|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Vaccarella S, Lortet-Tieulent J, Plummer
M, Franceschi S and Bray F: Worldwide trends in cervical cancer
incidence: Impact of screening against changes in disease risk
factors. Eur J Cancer. 49:3262–3273. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
WHO. Cervical cancer, . World Health
Organization; Geneva: 2018, http://www.who.int/cancer/prevention/diagnosis-screening/cervical-cancer/enJanuary
10–2020
|
|
4
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cohen PA, Jhingran A, Oaknin A and Denny
L: Cervical cancer. Lancet. 393:169–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Morice P, Leary A, Creutzberg C,
Abu-Rustum N and Darai E: Endometrial cancer. Lancet.
387:1094–1108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lheureux S, Gourley C, Vergote I and Oza
AM: Epithelial ovarian cancer. Lancet. 393:1240–1253. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nogueiras R, Habegger KM, Chaudhary N,
Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT
and Tschöp MH: Sirtuin 1 and sirtuin 3: Physiological modulators of
metabolism. Physiol Rev. 92:1479–1514. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Michishita E, Park JY, Burneskis JM,
Barrett JC and Horikawa I: Evolutionarily conserved and
nonconserved cellular localizations and functions of human SIRT
proteins. Mol Biol Cell. 16:4623–4635. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Morris BJ: Seven sirtuins for seven deadly
diseases of aging. Free Radic Biol Med. 56:133–171. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bitterman KJ, Anderson RM, Cohen HY,
Latorre-Esteves M and Sinclair DA: Inhibition of silencing and
accelerated aging by nicotinamide, a putative negative regulator of
yeast sir2 and human SIRT1. J Biol Chem. 277:45099–45107. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Guarente L and Franklin H: Epstein
lecture: Sirtuins, aging, and medicine. N Engl J Med.
364:2235–2244. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Alves-Fernandes DK and Jasiulionis MG: The
role of SIRT1 on DNA damage response and epigenetic alterations in
cancer. Int J Mol Sci. 20:31532019. View Article : Google Scholar
|
|
14
|
O'Hagan HM: Chromatin modifications during
repair of environmental exposure-induced DNA damage: A potential
mechanism for stable epigenetic alterations. Environ Mol Mutagen.
55:278–291. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ura K, Araki M, Saeki H, Masutani C, Ito
T, Iwai S, Mizukoshi T, Kaneda Y and Hanaoka F: ATP-dependent
chromatin remodeling facilitates nucleotide excision repair of
UV-induced DNA lesions in synthetic dinucleosomes. EMBO J.
20:2004–2014. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kala R, Shah HN, Martin SL and Tollefsbol
TO: Epigenetic-based combinatorial resveratrol and pterostilbene
alters DNA damage response by affecting SIRT1 and DNMT enzyme
expression, including SIRT1-dependent γ-H2AX and telomerase
regulation in triple-negative breast cancer. BMC Cancer.
15:6722015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ding N, Bonham EM, Hannon BE, Amick TR,
Baylin SB and O'Hagan HM: Mismatch repair proteins recruit DNA
methyltransferase 1 to sites of oxidative DNA damage. J Mol Cell
Biol. 8:244–254. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Deng CX: SIRT1, is it a tumor promoter or
tumor suppressor? Int J Biol Sci. 5:147–152. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dobbin MM, Madabhushi R, Pan L, Chen Y,
Kim D, Gao J, Ahanonu B, Pao PC, Qiu Y, Zhao Y and Tsai LH: SIRT1
collaborates with ATM and HDAC1 to maintain genomic stability in
neurons. Nat Neurosci. 16:1008–1015. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ong ALC and Ramasamy TS: Role of
Sirtuin1-p53 regulatory axis in aging, cancer and cellular
reprogramming. Ageing Res Rev. 43:64–80. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Guarente L: Sirtuins in aging and disease.
Cold Spring Harb Symp Quant Biol. 72:483–488. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Currie E, Schulze A, Zechner R, Walther TC
and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell
Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hamanaka RB and Chandel NS: Targeting
glucose metabolism for cancer therapy. J Exp Med. 209:211–215.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Maan M, Peters JM, Dutta M and Patterson
AD: Lipid metabolism and lipophagy in cancer. Biochem Biophys Res
Commun. 504:582–589. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Warburg O, Wind F and Negelein E: The
metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kleszcz R, Paluszczak J and Baer-Dubowska
W: Targeting aberrant cancer metabolism - The role of sirtuins.
