|
1
|
Lengyel E: Ovarian cancer development and
metastasis. Am J Pathol. 177:1053–1064. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Polyzos A, Tsavaris N, Kosmas C, Giannikos
L, Katsikas M, Kalahanis N, Karatzas G, Christodoulou K,
Giannakopoulos K, Stamatiadis D and Katsilambros N: A comparative
study of intraperitoneal carboplatin versus intravenous carboplatin
with intravenous cyclophosphamide in both arms as initial
chemotherapy for stage III ovarian cancer. Oncology. 56:291–296.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Arshad U, Ploylearmsaeng SA, Karlsson MO,
Doroshyenko O, Langer D, Schömig E, Kunze S, Güner SA,
Skripnichenko R, Ullah S, et al: Prediction of exposure-driven
myelotoxicity of continuous infusion 5-fluorouracil by a
semi-physiological pharmacokinetic-pharmacodynamic model in
gastrointestinal cancer patients. Cancer Chemother Pharmacol.
85:711–722. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Flessner MF: The transport barrier in
intraperitoneal therapy. Am J Physiol Renal Physiol. 288:F433–F442.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Barlin JN, Dao F, Bou Zgheib N, Ferguson
SE, Sabbatini PJ, Hensley ML, Bell-McGuinn KM, Konner J, Tew WP,
Aghajanian C and Chi DS: Progression-free and overall survival of a
modified outpatient regimen of primary intravenous/intraperitoneal
paclitaxel and intraperitoneal cisplatin in ovarian, fallopian
tube, and primary peritoneal cancer. Gynecol Oncol. 125:621–624.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wust P, Hildebrandt B, Sreenivasa G, Rau
B, Gellermann J, Riess H, Felix R and Schlag PM: Hyperthermia in
combined treatment of cancer. Lancet Oncol. 3:487–497. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
van Driel WJ, Koole SN, Sikorska K,
Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, de Hingh IHJT,
van der Velden J, Arts HJ, Massuger LFAG, et al: Hyperthermic
intraperitoneal chemotherapy in ovarian cancer. N Engl J Med.
378:230–240. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gonzalez-Moreno S: Peritoneal surface
oncology: A PROGRESS REPort. Eur J Surg Oncol. 32:593–596. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Quénet F, Elias D, Roca L, Goéré D, Ghouti
L, Pocard M, Facy O, Arvieux C, Lorimier G, Pezet D, et al:
Cytoreductive surgery plus hyperthermic intraperitoneal
chemotherapy versus cytoreductive surgery alone for colorectal
peritoneal metastases (PRODIGE 7): a multicentre, randomised,
open-label, phase 3 trial. Lancet Oncol. 22:256–266. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Goéré D, Glehen O, Quenet F, Guilloit JM,
Bereder JM, Lorimier G, Thibaudeau E, Ghouti L, Pinto A, Tuech JJ,
et al: Second-look surgery plus hyperthermic intraperitoneal
chemotherapy versus surveillance in patients at high risk of
developing colorectal peritoneal metastases (PROPHYLOCHIP-PRODIGE
15): A randomised, phase 3 study. Lancet Oncol. 21:1147–1154. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
González-Moreno S, González-Bayón LA and
Ortega-Pérez G: Hyperthermic intraperitoneal chemotherapy:
Rationale and technique. World J Gastrointest Oncol. 2:68–75. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Giovanella BC, Stehlin JS and Morgan AC:
Selective lethal effect of supranormal temperatures on human
neoplastic cells. Cancer Res. 36:3944–3950. 1976.PubMed/NCBI
|
|
13
|
Glehen O, Cotte E, Kusamura S, Deraco M,
Baratti D, Passot G, Beaujard AC and Noel GF: Hyperthermic
intraperitoneal chemotherapy: Nomenclature and modalities of
perfusion. J Surg Oncol. 98:242–246. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sánchez-García S, Padilla-Valverde D,
Villarejo-Campos P, Martín-Fernández J, García-Rojo M and
Rodríguez-Martínez M: Experimental development of an
intra-abdominal chemohyperthermia model using a closed abdomen
technique and a PRS-1.0 Combat CO2 recirculation system.
