|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Rawla P and Barsouk A: Epidemiology of
gastric cancer: Global trends, risk factors and prevention. Prz
Gastroenterol. 14:26–38. 2019.PubMed/NCBI
|
|
3
|
Balakrishnan M, George R, Sharma A and
Graham DY: Changing trends in stomach cancer throughout the world.
Curr Gastroenterol Rep. 19:362017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Allemani C, Matsuda T, Di Carlo V,
Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ,
Estève J, et al: Global surveillance of trends in cancer survival
2000-14 (CONCORD-3): Analysis of individual records for 37 513 025
patients diagnosed with one of 18 cancers from 322 population-based
registries in 71 countries. Lancet. 391:1023–1075. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kono K, Nakajima S and Mimura K: Current
status of immune checkpoint inhibitors for gastric cancer. Gastric
Cancer. 23:565–578. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sasaki A, Nakamura Y, Mishima S, Kawazoe
A, Kuboki Y, Bando H, Kojima T, Doi T, Ohtsu A, Yoshino T, et al:
Predictive factors for hyperprogressive disease during nivolumab as
anti-PD1 treatment in patients with advanced gastric cancer.
Gastric Cancer. 22:793–802. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Aoki M, Shoji H, Nagashima K, Imazeki H,
Miyamoto T, Hirano H, Honma Y, Iwasa S, Okita N, Takashima A, et
al: Hyperprogressive disease during nivolumab or irinotecan
treatment in patients with advanced gastric cancer. ESMO Open.
4:e0004882019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ogata T, Satake H, Ogata M, Hatachi Y and
Yasui H: Hyperprogressive disease in the irradiation field after a
single dose of nivolumab for gastric cancer: A case report. Case
Rep Oncol. 11:143–150. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kamada T, Togashi Y, Tay C, Ha D, Sasaki
A, Nakamura Y, Sato E, Fukuoka S, Tada Y, Tanaka A, et al:
PD-1+ regulatory T cells amplified by PD-1 blockade
promote hyperprogression of cancer. Proc Natl Acad Sci USA.
116:9999–10008. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Takeoka T, Okada K, Matsuno H, Konishi K,
Ota H, Yokoyama S, Fukunaga M and Kobayashi K: Hyperprogressive
disease during treatment with nivolumab for recurrence of gastric
cancer. Gan To Kagaku Ryoho. 47:165–167. 2020.(In Japanese).
PubMed/NCBI
|
|
12
|
Togasaki K, Sukawa Y, Kanai T and Takaishi
H: Clinical efficacy of immune checkpoint inhibitors in the
treatment of unresectable advanced or recurrent gastric cancer: An
evidence-based review of therapies. Onco Targets Ther.
11:8239–8250. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bang YJ, Ruiz EY, Van Cutsem E, Lee KW,
Wyrwicz L, Schenker M, Alsina M, Ryu MH, Chung HC, Evesque L, et
al: Phase III, randomised trial of avelumab versus physician's
choice of chemotherapy as third-line treatment of patients with
advanced gastric or gastro-oesophageal junction cancer: Primary
analysis of JAVELIN Gastric 300. Ann Oncol. 29:2052–2060. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shitara K, Ozguroglu M, Bang YJ, Di
Bartolomeo M, Mandalà M, Ryu MH, Fornaro L, Olesiński T, Caglevic
C, Chung HC, et al: Pembrolizumab versus paclitaxel for previously
treated, advanced gastric or gastro-oesophageal junction cancer
(KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial.
Lancet. 392:123–133. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Song X, Qi W, Guo J, Sun L, Ding A, Zhao
G, Li H, Qiu W and Lv J: Immune checkpoint inhibitor combination
therapy for gastric cancer: Research progress. Oncol Lett.
20:462020.PubMed/NCBI
|
|
16
|
Wang BC, Zhang ZJ, Fu C and Wang C:
Efficacy and safety of anti-PD-1/PD-L1 agents vs chemotherapy in
patients with gastric or gastroesophageal junction cancer: A
systematic review and meta-analysis. Medicine (Baltimore).