Pharmacol Rep. 67:1068–1080. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Taylor DM, Maxwell MM, Luthi-Carter R and
Kazantsev AG: Biological and potential therapeutic roles of sirtuin
deacetylases. Cell Mol Life Sci. 65:4000–4018. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Haigis MC and Guarente LP: Mammalian
sirtuins-emerging roles in physiology, aging, and calorie
restriction. Genes Dev. 20:2913–2921. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chalkiadaki A and Guarente L: The
multifaceted functions of sirtuins in cancer. Nat Rev Cancer.
15:608–624. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ye X, Li M, Hou T, Gao T, Zhu WG and Yang
Y: Sirtuins in glucose and lipid metabolism. Oncotarget.
8:1845–1859. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhu S, Dong Z, Ke X, Hou J, Zhao E, Zhang
K, Wang F, Yang L, Xiang Z and Cui H: The roles of sirtuins family
in cell metabolism during tumor development. Semin Cancer Biol.
57:59–71. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Moore RL, Dai Y and Faller DV: Sirtuin 1
(SIRT1) and steroid hormone receptor activity in cancer. J
Endocrinol. 213:37–48. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhong J, Ji L, Chen H, Li X, Zhang J, Wang
X, Wu W, Xu Y, Huang F, Cai W and Sun ZS: Acetylation of hMOF
modulates H4K16ac to regulate DNA repair genes in response to
oxidative stress. Int J Biol Sci. 13:923–934. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Shah NP, Nicoll JM, Nagar B, Gorre ME,
Paquette RL, Kuriyan J and Sawyers CL: Multiple BCR-ABL kinase
domain mutations confer polyclonal resistance to the tyrosine
kinase inhibitor imatinib (STI571) in chronic phase and blast
crisis chronic myeloid leukemia. Cancer Cell. 2:117–125. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Roth M, Wang Z and Chen WY: SIRT1 and LSD1
competitively regulate KU70 functions in DNA repair and mutation
acquisition in cancer cells. Oncotarget. 7:50195–50214. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Jeong J, Juhn K, Lee H, Kim SH, Min BH,
Lee KM, Cho MH, Park GH and Lee KH: SIRT1 promotes DNA repair
activity and deacetylation of Ku70. Exp Mol Med. 39:8–13. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Byles V, Zhu L, Lovaas JD, Chmilewski LK,
Wang J, Faller DV and Dai Y: SIRT1 induces EMT by cooperating with
EMT transcription factors and enhances prostate cancer cell
migration and metastasis. Oncogene. 31:4619–4629. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Simic P, Williams EO, Bell EL, Gong JJ,
Bonkowski M and Guarente L: SIRT1 suppresses the
epithelial-to-mesenchymal transition in cancer metastasis and organ
fibrosis. Cell Rep. 3:1175–1186. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Nakopoulou L, Tsirmpa I, Alexandrou P,
Louvrou A, Ampela C, Markaki S and Davaris PS: MMP-2 protein in
invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on
overall survival. Breast Cancer Res Treat. 77:145–155. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Abdelmawgoud H and El Awady RR: Effect of
Sirtuin 1 inhibition on matrix metalloproteinase 2 and Forkhead box
O3a expression in breast cancer cells. Genes Dis. 4:240–246. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Shi L, Tang X, Qian M, Liu Z, Meng F, Fu
L, Wang Z, Zhu WG, Huang JD, Zhou Z and Liu B: A SIRT1-centered
circuitry regulates breast cancer stemness and metastasis.
Oncogene. 37:6299–6315. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
García-Vizcaíno EM, Liarte S,
Alonso-Romero JL and Nicolás FJ: Sirt1 interaction with active
Smad2 modulates transforming growth factor-β regulated
transcription. Cell Commun Signal. 15:502017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kelland L: The resurgence of
platinum-based cancer chemotherapy. Nat Rev Cancer. 7:573–584.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ceccaldi R, O'Connor KW, Mouw KW, Li AY,
Matulonis UA, D'Andrea AD and Konstantinopoulos PA: A unique subset
of epithelial ovarian cancers with platinum sensitivity and PARP
inhibitor resistance. Cancer Res. 75:628–634. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jarrett SG, Carter KM, Bautista RM, He D,
Wang C and D'Orazio JA: Sirtuin 1-mediated deacetylation of XPA DNA
repair protein enhances its interaction with ATR protein and
promotes cAMP-induced DNA repair of UV damage. J Biol Chem.
