Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
April-2021 Volume 45 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2021 Volume 45 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular features and gene expression signature of metastatic colorectal cancer (Review)

  • Authors:
    • Martina Poturnajova
    • Tatiana Furielova
    • Sona Balintova
    • Silvia Schmidtova
    • Lucia Kucerova
    • Miroslava Matuskova
  • View Affiliations / Copyright

    Affiliations: Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, University Science Park for Biomedicine, 84505 Bratislava, Slovakia, Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
    Copyright: © Poturnajova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 10
    |
    Published online on: February 2, 2021
       https://doi.org/10.3892/or.2021.7961
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Uncontrollable metastatic outgrowth process is the leading cause of mortality worldwide, even in the case of colorectal cancer. Colorectal cancer (CRC) accounts for approximately 10% of all annually diagnosed cancers and 50% of CRC patients will develop metastases in the course of disease. Most patients with metastatic CRC have incurable disease. Even if patients undergo resection of liver metastases, the 5‑year survival rate ranges from 25 to 58%. Next‑generation sequencing of tumour specimens from large colorectal cancer patient cohorts has led to major advances in elucidating the genomic landscape of these tumours and paired metastases. The expression profiles of primary CRC and their metastatic lesions at both the gene and pathway levels were compared and led to the selection of early driver genes responsible for carcinogenesis and metastasis‑specific genes that increased the metastatic process. The genetic, transcriptional and epigenetic alteration encoded by these genes and their combination influence many pivotal signalling pathways, enabling the dissemination and outgrowth in distant organs. Therapeutic regimens affecting several different active pathways may have important implications for therapeutic efficacy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Qiu M, Hu J, Yang D, Cosgrove DP and Xu R: Pattern of distant metastases in colorectal cancer: A SEER based study. Oncotarget. 6:38658–38666. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A, Clarke MF, Coussens LM, Gast CE, Geltzeiler CB, Hansen L, et al: Colorectal cancer liver metastasis: Evolving paradigms and future directions. Cell Mol Gastroenterol Hepatol. 3:163–173. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Welch DR and Hurst DR: Defining the hallmarks of metastasis. Cancer Res. 79:3011–3027. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Lambert AW, Pattabiraman DR and Weinberg RA: Emerging biological principles of metastasis. Cell. 168:670–691. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Hirata A, Hatano Y, Niwa M, Hara A and Tomita H: Heterogeneity of colon cancer stem cells. Adv Exp Med Biol. 1139:115–126. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Tauriello DV, Calon A, Lonardo E and Batlle E: Determinants of metastatic competency in colorectal cancer. Mol Oncol. 11:97–119. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Puccini A, Xiu J, Goldberg RM, Grothey A, Shields AF, Salem ME, Seeber A, Battaglin F, Berger MD, El-Deiry WS, et al: Molecular differences between lymph nodes (LNs) and distant metastases (mets) in colorectal cancer (CRC). J Clin Oncol. 37 (Suppl 15):S31302019. View Article : Google Scholar

10 

Kamal Y, Schmit SL, Hoehn HJ, Amos CI and Frost HR: Transcriptomic differences between primary colorectal adenocarcinomas and distant metastases reveal metastatic colorectal cancer subtypes. Cancer Res. 79:4227–4241. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Pretzsch E, Bösch F, Neumann J, Ganschow P, Bazhin A, Guba M, Werner J and Angele M: Mechanisms of metastasis in colorectal cancer and metastatic organotropism: Hematogenous versus peritoneal spread. J Oncol. 2019:74071902019. View Article : Google Scholar : PubMed/NCBI

12 

Tariq K and Ghias K: Colorectal cancer carcinogenesis: A review of mechanisms. Cancer Biol Med. 13:120–135. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Ramaswamy S, Ross KN, Lander ES and Golub TR: A molecular signature of metastasis in primary solid tumors. Nat Genet. 33:49–54. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Naxerova K and Jain RK: Using tumour phylogenetics to identify the roots of metastasis in humans. Nat Rev Clin Oncol. 12:258–272. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Meacham CE and Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature. 501:328–337. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, Marjoram P, Siegmund K, Press MF, Shibata D and Curtis C: A big bang model of human colorectal tumor growth. Nat Genet. 47:209–216. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Hu Z, Ding J, Ma Z, Sun R, Seoane JA, Scott Shaffer J, Suarez CJ, Berghoff AS, Cremolini C, Falcone A, et al: Quantitative evidence for early metastatic seeding in colorectal cancer. Nat Genet. 51:1113–1122. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Holch JW, Ricard I, Stintzing S, Modest DP and Heinemann V: The relevance of primary tumour location in patients with metastatic colorectal cancer: A meta-analysis of first-line clinical trials. Eur J Cancer. 70:87–98. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A and Brodt P: The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol. 170:1781–1792. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Riihimäki M, Hemminki A, Sundquist J and Hemminki K: Patterns of metastasis in colon and rectal cancer. Sci Rep. 6:297652016. View Article : Google Scholar : PubMed/NCBI

21 

Prasanna T, Craft PS, Chua YJ, Karapetis CS, Gibbs P, Wong R, Tie J, Roder DM, Price TJ, Padbury R, et al: The outcome of patients (pts) with metastatic colorectal cancer (mCRC) based on site of metastases (mets) and the impact of molecular markers and site of primary cancer on metastatic pattern. J Clin Oncol. 35 (Suppl 15):S35602017. View Article : Google Scholar