98:e180542019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fuchs CS, Doi T, Jang RW, Muro K, Satoh T,
Machado M, Sun W, Jalal SI, Shah MA, Metges JP, et al: Safety and
efficacy of pembrolizumab monotherapy in patients with previously
treated advanced gastric and gastroesophageal junction cancer:
Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 4:e1800132018.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chung HC, Arkenau HT, Lee J, Rha SY, Oh
DY, Wyrwicz L, Kang YK, Lee KW, Infante JR, Lee SS, et al: Avelumab
(anti-PD-L1) as first-line switch-maintenance or second-line
therapy in patients with advanced gastric or gastroesophageal
junction cancer: phase 1b results from the JAVELIN Solid Tumor
trial. J Immunother Cancer. 7:302019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen C, Zhang F, Zhou N, Gu YM, Zhang YT,
He YD, Wang L, Yang LX, Zhao Y and Li YM: Efficacy and safety of
immune checkpoint inhibitors in advanced gastric or
gastroesophageal junction cancer: A systematic review and
meta-analysis. Oncoimmunology. 8:e15815472019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang J, Mo H, Zhang W, Chen X, Qu D, Wang
X, Wu D, Wang X, Lan B, Yang B, et al: Promising efficacy of
SHR-1210, a novel anti-programmed cell death 1 antibody, in
patients with advanced gastric and gastroesophageal junction cancer
in China. Cancer. 125:742–749. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Doi T, Iwasa S, Muro K, Satoh T, Hironaka
S, Esaki T, Nishina T, Hara H, Machida N, Komatsu Y, et al: Phase 1
trial of avelumab (anti-PD-L1) in Japanese patients with advanced
solid tumors, including dose expansion in patients with gastric or
gastroesophageal junction cancer: The JAVELIN Solid Tumor JPN
trial. Gastric Cancer. 22:817–827. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zheng Z, Guo Y and Zou CP: Oncological
outcomes of addition of anti-PD1/PD-L1 to chemotherapy in the
therapy of patients with advanced gastric or gastro-oesophageal
junction cancer: A meta-analysis. Medicine (Baltimore).
99:e183322020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shitara K, Van Cutsem E, Bang YJ, Fuchs C,
Wyrwicz L, Lee KW, Kudaba I, Garrido M, Chung HC, Lee J, et al:
Efficacy and safety of pembrolizumab or pembrolizumab plus
chemotherapy vs chemotherapy alone for patients with first-line,
advanced gastric cancer: The KEYNOTE-062 phase 3 randomized
clinical trial. JAMA Oncol. 6:1571–1580. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kang YK, Bang YJ, Kondo S, Chung HC, Muro
K, Dussault I, Helwig C, Osada M and Doi T: Safety and tolerability
of bintrafusp alfa, a bifunctional fusion protein targeting TGFbeta
and PD-L1, in asian patients with pretreated recurrent or
refractory gastric cancer. Clin Cancer Res. 26:3202–3210. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Taieb J, Moehler M, Boku N, Ajani JA,
Yañez Ruiz E, Ryu MH, Guenther S, Chand V and Bang YJ: Evolution of
checkpoint inhibitors for the treatment of metastatic gastric
cancers: Current status and future perspectives. Cancer Treat Rev.
66:104–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
De Mello RA, Lordick F, Muro K and
Janjigian YY: Current and future aspects of immunotherapy for
esophageal and gastric malignancies. Am Soc Clin Oncol Educ Book.
39:237–247. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Masuda K, Shoji H, Nagashima K, Yamamoto
S, Ishikawa M, Imazeki H, Aoki M, Miyamoto T, Hirano H, Honma Y, et
al: Correlation between immune-related adverse events and prognosis
in patients with gastric cancer treated with nivolumab. BMC Cancer.
19:9742019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Park R, Lopes L and Saeed A:
Anti-PD-1/L1-associated immune-related adverse events as harbinger
of favorable clinical outcome: Systematic review and meta-analysis.
Clin Transl Oncol. 23:100–109. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fridman WH, Zitvogel L, Sautes-Fridman C
and Kroemer G: The immune contexture in cancer prognosis and
treatment. Nat Rev Clin Oncol. 14:717–734. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lazar DC, Avram MF, Romosan I, Cornianu M,
Taban S and Goldis A: Prognostic significance of tumor immune
microenvironment and immunotherapy: Novel insights and future
perspectives in gastric cancer. World J Gastroenterol.