293:19025–19037. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Joo HY, Woo SR, Shen YN, Yun MY, Shin HJ,
Park ER, Kim SH, Park JE, Ju YJ, Hong SH, et al: SIRT1 interacts
with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
from nuclear translocation: Implications for cell survival after
irradiation. Biochem Biophys Res Commun. 424:681–686. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Esfahani K, Roudaia L, Buhlaiga N, Del
Rincon SV, Papneja N and Miller WH Jr: A review of cancer
immunotherapy: From the past, to the present, to the future. Curr
Oncol. 27 (Suppl 2):S87–S97. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Van Coillie S, Wiernicki B and Xu J:
Molecular and cellular functions of CTLA-4. Adv Exp Med Biol.
1248:7–32. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Han Y, Liu D and Li L: PD-1/PD-L1 pathway:
Current researches in cancer. Am J Cancer Res. 10:727–742.
2020.PubMed/NCBI
|
|
52
|
Galluzzi L, Buqué A, Kepp O, Zitvogel L
and Kroemer G: Immunological effects of conventional chemotherapy
and targeted anticancer agents. Cancer Cell. 28:690–714. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ma Y, Adjemian S, Mattarollo SR, Yamazaki
T, Aymeric L, Yang H, Portela Catani JP, Hannani D, Duret H, Steegh
K, et al: Anticancer chemotherapy-induced intratumoral recruitment
and differentiation of antigen-presenting cells. Immunity.
38:729–741. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ma Y, Pitt JM, Li Q and Yang H: The
renaissance of anti-neoplastic immunity from tumor cell demise.
Immunol Rev. 280:194–206. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Vacchelli E, Ma Y, Baracco EE, Sistigu A,
Enot DP, Pietrocola F, Yang H, Adjemian S, Chaba K, Semeraro M, et
al: Chemotherapy-induced antitumor immunity requires formyl peptide
receptor 1. Science. 350:972–978. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Morris BJ: Seven sirtuins for seven deadly
diseases of aging. Free Radic Biol Med. 56:133–171. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Qureshi AA, Guan XQ, Reis JC, Papasian CJ,
Jabre S, Morrison DC and Qureshi N: Inhibition of nitric oxide and
inflammatory cytokines in LPS-stimulated murine macrophages by
resveratrol, a potent proteasome inhibitor. Lipids Health Dis.
11:762012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lanzilli G, Cottarelli A, Nicotera G,
Guida S, Ravagnan G and Fuggetta MP: Anti-inflammatory effect of
resveratrol and polydatin by in vitro IL-17 modulation.
Inflammation. 35:240–248. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yang H, Xia L, Chen J, Zhang S, Martin V,
Li Q, Lin S, Chen J, Calmette J, Lu M, et al:
Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced
antitumor immunity. Nat Med. 25:1428–1441. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bokhman JV: Two pathogenetic types of
endometrial carcinoma. Gynecol Oncol. 15:10–17. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Asaka R, Miyamoto T, Yamada Y, Ando H,
Mvunta DH, Kobara H and Shiozawa T: Sirtuin 1 promotes the growth
and cisplatin resistance of endometrial carcinoma cells: A novel
therapeutic target. Lab Invest. 95:1363–1373. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lin L, Zheng X, Qiu C, Dongol S, Lv Q,
Jiang J, Kong B and Wang C: SIRT1 promotes endometrial tumor growth
by targeting SREBP1 and lipogenesis. Oncol Rep. 32:2831–2835. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bartosch C, Monteiro-Reis S, Almeida-Rios
D, Vieira R, Castro A, Moutinho M, Rodrigues M, Graça I, Lopes JM
and Jerónimo C: Assessing sirtuin expression in endometrial
carcinoma and non-neoplastic endometrium. Oncotarget. 7:1144–1154.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Huang P, Chandra V and Rastinejad F:
Structural overview of the nuclear receptor superfamily: Insights
into physiology and therapeutics. Annu Rev Physiol. 72:247–272.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Burns KA and Korach KS: Estrogen receptors
and human disease: An update. Arch Toxicol. 86:1491–1504. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sanchez R, Nguyen D, Rocha W, White JH and
Mader S: Diversity in the mechanisms of gene regulation by estrogen
receptors. Bioessays. 24:244–254. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Weigel NL and Zhang Y: Ligand-independent
activation of steroid hormone receptors. J Mol Med (Berl).