22 

Sadahiro S, Suzuki S, Ishikawa K, Nakamura T, Tanaka Y, Ishizu K, Yasuda S, Makuuchi H and Murayama C: Estimation of the time of pulmonary metastasis in colorectal cancer patients with isolated synchronous liver metastasis. Jpn J Clin Oncol. 35:18–22. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Liu J, Wang D, Zhang C, Zhang Z, Chen X, Lian J, Liu J, Wang G, Yuan W, Sun Z, et al: Identification of liver metastasis-associated genes in human colon carcinoma by mRNA profiling. Chin J Cancer Res. 30:633–646. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Schweiger T, Liebmann-Reindl S, Glueck O, Starlinger P, Laengle J, Birner P, Klepetko W, Pils D, Streubel B and Hoetzenecker K: Mutational profile of colorectal cancer lung metastases and paired primary tumors by targeted next generation sequencing: Implications on clinical outcome after surgery. J Thorac Dis. 10:6147–6157. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Hugen N, van de Velde CJH, de Wilt JHW and Nagtegaal ID: Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol. 25:651–657. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Andres SF, Williams KN and Rustgi AK: The molecular basis of metastatic colorectal cancer. Curr Colorectal Cancer Rep. 14:69–79. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Hanahan D and Weinber RA: The hallmark of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

28 

Hanahan D and Weinber RA: The hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

29 

De Smedt L, Palmans S, Andel D, Govaere O, Boeckx B, Smeets D, Galle E, Wouters J, Barras D, Suffiotti M, et al: Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching. Br J Cancer. 116:58–65. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Cheung KJ, Gabrielson E, Werb Z and Ewald AJ: Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 155:1639–1651. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Revenu C and Gilmour D: EMT 2.0: Shaping epithelia through collective migration. Curr Opin Genet Dev. 19:338–342. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA, Sun H, Zhou Y, Xie Y and Pearson GW: An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 125:1927–1943. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E and Weinberg RA: Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 525:256–260. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A and Kirchner T: Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs. 179:56–65. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y, Sceusi E, Tozzi F, Ye XC, Mani SA and Ellis LM: Overexpression of snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 1:5–16. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, Ng L, Cheung LW, Lan XR, Lan HY, et al: A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 6:603–615. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Nakano M, Kikushige Y, Miyawaki K, Kunisaki Y, Mizuno S, Takenaka K, Tamura S, Okumura Y, Ito M, Ariyama H, et al: Dedifferentiation process driven by TGF-beta signaling enhances stem cell properties in human colorectal cancer. Oncogene. 38:780–793. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, Iinuma H, Kanazawa T, Tanaka T, Konishi T, et al: Gene expression of mesenchyme forkhead 1 (FOXC2) significantly correlates with the degree of lymph node metastasis in colorectal cancer. Int J Surg. 96:207–216. 2011. View Article : Google Scholar

39 

Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A and Postigo A: β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci USA. 108:19204–19209. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Han X, Fang X, Lou X, Hua D, Ding W, Foltz G, Hood L, Yuan Y and Lin B: Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoS One. 7:e413352012. View Article : Google Scholar : PubMed/NCBI

41 

Dai X, Ge J, Wang X, Qian X, Zhang C and Li X: OCT4 regulates epithelial-mesenchymal transition and its knockdown inhibits colorectal cancer cell migration and invasion. Oncol Rep. 29:155–160. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Meng HM, Zheng P, Wang XY, Liu C, Sui HM, Wu SJ, Zhou J, Ding YQ and Li J: Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther. 9:295–302. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Lu MH, Huang CC, Pan MR, Chen HH and Hung WC: Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res. 18:6416–6425. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Ono H, Imoto I, Kozakiet K, Tsuda H, Matsui T, Kurasawa Y, Muramatsu T, Sugihara K and Inazawa J: SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene. 31:4923–4934. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Takahashi Y, Sawada G, Kurashige J, Uchi R, Matsumura T, Ueo H, Takano Y, Akiyoshi S, Eguchi H, Sudo T, et al: Paired related homoeobox 1, a new EMT inducer, is involved in metastasis and poor prognosis in colorectal cancer. Br J Cancer. 109:307–311. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Belton A, Gabrovsky A, Bae YK, Reeves R, Iacobuzio-Donahue C, Huso DL and Resar LM: HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells. PLoS One. 7:e300342012. View Article : Google Scholar : PubMed/NCBI

47 

Diesch J, Sanij E, Gilan O, Love C, Tran H, Fleming NI, Ellul J, Amalia M, Haviv I, Pearson RB, et al: Widespread FRA1-dependent control of mesenchymal transdifferentiation programs in colorectal cancer cells. PLoS One. 9:e889502014. View Article : Google Scholar : PubMed/NCBI

48 

Toiyama Y, Yasuda H, Saigusa S, Tanaka K, Inoue Y, Goel A and Kusunoki M: Increased expression of Slug and Vimentin as novel predictive biomarkers for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis. 34:2548–2557. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H and Grünert S: Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: Dissection of Ras signaling pathways. J Cell Biol. 156:299–313. 2002. View Article : Google Scholar : PubMed/NCBI