24:3583–3616. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang WH, Wang WQ, Gao HL, Yu XJ and Liu
L: The tumor immune microenvironment in gastroenteropancreatic
neuroendocrine neoplasms. Biochim Biophys Acta Rev Cancer.
1872:1883112019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fan X, Jin J, Yan L, Liu L, Li Q and Xu Y:
The impaired anti-tumoral effect of immune surveillance cells in
the immune microenvironment of gastric cancer. Clin Immunol.
219:1085512020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Rojas A, Araya P, Gonzalez I and Morales
E: Gastric tumor microenvironment. Adv Exp Med Biol. 1226:23–35.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kamath SD, Kalyan A and Benson AB III:
Pembrolizumab for the treatment of gastric cancer. Expert Rev
Anticancer Ther. 18:1177–1187. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Oya Y, Hayakawa Y and Koike K: Tumor
microenvironment in gastric cancers. Cancer Sci. 111:2696–2707.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ocana A, Nieto-Jimenez C, Pandiella A and
Templeton AJ: Neutrophils in cancer: Prognostic role and
therapeutic strategies. Mol Cancer. 16:1372017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jiang X, Wang J, Deng X, Xiong F, Ge J,
Xiang B, Wu X, Ma J, Zhou M, Li X, et al: Role of the tumor
microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol
Cancer. 18:102019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Aktas ON, Ozturk AB, Erman B, Erus S,
Tanju S and Dilege S: Role of natural killer cells in lung cancer.
J Cancer Res Clin Oncol. 144:997–1003. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jackaman C, Tomay F, Duong L, Abdol Razak
NB, Pixley FJ, Metharom P and Nelson DJ: Aging and cancer: The role
of macrophages and neutrophils. Ageing Res Rev. 36:105–116. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tevis KM, Cecchi RJ, Colson YL and
Grinstaff MW: Mimicking the tumor microenvironment to regulate
macrophage phenotype and assessing chemotherapeutic efficacy in
embedded cancer cell/macrophage spheroid models. Acta Biomater.
50:271–279. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ruffell B and Coussens LM: Macrophages and
therapeutic resistance in cancer. Cancer Cell. 27:462–472. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang J, Yan Y, Yang Y, Wang L, Li M and
Wang J, Liu X, Duan X and Wang J: High infiltration of
tumor-associated macrophages influences poor prognosis in human
gastric cancer patients, associates with the phenomenon of EMT.
Medicine (Baltimore). 95:e26362016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang XL, Jiang JT and Wu CP: Prognostic
significance of tumor-associated macrophage infiltration in gastric
cancer: A meta-analysis. Genet Mol Res. 152016.doi:
10.4238/gmr15049040.
|
|
44
|
Wang B, Xu D, Yu X, Ding T, Rao H, Zhan Y,
Zheng L and Li L: Association of intra-tumoral infiltrating
macrophages and regulatory T cells is an independent prognostic
factor in gastric cancer after radical resection. Ann Surg Oncol.
18:2585–2593. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhou K, Cheng T, Zhan J, Peng X, Zhang Y,
Wen J, Chen X and Ying M: Targeting tumor-associated macrophages in
the tumor microenvironment. Oncol Lett. 20:2342020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Aras S and Zaidi MR: TAMeless traitors:
Macrophages in cancer progression and metastasis. Br J Cancer.
117:1583–1591. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Petty AJ and Yang Y: Tumor-associated
macrophages: Implications in cancer immunotherapy. Immunotherapy.
9:289–302. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Fan X, Zhang H, Cheng Y, Jiang X, Zhu J
and Jin T: Double roles of macrophages in human neuroimmune
diseases and their animal models. Mediators Inflamm.
2016:84892512016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang X, Jiao X, Meng Y, Chen H, Griffin N,
Gao X and Shan F: Methionine enkephalin (MENK) inhibits human
gastric cancer through regulating tumor associated macrophages
(TAMs) and PI3K/AKT/mTOR signaling pathway inside cancer cells. Int
Immunopharmacol. 65:312–322. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gambardella V, Castillo J, Tarazona N,
Gimeno-Valiente F, Martínez-Ciarpaglini C, Cabeza-Segura M, Roselló
S, Roda D, Huerta M, Cervantes A and Fleitas T: The role of
tumor-associated macrophages in gastric cancer development and
their potential as a therapeutic target. Cancer Treat Rev.