Surgery. 155:719–725. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Leiting JL, Cloyd JM, Ahmed A, Fournier K,
Lee AJ, Dessureault S, Felder S, Veerapong J, Baumgartner JM,
Clarke C, et al: Comparison of open and closed hyperthermic
intraperitoneal chemotherapy: Results from the United States
hyperthermic intraperitoneal chemotherapy collaborative. World J
Gastrointest Oncol. 12:756–767. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sánchez-García S, Villarejo-Campos P,
Padilla-Valverde D, Amo-Salas M and Martín-Fernández J:
Intraperitoneal chemotherapy hyperthermia (HIPEC) for peritoneal
carcinomatosis of ovarian cancer origin by fluid and CO2
recirculation using the closed abdomen technique (PRS-1.0 Combat):
A clinical pilot study. Int J Hyperthermia. 32:488–495. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Khosrawipour V, Khosrawipour T,
Diaz-Carballo D, Förster E, Zieren J and Giger-Pabst U: Exploring
the spatial drug distribution pattern of pressurized
intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol.
23:1220–1224. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nadiradze G, Horvath P, Sautkin Y, Archid
R, Weinreich FJ, Königsrainer A and Reymond MA: Overcoming drug
resistance by taking advantage of physical principles: Pressurized
intraperitoneal aerosol chemotherapy (PIPAC). Cancers (Basel).
12:342019. View Article : Google Scholar
|
|
19
|
Verwaal VJ, van Ruth S, de Bree E, van
Sloothen GW, van Tinteren H, Boot H and Zoetmulder FA: Randomized
trial of cytoreduction and hyperthermic intraperitoneal
chemotherapy versus systemic chemotherapy and palliative surgery in
patients with peritoneal carcinomatosis of colorectal cancer. J
Clin Oncol. 21:3737–3743. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Klaver CE, Musters GD, Bemelman WA, Punt
CJ, Verwaal VJ, Dijkgraaf MG, Aalbers AG, van der Bilt JD, Boerma
D, Bremers AJ, et al: Adjuvant hyperthermic intraperitoneal
chemotherapy (HIPEC) in patients with colon cancer at high risk of
peritoneal carcinomatosis; the COLOPEC randomized multicentre
trial. BMC Cancer. 15:4282015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Reutovich MY, Krasko OV and Sukonko OG:
Hyperthermic intraperitoneal chemotherapy in serosa-invasive
gastric cancer patients. Eur J Surg Oncol. 45:2405–2411. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang XJ, Huang CQ, Suo T, Mei LJ, Yang GL,
Cheng FL, Zhou YF, Xiong B, Yonemura Y and Li Y: Cytoreductive
surgery and hyperthermic intraperitoneal chemotherapy improves
survival of patients with peritoneal carcinomatosis from gastric
cancer: Final results of a phase III randomized clinical trial. Ann
Surg Oncol. 18:1575–1581. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Spiliotis J, Halkia E, Lianos E, Kalantzi
N, Grivas A, Efstathiou E and Giassas S: Cytoreductive surgery and
HIPEC in recurrent epithelial ovarian cancer: A prospective
randomized phase III study. Ann Surg Oncol. 22:1570–1575. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Glockzin G, Rochon J, Arnold D, Lang SA,
Klebl F, Zeman F, Koller M, Schlitt HJ and Piso P: A prospective
multicenter phase II study evaluating multimodality treatment of
patients with peritoneal carcinomatosis arising from appendiceal
and colorectal cancer: The COMBATAC trial. BMC Cancer. 13:672013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
van Leeuwen BL, Graf W, Pahlman L and
Mahteme H: Swedish experience with peritonectomy and HIPEC. HIPEC
in peritoneal carcinomatosis. Ann Surg Oncol. 15:745–753. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zivanovic O, Chi DS, Filippova O, Randall
LM, Bristow RE and O'Cearbhaill RE: It's time to warm up to
hyperthermic intraperitoneal chemotherapy for patients with ovarian
cancer. Gynecol Oncol. 151:555–561. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kusamura S, Azmi N, Fumagalli L, Baratti
D, Guaglio M, Cavalleri A, Garrone G, Battaglia L, Barretta F and
Deraco M: Phase II randomized study on tissue distribution and
pharmacokinetics of cisplatin according to different levels of
intra-abdominal pressure (IAP) during HIPEC (NCT02949791). Eur J
Surg Oncol. 47:82–88. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cesna V, Sukovas A, Jasukaitiene A,
Naginiene R, Barauskas G, Dambrauskas Z, Paskauskas S and Gulbinas
A: Narrow line between benefit and harm: Additivity of hyperthermia
to cisplatin cytotoxicity in different gastrointestinal cancer
cells. World J Gastroenterol. 24:1072–1083. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ceelen W, Braet H, van Ramshorst G,
Willaert W and Remaut K: Intraperitoneal chemotherapy for
peritoneal metastases: An expert opinion. Expert Opin Drug Deliv.