50 

Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H and Mikulitz W: Molecular aspects of epithelial cell plasticity: Implications for local tumor invasion and metastasis. Mutat Res. 566:9–20. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Maffeis V, Nicolè L and Cappellesso R: RAS, cellular plasticity, and tumor budding in colorectal cancer. Front Oncol. 9:12552019. View Article : Google Scholar : PubMed/NCBI

52 

Wan Z, Chai R, Yuan H, Chen B, Dong Q, Zheng B, Mou X, Pan W, Tu Y, Yang Q, et al: MEIS2 promotes cell migration and invasion in colorectal cancer. Oncol Rep. 42:213–223. 2019.PubMed/NCBI

53 

Sugai T, Yamada N, Eizuka M, Sugimoto R, Uesugi N, Osakabe M, Ishida K, Otsuka K, Sasaki A and Matsumoto T: Vascular invasion and stromal S100A4 expression at the invasive front of colorectal cancer are novel determinants and tumor prognostic markers. J Cancer. 8:1552–1561. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Varga J and Greten FR: Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol. 19:1133–1141. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Ishay-Ronen D, Diepenbruck M, Kalathur RKR, Sugiyama N, Tiede S, Ivanek R, Bantug G, Morini MF, Wang J, Hess C and Christofori G: Gain fat-lose metastasis: Converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell. 35:17–32.e6. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Nieto MA, Huang RY, Jackson RA and Thiery JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Celià-Terrassa T and Kang Y: Distinctive properties of metastasis-initiating cells. Genes Dev. 30:892–908. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Tam WL and Weinberg RA: The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 19:1438–1449. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Mohd-Sarip A, Teeuwssen M, Bot AG, De Herdt MJ, Willems SM, Baatenburg de Jong RJ, Looijenga LHJ, Zatreanu D, Bezstarosti K, van Riet J, et al: DOC1-dependent recruitment of NURD reveals antagonism with SWI/SNF during epithelial-mesenchymal transition in oral cancer cells. Cell Rep. 20:61–75. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al: Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Report. 2:78–91. 2013. View Article : Google Scholar

62 

Biddle A, Gammon L, Liang X, Costea DE and Mackenzie IC: Phenotypic plasticity determines cancer stem cell therapeutic resistance in oral squamous cell carcinoma. EBioMedicine. 4:138–145. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Katsuno Y, Meyer DS, Zhang Z, Shokat KM, Akhurst RJ, Miyazono K and Derynck R: Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci Signal. 12:eaau85442019. View Article : Google Scholar : PubMed/NCBI

64 

Obenauf AC and Massagué J: Surviving at a distance: Organ specific metastasis. Trends Cancer. 1:76–91. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P and Volinia S: Heterogeneity in circulating tumor cells: The relevance of the stem-cell subset. Cancers (Basel). 11:4832019. View Article : Google Scholar

66 

Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al: The consensus molecular subtypes of colorectal cancer. Nat Med. 21:1350–1356. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Kauffmann A, Rosselli F, Lazar V, Winnepenninckx V, Mansuet-Lupo A, Dessen P, van den Oord JJ, Spatz A and Sarasin A: High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene. 27:565–573. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Trinh A, Lädrach C, Dawson HE, Ten Hoorn S, Kuppen PJ, Reimers MS, Koopman M, Punt CJ, Lugli A, Vermeulen L and Zlobec I: Tumour budding is associated with the mesenchymal colon cancer subtype and RAS/RAF mutations: A study of 1320 colorectal cancers with consensus molecular subgroup. Br J Cancer. 119:1244–1251. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Sveen A, Cremolini C and Dienstmann R: Predictive modeling in colorectal cancer: Time to move beyond consensus molecular subtypes. Ann Oncol. 30:1682–1685. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q and Cao D: Cancer stem cells in progression of colorectal cancer. Oncotarget. 9:33403–33415. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Carmon KS, Gong X, Yi J, Wu L, Thomas A, Moore CM, Masuho I, Timson DJ, Martemyanov KA and Liu QJ: LGR5 receptor promotes cell-cell adhesion in stem cells and colon cancer cells via the IQGAP1-Rac1 pathway. J Biol Chem. 292:14989–15001. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Lam CS, Cheung AH, Wong SK, Wan TM, Ng L, Chow AK, Cheng NS, Pak RC, Li HS, Man JH, et al: Prognostic significance of CD26 in patients with colorectal cancer. PLoS One. 9:e985822014. View Article : Google Scholar : PubMed/NCBI

73 

Mortier A, Gouwy M, Van Damme J, Proost P and Struyf S: CD26/dipeptidylpeptidase IV-chemokine interactions: Double-edged regulation of inflammation and tumor biology. J Leukoc Biol. 99:955–969. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Ma L, Dong L and Chang P: CD44v6 engages in colorectal cancer progression. Cell Death Dis. 10:302019. View Article : Google Scholar : PubMed/NCBI

75 

Liu H, Ong SE, Badu-Nkansah K, Schindler J, White FM and Hynes RO: CUB-domain-containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proc Natl Acad Sci USA. 108:1379–1384. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Mohamed SY, Kaf RM, Ahmed MM, Elwan A, Ashour HR and Ibrahim A: The prognostic value of cancer stem cell markers (Notch1, ALDH1, and CD44) in primary colorectal carcinoma. J Gastrointest Cancer. 50:824–837. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Jackstadt R, van Hooff SR, Leach JD, Cortes-Lavaud X, Lohuis JO, Ridgway RA, Wouters VM, Roper J, Kendall TJ, Roxburgh CS, et al: Epithelial NOTCH signaling rewires the tumor microenvironment of colorectal cancer to drive poor-prognosis subtypes and metastasis. Cancer Cell. 36:319–336.e7. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Van der Waals LM, Borel Rinkes IH and Kranenburg O: ALDH1A1 expression is associated with poor differentiation, ‘right-sidedness’ and poor survival in human colorectal cancer. PLoS One. 13:e02055362018. View Article : Google Scholar : PubMed/NCBI

