δ1+ liver tumor-initiating cells through CXCR3/ERK1/2 signaling. Cancer Lett. 449:163–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Kang D, Sun X, Liu Y, Wang J and Gao P: The effect of C-X-C motif chemokine 13 on hepatocellular carcinoma associates with Wnt signaling. Biomed Res Int. 2015:3454132015.PubMed/NCBI | |
|
Deng L, Chen N, Li Y, Zheng H and Lei Q: CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim Biophys Acta. 1806:42–49. 2010.PubMed/NCBI | |
|
Yuan Y, Liu J, Liu Z, He Y, Zhang Z, Jiang C and Qian Q: Chemokine CCL3 facilitates the migration of hepatoma cells by changing the concentration intracellular Ca. Hepatol Res. 40:424–431. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Bai H, Weng Y, Bai S, Jiang Y, Li B, He F, Zhang R, Yan S, Deng F, Wang J and Shi Q: CCL5 secreted from bone marrow stromal cells stimulates the migration and invasion of Huh7 hepatocellular carcinoma cells via the PI3K-Akt pathway. Int J Oncol. 45:333–343. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liao WC, Yen HR, Liao CK, Tseng TJ, Lan CT and Liu CH: DSE regulates the malignant characters of hepatocellular carcinoma cells by modulating CCL5/CCR1 axis. Am J Cancer Res. 9:347–362. 2019.PubMed/NCBI | |
|
Li Y, Wu J and Zhang P: CCL15/CCR1 axis is involved in hepatocellular carcinoma cells migration and invasion. Tumour Biol. 37:4501–4507. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lu J, Yang Y, Yu P, Tao H, Lu X, Wang L, Liu D, Chen Y and Chen C: Bioinformatics analysis and significance of expression of CC chemokine ligand 23 (CCL23) in hepatocellular carcinoma. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 35:903–909. 2019.(In Chinese). PubMed/NCBI | |
|
Zhuang H, Cao G, Kou C and Liu T: CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition in vitro through activation of the Hedgehog pathway. Oncol Rep. 39:21–30. 2018.PubMed/NCBI | |
|
Jin L, Liu WR, Tian MX, Jiang XF, Wang H, Zhou PY, Ding ZB, Peng YF, Dai Z, Qiu SJ, et al: CCL24 contributes to HCC malignancy via RhoB-VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis. Oncotarget. 8:5135–5148. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu F, Li X, Chen S, Zeng Q, Zhao Y and Luo F: Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol. 33:172016. View Article : Google Scholar : PubMed/NCBI | |
|
Wiedemann GM, Röhrle N, Makeschin MC, Fesseler J, Endres S, Mayr D and Anz D: Peritumoural CCL1 and CCL22 expressing cells in hepatocellular carcinomas shape the tumour immune infiltrate. Pathology. 51:586–592. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng X, Wu H, Jin ZJ, Ma D, Yuen S, Jing XQ, Shi MM, Shen BY, Peng CH, Zhao R and Qiu WH: Up-regulation of chemokine receptor CCR4 is associated with Human Hepatocellular Carcinoma malignant behavior. Sci Rep. 7:123622017. View Article : Google Scholar : PubMed/NCBI | |
|
Mukaida N, Sasaki SI and Baba T: CCL4 signaling in the tumor microenvironment. Adv Exp Med Biol. 1231:23–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Luo KQ, Shi YN and Peng JC: The effect of chemokine CC motif ligand 19 on the proliferation and migration of hepatocellular carcinoma. Tumour Biol. 35:12575–12581. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Chang Y and Cao P: CCR7 preservation via histone deacetylase inhibition promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells. Exp Cell Res. 371:231–237. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hou PP, Luo LJ, Chen HZ, Chen QT, Bian XL, Wu SF, Zhou JX, Zhao WX, Liu JM, Wang XM, et al: Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell. 78:1192–1206.e10. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu B, Deng C, Wu X, Ji T, Zhao L, Han Y, Yang W, Qi Y, Wang Z, Yang Z and Yang Y: CCR9 and CCL25: A review of their roles in tumor promotion. J Cell Physiol. 235:9121–9132. 2020. View Article : Google Scholar : PubMed/NCBI |