17:511–522. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang Y and Calderwood SK: Autophagy,
protein aggregation and hyperthermia: A mini-review. Int J
Hyperthermia. 27:409–414. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ahmed K, Zaidi SF, Mati-Ur-Rehman, Rehman
R and Kondo T: Hyperthermia and protein homeostasis: Cytoprotection
and cell death. J Therm Biol. 91:1026152020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Franke K, Kettering M, Lange K, Kaiser WA
and Hilger I: The exposure of cancer cells to hyperthermia, iron
oxide nanoparticles, and mitomycin C influences membrane multidrug
resistance protein expression levels. Int J Nanomedicine.
8:351–363. 2013.PubMed/NCBI
|
|
33
|
Luchetti F, Mannello F, Canonico B,
Battistelli M, Burattini S and Falcieri E: Integrin and
cytoskeleton behaviour in human neuroblastoma cells during
hyperthermia-related apoptosis. Apoptosis. 9:635–648. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Luchetti F, Canonico B, Della Felice M,
Burattini S, Battistelli M, Papa S and Falcieri E: Hyperthermia
triggers apoptosis and affects cell adhesiveness in human
neuroblastoma cells. Histol Histopathol. 18:1041–1052.
2003.PubMed/NCBI
|
|
35
|
Onishi Y, Fehervari Z, Yamaguchi T and
Sakaguchi S: Foxp3+ natural regulatory T cells
preferentially form aggregates on dendritic cells in vitro and
actively inhibit their maturation. Proc Natl Acad Sci USA.
105:10113–10118. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Alvarez-Berríos MP, Castillo A, Mendéz J,
Soto O, Rinaldi C and Torres-Lugo M: Hyperthermic potentiation of
cisplatin by magnetic nanoparticle heaters is correlated with an
increase in cell membrane fluidity. Int J Nanomedicine.
8:1003–1013. 2013.PubMed/NCBI
|
|
37
|
Csoboz B, Balogh GE, Kusz E, Gombos I,
Peter M, Crul T, Gungor B, Haracska L, Bogdanovics G, Torok Z, et
al: Membrane fluidity matters: Hyperthermia from the aspects of
lipids and membranes. Int J Hyperthermia. 29:491–499. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
de Andrade Mello P, Bian S, Savio LEB,
Zhang H, Zhang J, Junger W, Wink MR, Lenz G, Buffon A, Wu Y and
Robson SC: Hyperthermia and associated changes in membrane fluidity
potentiate P2X7 activation to promote tumor cell death. Oncotarget.
8:67254–67268. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
van Oorschot B, Granata G, Di Franco S,
Ten Cate R, Rodermond HM, Todaro M, Medema JP and Franken NA:
Targeting DNA double strand break repair with hyperthermia and
DNA-PKcs inhibition to enhance the effect of radiation treatment.
Oncotarget. 7:65504–65513. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mehta IS, Kulashreshtha M, Chakraborty S,
Kolthur-Seetharam U and Rao BJ: Chromosome territories reposition
during DNA damage-repair response. Genome Biol. 14:1352013.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Warters RL and Henle KJ: DNA degradation
in chinese hamster ovary cells after exposure to hyperthermia.
Cancer Res. 42:4427–4432. 1982.PubMed/NCBI
|
|
42
|
Takahashi A, Matsumoto H, Nagayama K,
Kitano M, Hirose S, Tanaka H, Mori E, Yamakawa N, Yasumoto J, Yuki
K, et al: Evidence for the involvement of double-strand breaks in
heat-induced cell killing. Cancer Res. 64:8839–8845. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Takahashi A, Mori E, Somakos GI, Ohnishi K
and Ohnishi T: Heat induces gammaH2AX foci formation in mammalian
cells. Mutat Res. 656:88–92. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hunt CR, Pandita RK, Laszlo A, Higashikubo
R, Agarwal M, Kitamura T, Gupta A, Rief N, Horikoshi N, Baskaran R,
et al: Hyperthermia activates a subset of ataxia-telangiectasia
mutated effectors independent of DNA strand breaks and heat shock
protein 70 status. Cancer Res. 67:3010–3017. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
El-Awady RA, Dikomey E and Dahm-Daphi J:
Heat effects on DNA repair after ionising radiation: Hyperthermia
commonly increases the number of non-repaired double-strand breaks
and structural rearrangements. Nucleic Acids Res. 29:1960–1966.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Muenyi CS, States VA, Masters JH, Fan TW,
Helm CW and States JC: Sodium arsenite and hyperthermia modulate
cisplatin-DNA damage responses and enhance platinum accumulation in
murine metastatic ovarian cancer xenograft after hyperthermic
intraperitoneal chemotherapy (HIPEC). J Ovarian Res. 4:92011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Oei AL, Vriend LE, Crezee J, Franken NA
and Krawczyk PM: Effects of hyperthermia on DNA repair pathways:
One treatment to inhibit them all. Radiat Oncol. 10:1652015.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Krawczyk PM, Eppink B, Essers J, Stap J,
Rodermond H, Odijk H, Zelensky A, van Bree C, Stalpers LJ, Buist
MR, et al: Mild hyperthermia inhibits homologous recombination,
induces BRCA2 degradation, and sensitizes cancer cells to poly
(ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA.