79 

Vázquez-Iglesias L, Barcia-Castro L, Rodríguez-Quiroga M, Páez de la Cadena M, Rodríguez-Berrocal J and Cordero OJ: Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biol Open. 8:bio0416732019. View Article : Google Scholar : PubMed/NCBI

80 

Dotse E and Bian Y: Isolation of colorectal cancer stem-like cells. Cytotechnology. 68:609–619. 2016. View Article : Google Scholar : PubMed/NCBI

81 

De Sousa E, Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF, et al: Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 19:614–618. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Testa U, Pelosi E and Castelli G: Colorectal cancer: Genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells. Med Sci (Basel). 6:312018.

83 

Fedyanin M, Popova A, Polyanskaya E and Tjulandin S: Role of stem cells in colorectal cancer progression and prognostic and predictive characteristics of stem cell markers in colorectal cancer. Curr Stem Cell Res Ther. 12:19–30. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Lieto E, Galizia G, Orditura M, Romano C, Zamboli A, Castellano P, Mabilia A, Auricchio A, De Vita F and Gemei M: CD26-positive/CD326-negative circulating cancer cells as prognostic markers for colorectal cancer recurrence. Oncol Lett. 9:542–550. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, et al: CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 14:342–356. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Zhang SS, Han ZP, Jing YY, Tao SF, Li TJ, Wang H, Wang Y, Li R, Yang Y, Zhao X, et al: CD133(+)CXCR4(+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med. 10:852012. View Article : Google Scholar : PubMed/NCBI

87 

Gao W, Chen L, Ma Z, Du Z, Zhao Z, Hu Z and Li Q: Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology. 145:636–646.e5. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Tong K, Pellón-Cárdenas O, Sirihorachai VR, Warder BN, Kothari OA, Perekatt AO, Fokas EE, Fullem RL, Zhou A, Thackray JK, et al: Degree of tissue differentiation dictates susceptibility to BRAF-driven colorectal cancer. Cell Rep. 21:3833–3845. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Durinikova E, Kozovska Z, Poturnajova M, Plava J, Cierna Z, Babelova A, Bohovic R, Schmidtova S, Tomas M, Kucerova L and Matuskova M: ALDH1A3 upregulation and spontaneous metastasis formation is associated with acquired chemoresistance in colorectal cancer cells. BMC Cancer. 18:8482018. View Article : Google Scholar : PubMed/NCBI

90 

Boland CR and Goel A: Microsatellite instability in colorectal cancer. Gastroenterology. 138:2073–2087.e3. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E and Rodriguez Yoldi MJ: Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci. 18:1972017. View Article : Google Scholar

92 

Jung J, Kang Y, Lee YJ, Kim E, Ahn B, Lee E, Kim JY, Lee JH, Lee Y, Kim CH and Chae YS: Comparison of the mismatch repair system between primary and metastatic colorectal cancers using immunohistochemistry. J Pathol Transl Med. 51:129–136. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Chen W, Swanson BJ and Frankel WL: Molecular genetics of microsatellite-unstable colorectal cancer for pathologists. Diagn Pathol. 12:242017. View Article : Google Scholar : PubMed/NCBI

94 

Pino MS and Chung DC: The chromosomal instability pathway in colon cancer. Gastroenterology. 138:2059–2072. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Thanki K, Nicholls ME, Gajjar A, Senagore AJ, Qiu S, Szabo C, Hellmich MR and Chao C: Consensus molecular subtypes of colorectal cancer and their clinical implications. Int Biol Biomed J. 3:105–111. 2017.PubMed/NCBI

96 

Fumagalli A, Drost J, Suijkerbuijk SJ, van Boxtel R, de Ligt J, Offerhaus GJ, Begthel H, Beerling E, Tan EH, Sansom OJ, et al: Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc Natl Acad Sci USA. 114:E2357–E2364. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Zhao M, Mishra L and Deng CX: The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 14:111–123. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Boutin AT, Liao WT, Wang M, Hwang SS, Karpinets TV, Cheung H, Chu GC, Jiang S, Hu J, Chang K, et al: Oncogenic KRAS drives invasion and maintains metastases in colorectal cancer. Genes Dev. 31:370–382. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Wenzel J, Rose K, Haghighi EB, Lamprecht C, Rauen G, Freihen V, Kesselring R, Boerries M and Hecht A: Loss of the nuclear Wnt pathway effector TCF7L2 promotes migration and invasion of human colorectal cancer cells. Oncogene. 39:3893–3909. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, Biechele TL, Gingras AC, Zheng N, Maccoss MJ, et al: Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 316:1043–1046. 2007. View Article : Google Scholar : PubMed/NCBI

101 

Steffen DJ, Amornphimoltham P, Valera JLC, Taylor S, Hunter T, Tamayo P and Gutkind JS: GNAS-PKA Oncosignaling Network in Colorectal Cancer. Pharmacology. 31:lb5272017.