86:1020152020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim KJ, Wen XY, Yang HK, Kim WH and Kang
GH: Prognostic implication of M2 macrophages are determined by the
proportional balance of tumor associated macrophages and tumor
infiltrating lymphocytes in microsatellite-unstable gastric
carcinoma. PLoS One. 10:e01441922015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Park JY, Sung JY, Lee J, Park YK, Kim YW,
Kim GY, Won KY and Lim SJ: Polarized CD163+ tumor-associated
macrophages are associated with increased angiogenesis and CXCL12
expression in gastric cancer. Clin Res Hepatol Gastroenterol.
40:357–365. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Liu JY, Peng CW, Yang GF, Hu WQ, Yang XJ,
Huang CQ, Xiong B and Li Y: Distribution pattern of tumor
associated macrophages predicts the prognosis of gastric cancer.
Oncotarget. 8:92757–92769. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Tauchi Y, Tanaka H, Kumamoto K, Tokumoto
M, Sakimura C, Sakurai K, Kimura K, Toyokawa T, Amano R, Kubo N, et
al: Tumor-associated macrophages induce capillary morphogenesis of
lymphatic endothelial cells derived from human gastric cancer.
Cancer Sci. 107:1101–1109. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ge S, Xia X, Ding C, Zhen B, Zhou Q, Feng
J, Yuan J, Chen R, Li Y, Ge Z, et al: A proteomic landscape of
diffuse-type gastric cancer. Nat Commun. 9:10122018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yamaguchi T, Fushida S, Yamamoto Y,
Tsukada T, Kinoshita J, Oyama K, Miyashita T, Tajima H, Ninomiya I,
Munesue S, et al: Tumor-associated macrophages of the M2 phenotype
contribute to progression in gastric cancer with peritoneal
dissemination. Gastric Cancer. 19:1052–1065. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Plummer M, de Martel C, Vignat J, Ferlay
J, Bray F and Franceschi S: Global burden of cancers attributable
to infections in 2012: A synthetic analysis. Lancet Glob Health.
4:e609–616. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hardbower DM, Asim M, Murray-Stewart T,
Casero RA Jr, Verriere T, Lewis ND, Chaturvedi R, Piazuelo MB and
Wilson KT: Arginase 2 deletion leads to enhanced M1 macrophage
activation and upregulated polyamine metabolism in response to
Helicobacter pylori infection. Amino Acids. 48:2375–2388. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shen Z, Kauttu T, Seppanen H, Vainionpää
S, Ye Y, Wang S, Mustonen H and Puolakkainen P: Both macrophages
and hypoxia play critical role in regulating invasion of gastric
cancer in vitro. Acta Oncol. 52:852–860. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhihua Y, Yulin T, Yibo W, Wei D, Yin C,
Jiahao X, Runqiu J and Xuezhong X: Hypoxia decreases macrophage
glycolysis and M1 percentage by targeting microRNA-30c and mTOR in
human gastric cancer. Cancer Sci. 110:2368–2377. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Osinsky S, Bubnovskaya L, Ganusevich I,
Kovelskaya A, Gumenyuk L, Olijnichenko G and Merentsev S: Hypoxia,
tumour-associated macrophages, microvessel density, VEGF and matrix
metalloproteinases in human gastric cancer: Interaction and impact
on survival. Clin Transl Oncol. 13:133–138. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shen Z, Yan Y, Ye C, Wang B, Jiang K, Ye
Y, Mustonen H, Puolakkainen P and Wang S: The effect of Vasohibin-1
expression and tumor-associated macrophages on the angiogenesis in
vitro and in vivo. Tumour Biol. 37:7267–7276. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kawahara A, Hattori S, Akiba J, Nakashima
K, Taira T, Watari K, Hosoi F, Uba M, Basaki Y, Koufuji K, et al:
Infiltration of thymidine phosphorylase-positive macrophages is
closely associated with tumor angiogenesis and survival in
intestinal type gastric cancer. Oncol Rep. 24:405–415. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao B, Mei D, Zhang J, Luo R, Lu H, Xu H
and Huang B: Impact of skip lymph node metastasis on the prognosis
of gastric cancer patients who underwent curative gastrectomy. J
BUON. 24:693–700. 2019.PubMed/NCBI
|
|
66
|
Liu XJ, Li SL, Li JS, Lu H, Yin LL, Zheng
WF and Wang WC: Long non-coding RNA ZEB1-AS1 is associated with
poor prognosis in gastric cancer and promotes cancer cell
metastasis. Eur Rev Med Pharmacol Sci. 22:2624–2630.