108:9851–9856. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhang J, Zhao B, Chen S, Wang Y, Zhang Y,
Wang Y, Wei D, Zhang L, Rong G and Weng Y: Near-infrared light
irradiation induced Mild hyperthermia enhances glutathione
depletion and DNA interstrand cross-link formation for efficient
chemotherapy. ACS Nano. 14:14831–14845. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ohno S, Siddik ZH, Kido Y, Zwelling LA and
Bull JM: Thermal enhancement of drug uptake and DNA adducts as a
possible mechanism for the effect of sequencing hyperthermia on
cisplatin-induced cytotoxicity in L1210 cells. Cancer Chemother
Pharmacol. 34:302–306. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sato I, Umemura M, Mitsudo K, Kioi M,
Nakashima H, Iwai T, Feng X, Oda K, Miyajima A, Makino A, et al:
Hyperthermia generated with ferucarbotran (Resovist®) in
an alternating magnetic field enhances cisplatin-induced apoptosis
of cultured human oral cancer cells. J Physiol Sci. 64:177–183.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Clavel CM, Nowak-Sliwinska P, Păunescu E,
Griffioen AW and Dyson PJ: In vivo evaluation of
small-molecule thermoresponsive anticancer drugs potentiated by
hyperthermia. Chem Sci. 6:2795–2801. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Peer AJ, Grimm MJ, Zynda ER and Repasky
EA: Diverse immune mechanisms may contribute to the survival
benefit seen in cancer patients receiving hyperthermia. Immunol
Res. 46:137–154. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Borst J, Ahrends T, Bąbała N, Melief CJM
and Kastenmüller W: CD4+T cell help in cancer immunology
and immunotherapy. Nat Rev Immunol. 18:635–647. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Schuijs MJ, Hammad H and Lambrecht BN:
Professional and ‘Amateur’ Antigen-Presenting Cells In Type 2
Immunity. Trends Immunol. 40:22–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Evans SS, Repasky EA and Fisher DT: Fever
and the thermal regulation of immunity: The immune system feels the
heat. Nat Rev Immunol. 15:335–349. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ostberg JR, Dayanc BE, Yuan M, Oflazoglu E
and Repasky EA: Enhancement of natural killer (NK) cell
cytotoxicity by fever-range thermal stress is dependent on NKG2D
function and is associated with plasma membrane NKG2D clustering
and increased expression of MICA on target cells. J Leukoc Biol.
82:1322–1331. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang L, Liu F, Peng Y, Sun L and Chen G:
Changes in expression of four molecular marker proteins and one
microRNA in mesothelial cells of the peritoneal dialysate effluent
fluid of peritoneal dialysis patients. Exp Ther Med. 6:1189–1193.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rynne-Vidal A, Au-Yeung CL,
Jiménez-Heffernan JA, Pérez-Lozano ML, Cremades-Jimeno L, Bárcena
C, Cristóbal-García I, Fernández-Chacón C, Yeung TL, Mok SC, et al:
Mesothelial-to-mesenchymal transition as a possible therapeutic
target in peritoneal metastasis of ovarian cancer. J Pathol.
242:140–151. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pathria P, Louis TL and Varner JA:
Targeting Tumor-associated macrophages in cancer. Trends Immunol.
40:310–327. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li X, Liu R, Su X, Pan Y, Han X, Shao C
and Shi Y: Harnessing tumor-associated macrophages as aids for
cancer immunotherapy. Mol Cancer. 18:1772019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Farhood B, Najafi M and Mortezaee K:
CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: A review. J
Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S
and Jian Z: IL-6/STAT3 pathway intermediates M1/M2 macrophage
polarization during the development of hepatocellular carcinoma. J
Cell Biochem. 119:9419–9432. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sica A and Mantovani A: Macrophage
plasticity and polarization: In vivo veritas. J Clin Invest.