102 

Lieu C and Kopetz S: The SRC family of protein tyrosine kinases: A new and promising target for colorectal cancer therapy. Clin Colorectal Cancer. 9:89–94. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Jin X, Zhai B, Fang T, Guo X and Xu L: FXR1 is elevated in colorectal cancer and acts as an oncogene. Tumor Biol. 37:2683–2690. 2016. View Article : Google Scholar

104 

Gumireddy K, Li A, Yan J, Setoyama T, Johannes GJ, Ørom UA, Tchou J, Liu Q, Zhang L, Speicher DW, et al: Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J. 32:2672–2684. 2013. View Article : Google Scholar : PubMed/NCBI

105 

Xia P, Choi AH, Deng Z, Yang Y, Zhao J, Wang Y, Hardwidge PR and Zhu G: Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas. Oncotarget. 8:14147–14157. 2017. View Article : Google Scholar : PubMed/NCBI

106 

De Robertis M, Arigoni M, Loiacono L, Riccardo F, Calogero RA, Feodorova Y, Tashkova D, Belovejdov V, Sarafian V, Cavallo F and Signori E: Novel insights into Notum and glypicans regulation in colorectal cancer. Oncotarget. 6:41237–41257. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Lui VW, Peyser ND, Ng PK, Hritz J, Zeng Y, Lu Y, Li H, Wang L, Gilbert BR, General IJ, et al: Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proc Natl Acad Sci USA. 111:1114–1119. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R and Kirchner T: Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA. 98:10356–10361. 2001. View Article : Google Scholar : PubMed/NCBI

109 

Fodde R, Smits R and Clevers H: APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 1:55–67. 2001. View Article : Google Scholar : PubMed/NCBI

110 

Gregorieff A and Clevers H: Wnt signaling in the intestinal epithelium: From endoderm to cancer. Genes Dev. 19:877–890. 2005. View Article : Google Scholar : PubMed/NCBI

111 

Brabletz T, Jung A, Hermann K, Günther K, Hohenberger W and Kirchner T: Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract. 194:701–704. 1998. View Article : Google Scholar : PubMed/NCBI

112 

Le NH, Franken P and Fodde R: Tumour-stroma interactions in colorectal cancer: Converging on beta-catenin activation and cancer stemness. Br J Cancer. 98:1886–1893. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Teeuwssen M and Fodde R: Cell heterogeneity and phenotypic plasticity in metastasis formation: The case of colon cancer. Cancers (Basel). 11:13682019. View Article : Google Scholar

114 

Brocardo M and Henderson B: APC shuttling to the membrane, nucleus and beyond. Trends Cell Boil. 18:587–596. 2008. View Article : Google Scholar

115 

Sarli L, Bottarelli L, Bader G, Iusco D, Pizzi S, Costi R, D'Adda T, Bertolani M, Roncoroni L and Bordi C: Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosome 18q. Dis Colon Rectum. 47:1467–1482. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Munro AJ, Lain S and Lane DP: P53 abnormalities and outcomes in colorectal cancer: A systematic review. Br J Cancer. 92:434–444. 2005. View Article : Google Scholar : PubMed/NCBI

117 

Prior IA, Lewis PD and Mattos C: A comprehensive survey of Ras mutations in cancer. Cancer Res. 72:2457–2467. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Makrodouli E, Oikonomou E, Koc M, Andera L, Sasazuki T, Shirasawa S and Pintzas A: BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: A comparative study. Mol Cancer. 10:1182011. View Article : Google Scholar : PubMed/NCBI

119 

Lemieux E, Bergeron S, Durand V, Asselin C, Saucier C and Rivard N: Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasionand metastasis. Int J Cancer. 125:1575–1586. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Yamazaki D, Kurisu S and Takenawa T: Involvement of Rac and Rho signaling in cancer cell motility in 3D substrates. Oncogene. 28:1570–1583. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Sanz-Moreno V and Marshall CJ: The plasticity of cytoskeletal dynamics underlying neoplastic cell migration. Curr Opin Cell Biol. 22:690–696. 2010. View Article : Google Scholar : PubMed/NCBI

122 

Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH and Ghaedi K: Signaling pathways involved in colorectal cancer progression. Cell Biosci. 9:972019. View Article : Google Scholar : PubMed/NCBI

123 

Atreya CE, Sangale Z, Xu N, Matli MR, Tikishvili E, Welbourn W, Stone S, Shokat KM and Warren RS: PTEN expression is consistent in colorectal cancer primaries and metastases and associates with patient survival. Cancer Med. 2:496–506. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Day F, Muranyi A, Singh S, Shanmugam K, Williams D, Byrne D, Pham K, Palmieri M, Tie J, Grogan T, et al: A mutant BRAF V600E-specific immunohistochemical assay: Correlation with molecular mutation status and clinical outcome in colorectal cancer. Target Oncol. 10:99–109. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Yaeger R, Cercek A, O'Reilly EM, Reidy DL, Kemeny N, Wolinsky T, Capanu M, Gollub MJ, Rosen N, Berger MF, et al: Pilot trial of combined BRAF and EGFR inhibition in BRAF-mutant metastatic colorectal cancer patients. Clin Cancer Res. 21:1313–1320. 2015. View Article : Google Scholar : PubMed/NCBI