2018.PubMed/NCBI
|
|
67
|
Wei Y, Zhang F, Zhang T, Zhang Y, Chen H,
Wang F and Li Y: LDLRAD2 overexpression predicts poor prognosis and
promotes metastasis by activating Wnt/β-catenin/EMT signaling
cascade in gastric cancer. Aging (Albany NY). 11:8951–8968. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xiao T and Jie Z: MiR-21 Promotes the
invasion and metastasis of gastric cancer cells by activating
epithelial-mesenchymal transition. Eur Surg Res. 60:208–218. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yao Z, Yuan T, Wang H, Yao S, Zhao Y, Liu
Y, Jin S, Chu J, Xu Y, Zhou W, et al: MMP-2 together with MMP-9
overexpression correlated with lymph node metastasis and poor
prognosis in early gastric carcinoma. Tumour Biol.
39:10104283177004112017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fan Y, Wang YF, Su HF, Fang N, Zou C, Li
WF and Fei ZH: Decreased expression of the long noncoding RNA
LINC00261 indicate poor prognosis in gastric cancer and suppress
gastric cancer metastasis by affecting the epithelial-mesenchymal
transition. J Hematol Oncol. 9:572016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang W, Song ZJ, Wang Y, Zhong WF, Kang P
and Yang Y: Elevated long non-coding RNA LINC00958 was associated
with metastasis and unfavorable prognosis in gastric cancer. Eur
Rev Med Pharmacol Sci. 23:598–603. 2019.PubMed/NCBI
|
|
72
|
Xie QP, Xiang C, Wang G, Lei KF and Wang
Y: MACC1 upregulation promotes gastric cancer tumor cell metastasis
and predicts a poor prognosis. J Zhejiang Univ Sci B. 17:361–366.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Han F, Zhang L, Qiu W and Yi X: TRAF6
promotes the invasion and metastasis and predicts a poor prognosis
in gastric cancer. Pathol Res Pract. 212:31–37. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Turajlic S and Swanton C: Metastasis as an
evolutionary process. Science. 352:169–175. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Guo J, Yan Y, Yan Y, Guo Q, Zhang M, Zhang
J and Goltzman D: Tumor-associated macrophages induce the
expression of FOXQ1 to promote epithelial-mesenchymal transition
and metastasis in gastric cancer cells. Oncol Rep. 38:2003–2010.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yan Y, Zhang J, Li JH, Liu X, Wang JZ, Qu
HY, Wang JS and Duan XY: High tumor-associated macrophages
infiltration is associated with poor prognosis and may contribute
to the phenomenon of epithelial-mesenchymal transition in gastric
cancer. Onco Targets Ther. 9:3975–3983. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zheng P, Luo Q, Wang W, Li J, Wang T, Wang
P, Chen L, Zhang P, Chen H, Liu Y, et al: Tumor-associated
macrophages-derived exosomes promote the migration of gastric
cancer cells by transfer of functional Apolipoprotein E. Cell Death
Dis. 9:4342018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ying X, Wu Q, Wu X, Zhu Q and Wang X,
Jiang L, Chen X and Wang X: Epithelial ovarian cancer-secreted
exosomal miR-222-3p induces polarization of tumor-associated
macrophages. Oncotarget. 7:43076–43087. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Su CY, Fu XL, Duan W, Yu PW and Zhao YL:
High density of CD68+ tumor-associated macrophages predicts a poor
prognosis in gastric cancer mediated by IL-6 expression. Oncol
Lett. 15:6217–6224. 2018.PubMed/NCBI
|
|
80
|
Wang Z, Yin N, Zhang Z, Zhang Y, Zhang G
and Chen W: Upregulation of T-cell immunoglobulin and mucin-domain
containing-3 (Tim-3) in monocytes/macrophages associates with
gastric cancer progression. Immunol Invest. 46:134–148. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ding H, Zhao L, Dai S, Li L, Wang F and
Shan B: CCL5 secreted by tumor associated macrophages may be a new
target in treatment of gastric cancer. Biomed Pharmacother.