122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Qu D, Qin Y, Liu Y, Liu T, Liu C, Han T,
Chen Y, Ma C and Li X: Fever-inducible lipid nanocomposite for
boosting cancer therapy through synergistic engineering of a tumor
microenvironment. ACS Appl Mater Interfaces. 12:32301–32311. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Frey B, Weiss EM, Rubner Y, Wunderlich R,
Ott OJ, Sauer R, Fietkau R and Gaipl US: Old and new facts about
hyperthermia-induced modulations of the immune system. Int J
Hyperthermia. 28:528–542. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Agarwal SS, Katz EJ and Loeb LA: Effect of
hyperthermia on the survival of normal human peripheral blood
mononuclear cells. Cancer Res. 43:3124–3126. 1983.PubMed/NCBI
|
|
68
|
Harden LM, Kent S, Pittman QJ and Roth J:
Fever and sickness behavior: Friend or foe? Brain Behav Immun.
50:322–333. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang L, Zhang Y, Xue Y, Wu Y, Wang Q, Xue
L, Su Z and Zhang C: Transforming weakness into strength:
Photothermal-therapy-induced inflammation enhanced
cytopharmaceutical chemotherapy as a combination anticancer
treatment. Adv Mater. 31:e18059362019.PubMed/NCBI
|
|
70
|
Mantovani A, Barajon I and Garlanda C:
IL-1 and IL-1 regulatory pathways in cancer progression and
therapy. Immunol Rev. 281:57–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kitamura H, Ohno Y, Toyoshima Y, Ohtake J,
Homma S, Kawamura H, Takahashi N and Taketomi A:
Interleukin-6/STAT3 signaling as a promising target to improve the
efficacy of cancer immunotherapy. Cancer Sci. 108:1947–1952. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Korn T, Bettelli E, Oukka M and Kuchroo
VK: IL-17 and Th17 cells. Annu Rev Immunol. 27:485–517. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Appenheimer MM, Chen Q, Girard RA, Wang WC
and Evans SS: Impact of fever-range thermal stress on
lymphocyte-endothelial adhesion and lymphocyte trafficking. Immunol
Invest. 34:295–323. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chonov DC, Ignatova MMK, Ananiev JR and
Gulubova MV: IL-6 Activities in the Tumour Microenvironment. Part
1. Open Access Maced J Med Sci. 7:2391–2398. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wagner AC, Weber H, Jonas L, Nizze H,
Strowski M, Fiedler F, Printz H, Steffen H and Göke B: Hyperthermia
induces heat shock protein expression and protection against
cerulein-induced pancreatitis in rats. Gastroenterology.
111:1333–1342. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Burd R, Dziedzic TS, Xu Y, Caligiuri MA,
Subjeck JR and Repasky EA: Tumor cell apoptosis, lymphocyte
recruitment and tumor vascular changes are induced by low
temperature, long duration (fever-like) whole body hyperthermia. J
Cell Physiol. 177:137–147. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hartl FU and Hayer-Hartl M: Molecular
chaperones in the cytosol: From nascent chain to folded protein.
Science. 295:1852–1858. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Calderwood SK and Gong J: Heat shock
proteins promote cancer: It's a protection racket. Trends Biochem
Sci. 41:311–323. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Pelz JO, Vetterlein M, Grimmig T, Kerscher
AG, Moll E, Lazariotou M, Matthes N, Faber M, Germer CT,
Waaga-Gasser AM and Gasser M: Hyperthermic intraperitoneal
chemotherapy in patients with peritoneal carcinomatosis: Role of
heat shock proteins and dissecting effects of hyperthermia. Ann
Surg Oncol. 20:1105–1113. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kepenekian V, Aloy MT, Magné N, Passot G,
Armandy E, Decullier E, Sayag-Beaujard A, Gilly FN, Glehen O and
Rodriguez-Lafrasse C: Impact of hyperthermic intraperitoneal
chemotherapy on Hsp27 protein expression in serum of patients with
peritoneal carcinomatosis. Cell Stress Chaperones. 18:623–630.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mu C, Wu X, Zhou X, Wolfram J, Shen J,
Zhang D, Mai J, Xia X, Holder AM, Ferrari M, et al: Chemotherapy
sensitizes therapy-resistant cells to Mild hyperthermia by
suppressing heat shock protein 27 expression in triple-negative
breast cancer. Clin Cancer Res. 24:4900–4912. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zunino B, Rubio-Patiño C, Villa E, Meynet
O, Proics E, Cornille A, Pommier S, Mondragón L, Chiche J, Bereder
JM, et al: Hyperthermic intraperitoneal chemotherapy leads to an
anticancer immune response via exposure of cell surface heat shock
protein 90. Oncogene. 35:261–268. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Isambert N, Delord JP, Soria JC,