126 

Wong CK, Lambert AW, Ozturk S, Papageorgis P, Lopez D, Shen N, Sen Z, Abdolmaleky HM, Győrffy B, Feng H and Thiagalingam S: Targeting RICTOR sensitizes SMAD4-negative colon cancer to irinotecan. Mol Cancer Res. 18:414–423. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Zou Z, Tao T, Li H and Zhu X: mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 10:312020. View Article : Google Scholar : PubMed/NCBI

128 

Demkova L and Kucerova L: Role of the HGF/c-MET tyrosine kinase inhibitors in metastasic melanoma. Mol Cancer. 17:262018. View Article : Google Scholar : PubMed/NCBI

129 

Cui YM, Jiao HL, Ye YP, Chen CM, Wang JX, Tang N, Li TT, Lin J, Qi L, Wu P, et al: FOXC2 promotes colorectal cancer metastasis by directly targeting MET. Oncogene. 34:4379–4390. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, Birchmeier W and Schlag PM: MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nat Med. 15:59–67. 2009. View Article : Google Scholar : PubMed/NCBI

131 

Pichorner A, Sack U, Kobelt D, Kelch I, Arlt F, Smith J, Walther W, Schlag PM and Stein U: In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice. Clin Exp Metastasis. 29:573–583. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Juneja M, Kobelt D, Walther W, Voss C, Smith J, Specker E, Neuenschwander M, Gohlke B, Dahlmann M, Radetzki S, et al: Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1. PLoS Biol. 15:e20007842017. View Article : Google Scholar : PubMed/NCBI

133 

Glebov OK, Rodriguez LM, Nakahara K, Jenkins J, Cliatt J, Humbyrd CJ, DeNobile J, Soballe P, Simon R, Wright G, et al: Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomark Prev. 12:755–762. 2003.

134 

Baran B, Mert Ozupek N, Yerli Tetik N, Acar E, Bekcioglu O and Baskin Y: Difference between left-sided and right-sided colorectal cancer: A focused review of literature. Gastroenterol Res. 11:264–273. 2018. View Article : Google Scholar

135 

Lee MS, Menter DG and Kopetz S: Right versus left colon cancer biology: Integrating the consensus molecular subtypes. J Natl Compr Canc Netw. 15:411–419. 2017. View Article : Google Scholar : PubMed/NCBI

136 

Weinberg BA: Anti-EGFR therapy in right-sided metastatic colorectal cancer: Right or wrong? J Natl Compr Canc Netw. 16:1547–1548. 2018. View Article : Google Scholar : PubMed/NCBI

137 

Loree JM, Pereira AAL, Lam M, Willauer AN, Raghav K, Dasari A, Morris VK, Advani S, Menter DG, Eng C, et al: Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin Cancer Res. 24:1062–1072. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Hugen N, Brown G, Glynne-Jones R, de Wilt JH and Nagtegaal ID: Advances in the care of patients with mucinous colorectal cancer. Nat Rev Clin Oncol. 13:361–369. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Esterházy D, Canesso MC, Mesin L, Muller PA, de Castro TB, Lockhart A, ElJalby M, Faria AM and Mucida D: Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 569:126–130. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ and Morrison SJ: Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527:186–191. 2015. View Article : Google Scholar : PubMed/NCBI

141 

Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS, et al: The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5:43–51. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Deschoolmeester V, Baay M, Van Marck E, Weyler J, Vermeulen P, Lardon F and Vermorken JB: Tumor infiltrating lymphocytes: An intriguing player in the survival of colorectal cancer patients. BMC Immunol. 11:192010. View Article : Google Scholar : PubMed/NCBI

143 

Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C and Iacopetta B: Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 27:186–192. 2009. View Article : Google Scholar : PubMed/NCBI

144 

Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP, Tariverdian M, Benner A and von Knebel Doeberitz M: Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 134:988–997. 2008. View Article : Google Scholar : PubMed/NCBI

145 

Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI

146 

Kreidieh M, Mukherji D, Temraz S and Shamseddine A: Expanding the scope of immunotherapy in colorectal cancer: Current clinical approaches and future directions. Biomed Res Int. 2020:90372172020. View Article : Google Scholar : PubMed/NCBI

147 

Kroemer G, Galluzzi L, Zitvogel L and Fridman WH: Colorectal cancer: The first neoplasia found to be under immunosurveillance and the last one to respond to immunotherapy? Oncoimmunology. 4:e10585972015. View Article : Google Scholar : PubMed/NCBI

148 

Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair DEfiCiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI

149 

Mlecnik B, Bindea G, Kirilovsky A, Angell HK, Obenauf AC, Tosolini M, Church SE, Maby P, Vasaturo A, Angelova M, et al: The tumor microenvironment and Immunoscore are critical determinants of dissemination to distant metastasis. Sci Trans Med. 8:327ra262016. View Article : Google Scholar

150 

Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T, Lafontaine L, Haicheur N, Marliot F, Debetancourt D, et al: Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. J Natl Cancer Inst. 110:97–108. 2018. View Article : Google Scholar

151 

Girardin A, McCall J, Black MA, Edwards F, Phillips V, Taylor ES, Reeve AE and Kemp RA: Inflammatory and regulatory T cells contribute to a unique immune microenvironment in tumor tissue of colorectal cancer patients. Int J Cancer. 132:1842–1850. 2013. View Article : Google Scholar : PubMed/NCBI

152 

Pedrosa L, Esposito F, Thomson TM and Mauriel J: The tumor microenvironment in colorectal cancer therapy. Cancers (Basel). 11:11722019. View Article : Google Scholar