77:142–149. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lin C, He H, Liu H, Li R, Chen Y, Qi Y,
Jiang Q, Chen L, Zhang P, Zhang H, et al: Tumour-associated
macrophages-derived CXCL8 determines immune evasion through
autonomous PD-L1 expression in gastric cancer. Gut. 68:1764–1773.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Go Y, Tanaka H, Tokumoto M, Sakurai K,
Toyokawa T, Kubo N, Muguruma K, Maeda K, Ohira M and Hirakawa K:
Tumor-associated macrophages extend along lymphatic flow in the
Pre-metastatic lymph nodes of human gastric cancer. Ann Surg Oncol.
23 (Suppl 2):S230–S235. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rojas A, Delgado-Lopez F, Perez-Castro R,
Gonzalez I, Romero J, Rojas I, Araya P, Añazco C, Morales E and
Llanos J: HMGB1 enhances the protumoral activities of M2
macrophages by a RAGE-dependent mechanism. Tumour Biol.
37:3321–3329. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie
G, Ma Y and Shen L: Exosomal transfer of tumor-associated
macrophage-derived miR-21 confers cisplatin resistance in gastric
cancer cells. J Exp Clin Cancer Res. 36:532017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Boussiotis VA: Molecular and biochemical
aspects of the PD-1 checkpoint pathway. N Engl J Med.
375:1767–1778. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Dong Y, Sun Q and Zhang X: PD-1 and its
ligands are important immune checkpoints in cancer. Oncotarget.
8:2171–2186. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wu Y, Cao D, Qu L, Cao X, Jia Z, Zhao T,
Wang Q and Jiang J: PD-1 and PD-L1 co-expression predicts favorable
prognosis in gastric cancer. Oncotarget. 8:64066–64082. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
D'Ignazio A, Kabata P, Ambrosio MR, Polom
K, Marano L, Spagnoli L, Ongaro A, Pieretti L, Marrelli D, Biviano
I and Roviello F: Preoperative oral immunonutrition in
gastrointestinal surgical patients: How the tumour microenvironment
can be modified. Clin Nutr ESPEN. 38:153–159. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kono Y, Saito H, Miyauchi W, Shimizu S,
Murakami Y, Shishido Y, Miyatani K, Matsunaga T, Fukumoto Y,
Nakayama Y, et al: Increased PD-1-positive macrophages in the
tissue of gastric cancer are closely associated with poor prognosis
in gastric cancer patients. BMC Cancer. 20:1752020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wang F, Li B, Wei Y, Zhao Y, Wang L, Zhang
P, Yang J, He W, Chen H, Jiao Z and Li Y: Tumor-derived exosomes
induce PD1+ macrophage population in human gastric
cancer that promotes disease progression. Oncogenesis. 7:412018.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Huang YK, Wang M, Sun Y, Di Costanzo N,
Mitchell C, Achuthan A, Hamilton JA, Busuttil RA and Boussioutas A:
Macrophage spatial heterogeneity in gastric cancer defined by
multiplex immunohistochemistry. Nat Commun. 10:39282019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Harada K, Dong X, Estrella JS, Correa AM,
Xu Y, Hofstetter WL, Sudo K, Onodera H, Suzuki K, Suzuki A, et al:
Tumor-associated macrophage infiltration is highly associated with
PD-L1 expression in gastric adenocarcinoma. Gastric Cancer.