Hollebecque A, Gomez-Roca C, Purcea D, Rouits E, Belli R and
Fumoleau P: Debio0932, a second-generation oral heat shock protein
(HSP) inhibitor, in patients with advanced cancer-results of a
first-in-man dose-escalation study with a fixed-dose extension
phase. Ann Oncol. 26:1005–1011. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Larson N, Gormley A, Frazier N and
Ghandehari H: Synergistic enhancement of cancer therapy using a
combination of heat shock protein targeted HPMA copolymer-drug
conjugates and gold nanorod induced hyperthermia. J Control
Release. 170:41–50. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Taha EA, Ono K and Eguchi T: Roles of
extracellular HSPs as biomarkers in immune surveillance and immune
evasion. Int J Mol Sci. 20:45882019. View Article : Google Scholar
|
|
86
|
Mukhopadhaya A, Mendecki J, Dong X, Liu L,
Kalnicki S, Garg M, Alfieri A and Guha C: Localized hyperthermia
combined with intratumoral dendritic cells induces systemic
antitumor immunity. Cancer Res. 67:7798–7806. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang HG, Mehta K, Cohen P and Guha C:
Hyperthermia on immune regulation: A temperature's story. Cancer
Lett. 271:191–204. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Torigoe T, Tamura Y and Sato N: Heat shock
proteins and immunity: Application of hyperthermia for
immunomodulation. Int J Hyperthermia. 25:610–616. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Calderwood SK, Theriault JR and Gong J:
How is the immune response affected by hyperthermia and heat shock
proteins? Int J Hyperthermia. 21:713–716. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lee S, Son B, Park G, Kim H, Kang H, Jeon
J, Youn H and Youn B: Immunogenic effect of hyperthermia on
enhancing radiotherapeutic efficacy. Int J Mol Sci. 19:27952018.
View Article : Google Scholar
|
|
91
|
van Baal JO, Van de Vijver KK, Nieuwland
R, van Noorden CJ, van Driel WJ, Sturk A, Kenter GG, Rikkert LG and
Lok CA: The histophysiology and pathophysiology of the peritoneum.
Tissue Cell. 49:95–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kastelein AW, Vos LMC, de Jong KH, van
Baal JOAM, Nieuwland R, van Noorden CJF, Roovers JWR and Lok CAR:
Embryology, anatomy, physiology and pathophysiology of the
peritoneum and the peritoneal vasculature. Semin Cell Dev Biol.
92:27–36. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
de Bree E, Michelakis D, Stamatiou D,
Romanos J and Zoras O: Pharmacological principles of
intraperitoneal and bidirectional chemotherapy. Pleura Peritoneum.
2:47–62. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ceelen WP and Flessner MF: Intraperitoneal
therapy for peritoneal tumors: Biophysics and clinical evidence.
Nat Rev Clin Oncol. 7:108–115. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
van Ruth S, Mathôt RA, Sparidans RW,
Beijnen JH, Verwaal VJ and Zoetmulder FA: Population
pharmacokinetics and pharmacodynamics of mitomycin during
intraoperative hyperthermic intraperitoneal chemotherapy. Clinical
Pharmacokinet. 43:131–143. 2004. View Article : Google Scholar
|
|
96
|
Cashin PH, Ehrsson H, Wallin I, Nygren P
and Mahteme H: Pharmacokinetics of cisplatin during hyperthermic
intraperitoneal treatment of peritoneal carcinomatosis. Eur J Clin
Pharmacol. 69:533–540. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Leinwand JC, Bates GE, Allendorf JD,
Chabot JA, Lewin SN and Taub RN: Body surface area predicts plasma
oxaliplatin and pharmacokinetic advantage in hyperthermic
intraoperative intraperitoneal chemotherapy. Ann Surg Oncol.
20:1101–1104. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
de Bree E, Rosing H, Filis D, Romanos J,
Melisssourgaki M, Daskalakis M, Pilatou M, Sanidas E, Taflampas P,
Kalbakis K, et al: Cytoreductive surgery and intraoperative
hyperthermic intraperitoneal chemotherapy with paclitaxel: A
clinical and pharmacokinetic study. Ann Surg Oncol. 15:1183–1192.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
de Bree E, Rosing H, Beijnen JH, Romanos
J, Michalakis J, Georgoulias V and Tsiftsis DD: Pharmacokinetic
study of docetaxel in intraoperative hyperthermic i.p. chemotherapy
for ovarian cancer. Anticancer Drugs. 14:103–110. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Nicoletto MO, Padrini R, Galeotti F,
Ferrazzi E, Cartei G, Riddi F, Palumbo M, De Paoli M and Corsini A:
Pharmacokinetics of intraperitoneal hyperthermic perfusion with
mitoxantrone in ovarian cancer. Cancer Chemother Pharmacol.