153 

Kalluri R and Zeisberg M: Fibroblasts in cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI

154 

Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF and Huelsken J: Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 481:85–89. 2011. View Article : Google Scholar : PubMed/NCBI

155 

Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Céspedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, et al: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 22:571–584. 2012. View Article : Google Scholar : PubMed/NCBI

156 

Brown RE, Short SP and Williams CS: Colorectal cancer and metabolism. Curr Colorectal Cancer Rep. 14:226–241. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Gureev AP, Shaforostova EA and Popov VN: Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet. 10:4352019. View Article : Google Scholar : PubMed/NCBI

158 

Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI

159 

Vyas M, Patel N, Nagarajan A, Wajapeyee N, Jain D and Zhan X: Hypoxia induced HIF-1α expression promotes angiogenesis, tumor budding cell survival and cell proliferation arrest in high-grade tumor budding colorectal carcinomas. Int J Clin Exp Patho. 9:13047–13055. 2016.

160 

Ancey PB, Contat C and Meylan E: Glucose transporters in cancer-from tumor cells to the tumor microenvironment. FEBS J. 285:2926–2943. 2018. View Article : Google Scholar : PubMed/NCBI

161 

Ritterson Lew C, Guin S and Theodorescu D: Targeting glycogen metabolism in bladder cancer. Nat Rev Urol. 12:383–391. 2015. View Article : Google Scholar : PubMed/NCBI

162 

Kuo CC, Ling HH, Chiang MC, Chung CH, Lee WY, Chu CY, Wu YC, Chen CH, Lai YW, Tsai IL, et al: Metastatic colorectal cancer rewrites metabolic program through a Glut3-YAP-dependent signaling circuit. Theranostics. 9:2526–2540. 2019. View Article : Google Scholar : PubMed/NCBI

163 

DeBerardinis RJ: Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med. 10:767–777. 2008. View Article : Google Scholar : PubMed/NCBI

164 

Weber GF: Metabolism in cancer metastasis. Int Jour Cancer. 138:2061–2066. 2016. View Article : Google Scholar

165 

Corté H, Manceau G, Blons H and Laurent-Puig P: MicroRNA and colorectal cancer. Dig liver dis. 44:195–200. 2012. View Article : Google Scholar : PubMed/NCBI

166 

Bu P, Chen KY, Xiang K, Johnson C, Crown SB, Rakhilin N, Ai Y, Wang L, Xi R, Astapova I, et al: Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metab. 27:1249–1262.e4. 2018. View Article : Google Scholar : PubMed/NCBI

167 

Wu Z, Wei D, Gao W, Xu Y, Hu Z, Ma Z, Gao C, Zhu X and Li Q: TPO-induced metabolic reprogramming drives liver metastasis of colorectal cancer CD110+ tumor-initiating cells. Cell Stem Cells. 17:47–59. 2015. View Article : Google Scholar

168 

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M and Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI

169 

Cellura D, Pickard K, Quaratino S, Parker H, Strefford JC, Thomas GJ, Mitter R, Mirnezami AH and Peake NJ: miR-19-mediated inhibition of transglutaminase-2 leads to enhanced invasion and metastasis in colorectal cancer. Mol Cancer Res. 13:1095–1105. 2015. View Article : Google Scholar : PubMed/NCBI

170 

Lam CS, Ng L, Chow AK, Wan TM, Yau S, Cheng NS, Wong SK, Man JH, Lo OS, Foo DC, et al: Identification of microRNA 885–5p as a novel regulator of tumor metastasis by targeting CPEB2 in colorectal cancer. Oncotarget. 8:26858–26870. 2017. View Article : Google Scholar : PubMed/NCBI

171 

Shibuya H, Iinuma H, Shimada R, Horiuchi A and Watanabe T: Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology. 79:313–320. 2010. View Article : Google Scholar : PubMed/NCBI

172 

Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S and Allgayer H: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 27:2128–2136. 2008. View Article : Google Scholar : PubMed/NCBI

173 

Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, Saltz L, Paty PB and Tavazoie SF: Extracellular metabolic energetics can promote cancer progression. Cell. 160:393–406. 2015. View Article : Google Scholar : PubMed/NCBI

174 

Chi Y and Zhou D: MicroRNAs in colorectal carcinoma-from pathogenesis to therapy. J Exp Clin Cancer Res. 35:432016. View Article : Google Scholar : PubMed/NCBI

175 

Heublein S, Albertsmeier M, Pfeifer D, Loehrs L, Bazhin AV, Kirchner T, Werner J, Neumann J and Angele MK: Association of differential miRNA expression with hepatic vs. peritoneal metastatic spread in colorectal cancer. BMC Cancer. 18:2012018. View Article : Google Scholar : PubMed/NCBI

176 

Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T and Hermeking H: Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and β-catenin predicts distant metastasis of colon cancer. Clin Cancer Res. 19:710–720. 2013. View Article : Google Scholar : PubMed/NCBI

177 

Ma YS, Lv ZW, Yu F, Chang ZY, Cong XL, Zhong XM, Lu GX, Zhu J and Fu D: MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. J Exp Clin Cancer Res. 37:2522018. View Article : Google Scholar : PubMed/NCBI

178 

Shi L, Jackstadt R, Siemens H, Li H, Kirchner T and Hermeking H: p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res. 74:532–542. 2014. View Article : Google Scholar : PubMed/NCBI