21:31–40. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Nakayama Y, Mimura K, Kua LF, Okayama H,
Min AKT, Saito K, Hanayama H, Watanabe Y, Saito M, Momma T, et al:
Immune suppression caused by PD-L2 expression on tumor cells in
gastric cancer. Gastric Cancer. 23:961–973. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Colaprico A, Silva TC, Olsen C, Garofano
L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM,
Castiglioni I, et al: TCGAbiolinks: An R/Bioconductor package for
integrative analysis of TCGA data. Nucleic Acids Res. 44:e712016.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Al-Khami AA, Zheng L, Del Valle L, Hossain
F, Wyczechowska D, Zabaleta J, Sanchez MD, Dean MJ, Rodriguez PC
and Ochoa AC: Exogenous lipid uptake induces metabolic and
functional reprogramming of tumor-associated myeloid-derived
suppressor cells. Oncoimmunology. 6:e13448042017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hossain F, Al-Khami AA, Wyczechowska D,
Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T,
Zou W, et al: Inhibition of fatty acid oxidation modulates
immunosuppressive functions of myeloid-derived suppressor cells and
enhances cancer therapies. Cancer Immunol Res. 3:1236–1247. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Gardner JK, Mamotte CD, Patel P, Yeoh TL,
Jackaman C and Nelson DJ: Mesothelioma tumor cells modulate
dendritic cell lipid content, phenotype and function. PLoS One.
10:e01235632015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Luo Q, Zheng N, Jiang L, Wang T, Zhang P,
Liu Y, Zheng P, Wang W, Xie G, Chen L, et al: Lipid accumulation in
macrophages confers protumorigenic polarization and immunity in
gastric cancer. Cancer Sci. 111:4000–4011. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu X, Cao Y, Li R, Gu Y, Chen Y, Qi Y, Lv
K, Wang J, Yu K, Lin C, et al: Poor clinical outcomes of
intratumoral dendritic cell-specific intercellular adhesion
molecule 3-grabbing non-integrin-positive macrophages associated
with immune evasion in gastric cancer. Eur J Cancer. 128:27–37.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Peng LS, Zhang JY, Teng YS, Zhao YL, Wang
TT, Mao FY, Lv YP, Cheng P, Li WH, Chen N, et al: Tumor-associated
monocytes/macrophages impair NK-cell function via TGFβ1 in human
gastric cancer. Cancer Immunol Res. 5:248–256. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Sitarz R, Skierucha M, Mielko J, Offerhaus
GJA, Maciejewski R and Polkowski WP: Gastric cancer: Epidemiology,
prevention, classification, and treatment. Cancer Manag Res.
10:239–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Salati M, Orsi G, Smyth E, Aprile G,
Beretta G, De Vita F, Di Bartolomeo M, Fanotto V, Lonardi S, Morano
F, et al: Gastric cancer: Translating novels concepts into clinical
practice. Cancer Treat Rev. 79:1018892019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Zhao D, Plotnikoff N, Griffin N, Song T
and Shan F: Methionine enkephalin, its role in immunoregulation and
cancer therapy. Int Immunopharmacol. 37:59–64. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Tian J, Jiao X, Wang X, Geng J, Wang R,
Liu N, Gao X, Griffin N and Shan F: Novel effect of methionine
enkephalin against influenza A virus infection through inhibiting
TLR7-MyD88-TRAF6-NF-κB p65 signaling pathway. Int Immunopharmacol.
55:38–48. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Meng Y, Gao X, Chen W, Plotnikoff NP,
Griffin N, Zhang G and Shan F: Methionine enkephalin (MENK) mounts
antitumor effect via regulating dendritic cells (DCs). Int
Immunopharmacol. 44:61–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang DM, Wang GC, Yang J, Plotnikoff NP,
Griffin N, Han YM, Qi RQ, Gao XH and Shan FP: Inhibition of the
growth of human melanoma cells by methionine enkephalin. Mol Med
Rep. 14:5521–5527. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yue Z, Si T, Pan Z, Cao W, Yan Z, Jiang Z
and Ouyang H: Sophoridine suppresses cell growth in human
medulloblastoma through FoxM1, NF-κB and AP-1. Oncol Lett.
14:7941–7946. 2017.PubMed/NCBI
|
|
109
|
Zhuang H, Dai X, Zhang X, Mao Z and Huang
H: Sophoridine suppresses macrophage-mediated immunosuppression
through TLR4/IRF3 pathway and subsequently upregulates CD8(+) T
cytotoxic function against gastric cancer. Biomed Pharmacother.
121:1096362020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Speiser DE, Ho PC and Verdeil G:
Regulatory circuits of T cell function in cancer. Nat Rev Immunol.