45:457–462. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Rossi CR, Mocellin S, Pilati P, Foletto M,
Quintieri L, Palatini P and Lise M: Pharmacokinetics of
intraperitoneal cisplatin and doxorubicin. Surg Oncol Clin N Am.
12:781–794. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Choi YH: Interpretation of drug
interaction using systemic and local tissue exposure changes.
Pharmaceutics. 12:4172020. View Article : Google Scholar
|
|
103
|
Tentes AA, Kyziridis D, Kakolyris S,
Pallas N, Zorbas G, Korakianitis O, Mavroudis C, Courcoutsakis N
and Prasopoulos P: Preliminary results of hyperthermic
intraperitoneal intraoperative chemotherapy as an adjuvant in
resectable pancreatic cancer. Gastroenterol Res Pract.
2012:5065712012. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lemoine L, Thijssen E, Carleer R, Cops J,
Lemmens V, Eyken PV, Sugarbaker P and der Speeten KV: Body surface
area-based versus concentration-based intraperitoneal perioperative
chemotherapy in a rat model of colorectal peritoneal surface
malignancy: Pharmacologic guidance towards standardization.
Oncotarget. 10:1407–1424. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lemoine L, Thijssen E, Carleer R, Geboers
K, Sugarbaker P and van der Speeten K: Body surface area-based vs
concentration-based perioperative intraperitoneal chemotherapy
after optimal cytoreductive surgery in colorectal peritoneal
surface malignancy treatment: COBOX trial. J Surg Oncol.
119:999–1010. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Liesenfeld LF, Hillebrecht HC, Klose J,
Schmidt T and Schneider M: Impact of perfusate concentration on
hyperthermic intraperitoneal chemotherapy efficacy and toxicity in
a rodent model. J Surg Res. 253:262–271. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Shah DK, Shin BS, Veith J, Tóth K,
Bernacki RJ and Balthasar JP: Use of an anti-vascular endothelial
growth factor antibody in a pharmacokinetic strategy to increase
the efficacy of intraperitoneal chemotherapy. J Pharmacol Exp Ther.
329:580–591. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Gremonprez F, Descamps B, Izmer A, Vanhove
C, Vanhaecke F, De Wever O and Ceelen W: Pretreatment with
VEGF(R)-inhibitors reduces interstitial fluid pressure, increases
intraperitoneal chemotherapy drug penetration, and impedes tumor
growth in a mouse colorectal carcinomatosis model. Oncotarget.
6:29889–29900. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Li H, Mao X, Liu K, Sun J, Li B, Malyar
RM, Liu D, Pan C, Gan F and Liu Y: A pilot study of combination
intraperitoneal recombinant human endostatin and chemotherapy for
refractory malignant ascites secondary to ovarian cancer. Med
Oncol. 31:9302014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Cristea MC, Frankel P, Synold T, Rivkin S,
Lim D, Chung V, Chao J, Wakabayashi M, Paz B, Han E, et al: A phase
I trial of intraperitoneal nab-paclitaxel in the treatment of
advanced malignancies primarily confined to the peritoneal cavity.
Cancer Chemother Pharmaco. 83:589–598. 2019. View Article : Google Scholar
|
|
111
|
Shamsi M, Sedaghatkish A, Dejam M,
Saghafian M, Mohammadi M and Sanati-Nezhad A: Magnetically assisted
intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv.
25:846–861. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sugarbaker PH and Van der Speeten K:
Surgical technology and pharmacology of hyperthermic perioperative
chemotherapy. J Gastrointest Oncol. 7:29–44. 2016.PubMed/NCBI
|
|
113
|
Dakwar GR, Shariati M, Willaert W, Ceelen
W, De Smedt SC and Remaut K: Nanomedicine-based intraperitoneal
therapy for the treatment of peritoneal carcinomatosis-Mission
possible? Adv Drug Deliv Rev. 108:13–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Galluzzi L, Buqué A, Kepp O, Zitvogel L
and Kroemer G: Immunological effects of conventional chemotherapy
and targeted anticancer Agents. Cancer Cell. 28:690–714. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Coffelt SB and de Visser KE:
Immune-mediated mechanisms influencing the efficacy of anticancer
therapies. Trends Immunol. 36:198–216. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Latchman Y, Wood CR, Chernova T, Chaudhary
D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, et al:
PD-L2 is a second ligand for PD-1 and inhibits T cell activation.
Nat Immunol. 2:261–268. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
117
|
Pfistershammer K, Klauser C, Pickl WF,
Stöckl J, Leitner J, Zlabinger G, Majdic O and Steinberger P: No
evidence for dualism in function and receptors: PD-L2/B7-DC is an
inhibitory regulator of human T cell activation. Eur J Immunol.