179 

Yan TT, Ren LL, Shen CQ, Wang ZH, Yu YN, Liang Q, Tang JY, Chen YX, Sun DF, Zgodzinski W, et al: miR-508 defines the stem-like/mesenchymal subtype in colorectal cancer. Cancer Res. 78:1751–1765. 2018. View Article : Google Scholar : PubMed/NCBI

180 

Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, Hemmi H, Koi M, Boland CR and Goel A: MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 62:1315–1326. 2013. View Article : Google Scholar : PubMed/NCBI

181 

Sun Z, Zhang Z, Liu Z, Qiu B, Liu K and Dong G: MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol. 31:9822014. View Article : Google Scholar : PubMed/NCBI

182 

Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M and Wang J: MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene. 33:5332–5340. 2014. View Article : Google Scholar : PubMed/NCBI

183 

Hahn S, Jackstadt R, Siemens H, Hünten S and Hermeking H: SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J. 32:3079–3095. 2013. View Article : Google Scholar : PubMed/NCBI

184 

Miranda E, Destro A, Malesci A, Balladore E, Bianchi P, Baryshnikova E, Franchi G, Morenghi E, Laghi L, Gennari L and Roncalli M: Genetic and epigenetic changes in primary metastatic and nonmetastatic colorectal cancer. Br J Cancer. 95:1101–1107. 2006. View Article : Google Scholar : PubMed/NCBI

185 

Li Z, Chen Y, Ren WU, Hu S, Tan Z, Wang Y, Chen Y, Zhang J, Wu J, Li T, et al: Transcriptome alterations in liver metastases of colorectal cancer after acquired resistance to cetuximab. Cancer Genom Proteom. 16:207–219. 2019. View Article : Google Scholar

186 

Markowitz SD and Bertagnolli MM: Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 361:2449–2460. 2009. View Article : Google Scholar : PubMed/NCBI

187 

Garinis GA, Menounos PG, Spanakis NE, Papadopoulos K, Karavitis G, Parassi I, Christeli E, Patrinos GP, Manolis EN and Peros G: Hypermethylation-associated transcriptional silencing of E-cadherin in primary sporadic colorectal carcinomas. J Pathol. 198:442–449. 2002. View Article : Google Scholar : PubMed/NCBI

188 

Ryall JG, Cliff T, Dalton S and Sartorelli V: Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell. 17:651–662. 2015. View Article : Google Scholar : PubMed/NCBI

189 

Kim JA and Yeom YI: Metabolic signaling to epigenetic alterations in cancer. Biomol Ther (Seoul). 26:69–80. 2018. View Article : Google Scholar : PubMed/NCBI

190 

Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS and Garcia BA: In vivo residue-specific histone methylation dynamics. J Biol Chem. 285:3341–3350. 2010. View Article : Google Scholar : PubMed/NCBI

191 

Tse JWT, Jenkins LJ, Chionh F and Mariadason JM: Aberrant DNA methylation in colorectal cancer: What should we target? Trends Cancer. 3:698–712. 2017. View Article : Google Scholar : PubMed/NCBI

192 

Zentner GE and Henikoff S: Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 20:259–266. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Poturnajova M, Furielova T, Balintova S, Schmidtova S, Kucerova L and Matuskova M: Molecular features and gene expression signature of metastatic colorectal cancer (Review). Oncol Rep 45: 10, 2021.
APA
Poturnajova, M., Furielova, T., Balintova, S., Schmidtova, S., Kucerova, L., & Matuskova, M. (2021). Molecular features and gene expression signature of metastatic colorectal cancer (Review). Oncology Reports, 45, 10. https://doi.org/10.3892/or.2021.7961
MLA
Poturnajova, M., Furielova, T., Balintova, S., Schmidtova, S., Kucerova, L., Matuskova, M."Molecular features and gene expression signature of metastatic colorectal cancer (Review)". Oncology Reports 45.4 (2021): 10.
Chicago
Poturnajova, M., Furielova, T., Balintova, S., Schmidtova, S., Kucerova, L., Matuskova, M."Molecular features and gene expression signature of metastatic colorectal cancer (Review)". Oncology Reports 45, no. 4 (2021): 10. https://doi.org/10.3892/or.2021.7961
Copy and paste a formatted citation
x
Spandidos Publications style
Poturnajova M, Furielova T, Balintova S, Schmidtova S, Kucerova L and Matuskova M: Molecular features and gene expression signature of metastatic colorectal cancer (Review). Oncol Rep 45: 10, 2021.
APA
Poturnajova, M., Furielova, T., Balintova, S., Schmidtova, S., Kucerova, L., & Matuskova, M. (2021). Molecular features and gene expression signature of metastatic colorectal cancer (Review). Oncology Reports, 45, 10. https://doi.org/10.3892/or.2021.7961
MLA
Poturnajova, M., Furielova, T., Balintova, S., Schmidtova, S., Kucerova, L., Matuskova, M."Molecular features and gene expression signature of metastatic colorectal cancer (Review)". Oncology Reports 45.4 (2021): 10.
Chicago
Poturnajova, M., Furielova, T., Balintova, S., Schmidtova, S., Kucerova, L., Matuskova, M."Molecular features and gene expression signature of metastatic colorectal cancer (Review)". Oncology Reports 45, no. 4 (2021): 10. https://doi.org/10.3892/or.2021.7961
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team