16:599–611. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y,
Wang F, Duan X, Li J, Zhang W and Wang H: A Natural CCR2 antagonist
relieves tumor-associated macrophage-mediated immunosuppression to
produce a therapeutic effect for liver cancer. EBioMedicine.
22:58–67. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Li X, Yao W, Yuan Y, Chen P, Li B, Li J,
Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of
tumour-infiltrating macrophages via CCL2/CCR2 signalling as a
therapeutic strategy against hepatocellular carcinoma. Gut.
66:157–167. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Gomez-Roca CA, Italiano A, Le Tourneau C,
Cassier PA, Toulmonde M, D'Angelo SP, Campone M, Weber KL, Loirat
D, Cannarile MA, et al: Phase I study of emactuzumab single agent
or in combination with paclitaxel in patients with
advanced/metastatic solid tumors reveals depletion of
immunosuppressive M2-like macrophages. Ann Oncol. 30:1381–1392.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Piechutta M and Berghoff AS: New emerging
targets in cancer immunotherapy: The role of cluster of
differentiation 40 (CD40/TNFR5). ESMO Open. 4:e0005102019.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Bajor DL, Mick R, Riese MJ, Huang AC,
Sullivan B, Richman LP, Torigian DA, George SM, Stelekati E, Chen
F, et al: Long-term outcomes of a phase I study of agonist CD40
antibody and CTLA-4 blockade in patients with metastatic melanoma.
Oncoimmunology. 7:e14689562018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Machiels JP, Gomez-Roca C, Michot JM,
Zamarin D, Mitchell T, Catala G, Eberst L, Jacob W, Jegg AM,
Cannarile MA, et al: Phase Ib study of anti-CSF-1R antibody
emactuzumab in combination with CD40 agonist selicrelumab in
advanced solid tumor patients. J Immunother Cancer. 8:e0011532020.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Alqahtani FY, Aleanizy FS, El Tahir E,
Alkahtani HM and AlQuadeib BT: Paclitaxel. Profiles Drug Subst
Excip Relat Methodol. 44:205–238. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Shitara K, Takashima A, Fujitani K, Koeda
K, Hara H, Nakayama N, Hironaka S, Nishikawa K, Makari Y, Amagai K,
et al: Nab-paclitaxel versus solvent-based paclitaxel in patients
with previously treated advanced gastric cancer (ABSOLUTE): An
open-label, randomised, non-inferiority, phase 3 trial. Lancet
Gastroenterol Hepatol. 2:277–287. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Mehta R, Kommalapati A and Kim RD: The
impact of ramucirumab treatment on survival and quality of life in
patients with gastric cancer. Cancer Manag Res. 12:51–57. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Bando H, Shimodaira H, Fujitani K,
Takashima A, Yamaguchi K, Nakayama N, Takahashi T, Oki E, Azuma M,
Nishina T, et al: A phase II study of nab-paclitaxel in combination
with ramucirumab in patients with previously treated advanced
gastric cancer. Eur J Cancer. 91:86–91. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kato Y, Tabata K, Kimura T,
Yachie-Kinoshita A, Ozawa Y, Yamada K, Ito J, Tachino S, Hori Y,
Matsuki M, et al: Lenvatinib plus anti-PD-1 antibody combination
treatment activates CD8+ T cells through reduction of
tumor-associated macrophage and activation of the interferon
pathway. PLoS One. 14:e02125132019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Kawazoe A, Fukuoka S, Nakamura Y, Kuboki
Y, Wakabayashi M, Nomura S, Mikamoto Y, Shima H, Fujishiro N,
Higuchi T, et al: Lenvatinib plus pembrolizumab in patients with
advanced gastric cancer in the first-line or second-line setting
(EPOC1706): An open-label, single-arm, phase 2 trial. Lancet Oncol.
21:1057–1065. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Liu X, Xu D, Huang C, Guo Y, Wang S, Zhu
C, Xu J, Zhang Z, Shen Y, Zhao W and Zhao G: Regulatory T cells and
M2 macrophages present diverse prognostic value in gastric cancer
patients with different clinicopathologic characteristics and
chemotherapy strategies. J Transl Med. 17:1922019. View Article : Google Scholar : PubMed/NCBI
|