36:1104–1113. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Schiavoni G, Sistigu A, Valentini M,
Mattei F, Sestili P, Spadaro F, Sanchez M, Lorenzi S, D'Urso MT,
Belardelli F, et al: Cyclophosphamide synergizes with type I
interferons through systemic dendritic cell reactivation and
induction of immunogenic tumor apoptosis. Cancer Res. 71:768–778.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wu J and Waxman DJ: Metronomic
cyclophosphamide eradicates large implanted GL261 gliomas by
activating antitumor Cd8 T-cell responses and immune memory.
Oncoimmunology. 4:e10055212015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Chen C, Chen Z, Chen D, Zhang B, Wang Z
and Le H: Suppressive effects of gemcitabine plus cisplatin
chemotherapy on regulatory T cells in nonsmall-cell lung cancer. J
Int Med Res. 43:180–187. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zitvogel L, Galluzzi L, Smyth MJ and
Kroemer G: Mechanism of action of conventional and targeted
anticancer therapies: Reinstating immunosurveillance. Immunity.
39:74–88. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kepp O, Senovilla L, Vitale I, Vacchelli
E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N,
et al: Consensus guidelines for the detection of immunogenic cell
death. Oncoimmunology. 3:e9556912014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Garg AD and Agostinis P: Cell death and
immunity in cancer: From danger signals to mimicry of pathogen
defense responses. Immunol Rev. 280:126–148. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Krysko DV, Garg AD, Kaczmarek A, Krysko O,
Agostinis P and Vandenabeele P: Immunogenic cell death and DAMPs in
cancer therapy. Nat Rev Cancer. 12:860–875. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Banchereau J, Briere F, Caux C, Davoust J,
Lebecque S, Liu YJ, Pulendran B and Palucka K: Immunobiology of
dendritic cells. Annu Rev Immunol. 18:767–811. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Buqué A and Galluzzi L: Modeling tumor
immunology and immunotherapy in Mice. Trends Cancer. 4:599–601.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Curiel TJ: Immunotherapy: A useful
strategy to help combat multidrug resistance. Drug Resist Updat.
15:106–113. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Chen Q, Sun L and Chen ZJ: Regulation and
function of the cGAS-STING pathway of cytosolic DNA sensing. Nat
Immunol. 17:1142–1149. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Li A, Yi M, Qin S, Song Y, Chu Q and Wu K:
Activating cGAS-STING pathway for the optimal effect of cancer
immunotherapy. J Hematol Oncol. 12:352019. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Le Bon A, Thompson C, Kamphuis E, Durand
V, Rossmann C, Kalinke U and Tough DF: Cutting edge: Enhancement of
antibody responses through direct stimulation of B and T cells by
type I IFN. J Immunol. 176:2074–2078. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Fuertes MB, Woo SR, Burnett B, Fu YX and
Gajewski TF: Type I interferon response and innate immune sensing
of cancer. Trends Immunol. 34:67–73. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Bhagwandin SB, Naffouje S and Salti G:
Delayed presentation of major complications in patients undergoing
cytoreductive surgery plus hyperthermic intraperitoneal
chemotherapy following hospital discharge. J Surg Oncol.
111:324–327. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Blaj S, Nedelcut S, Mayr M, Leebmann H,
Leucuta D, Glockzin G and Piso P: Re-operations for early
postoperative complications after CRS and HIPEC: Indication,
timing, procedure, and outcome. Langenbecks Arch Surg. 404:541–546.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Dreznik Y, Hoffman A, Hamburger T,
Ben-Yaacov A, Dux Y, Jacoby H, Berger Y, Nissan A and Gutman M:
Hospital readmission rates and risk factors for readmission
following cytoreductive surgery (CRS) and hyperthermic
intraperitoneal chemotherapy (HIPEC) for peritoneal surface
malignancies. Surgeon. 16:278–282. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Panebianco C, Andriulli A and Pazienza V:
Pharmacomicrobiomics: Exploiting the drug-microbiota interactions
in anticancer therapies. Microbiome. 6:922018. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Routy B, Le Chatelier E, Derosa L, Duong
CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C,
Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based
immunotherapy against epithelial tumors. Science. 359:91–97. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Routy B, Gopalakrishnan V, Daillère R,
Zitvogel L, Wargo JA and Kroemer G: The gut microbiota influences
anticancer immunosurveillance and general health. Nat Rev Clin
Oncol. 15:382–396. 2018. View Article : Google Scholar : PubMed/NCBI
|