76:469–479. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cenni B and Picard D: Ligand-independent
activation of steroid receptors: New roles for old players. Trends
Endocrinol Metab. 10:41–46. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kinyamu HK and Archer TK: Modifying
chromatin to permit steroid hormone receptor-dependent
transcription. Biochim Biophys Acta. 1677:30–45. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Perissi V and Rosenfeld MG: Controlling
nuclear receptors: The circular logic of cofactor cycles. Nat Rev
Mol Cell Biol. 6:542–554. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Filardo EJ, Quinn JA, Bland KI and
Frackelton AR Jr: Estrogen-induced activation of Erk-1 and Erk-2
requires the G protein-coupled receptor homolog, GPR30, and occurs
via trans-activation of the epidermal growth factor receptor
through release of HB-EGF. Mol Endocrinol. 14:1649–1660. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Elangovan S, Ramachandran S, Venkatesan N,
Ananth S, Gnana-Prakasam JP, Martin PM, Browning DD, Schoenlein PV,
Prasad PD, Ganapathy V and Thangaraju M: SIRT1 is essential for
oncogenic signaling by estrogen/estrogen receptor α in breast
cancer. Cancer Res. 71:6654–6664. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yao Y, Li H, Gu Y, Davidson NE and Zhou Q:
Inhibition of SIRT1 deacetylase suppresses estrogen receptor
signaling. Carcinogenesis. 31:382–387. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Santolla MF, Avino S, Pellegrino M, De
Francesco EM, De Marco P, Lappano R, Vivacqua A, Cirillo F,
Rigiracciolo DC, Scarpelli A, et al: SIRT1 is involved in oncogenic
signaling mediated by GPER in breast cancer. Cell Death Dis.
6:e18342015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Holloway KR, Barbieri A, Malyarchuk S,
Saxena M, Nedeljkovic-Kurepa A, Cameron Mehl M, Wang A, Gu X and
Pruitt K: SIRT1 positively regulates breast cancer associated human
aromatase (CYP19A1) expression. Mol Endocrinol. 27:480–490. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kim MY, Woo EM, Chong YT, Homenko DR and
Kraus WL: Acetylation of estrogen receptor alpha by p300 at lysines
266 and 268 enhances the deoxyribonucleic acid binding and
transactivation activities of the receptor. Mol Endocrinol.
20:1479–1493. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xu Z, Yang Y, Li B, Li Y, Xia K, Yang Y,
Li X, Wang M, Li S and Wu H: Checkpoint suppressor 1 suppresses
transcriptional activity of ERα and breast cancer cell
proliferation via deacetylase SIRT1. Cell Death Dis. 9:5592018.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Price NL, Gomes AP, Ling AJ, Duarte FV,
Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro
JS, et al: SIRT1 is required for AMPK activation and the beneficial
effects of resveratrol on mitochondrial function. Cell Metab.
15:675–690. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Baur JA, Pearson KJ, Price NL, Jamieson
HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K,
et al: Resveratrol improves health and survival of mice on a
high-calorie diet. Nature. 444:337–342. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Baur JA and Sinclair DA: Therapeutic
potential of resveratrol: The in vivo evidence. Nat Rev Drug
Discov. 5:493–506. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Moynihan KA, Grimm AA, Plueger MM,
Bernal-Mizrachi E, Ford E, Cras-Méneur C, Permutt M and Imai S:
Increased dosage of mammalian Sir2 in pancreatic beta cells
enhances glucose-stimulated insulin secretion in mice. Cell Metab.
2:105–117. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Bordone L, Motta MC, Picard F, Robinson A,
Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A,
et al: Sirt1 regulates insulin secretion by repressing UCP2 in
pancreatic beta cells. PLoS Biol. 4:e312006. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kitamura YI, Kitamura T, Kruse JP, Raum
JC, Stein R, Gu W and Accili D: FoxO1 protects against pancreatic
beta cell failure through NeuroD and MafA induction. Cell Metab.
2:153–163. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fontana L, Meyer TE, Klein S and Holloszy
JO: Long-term calorie restriction is highly effective in reducing
the risk for atherosclerosis in humans. Proc Natl Acad Sci USA.
101:6659–6663. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ikenoue T, Inoki K, Zhao B and Guan KL:
PTEN acetylation modulates its interaction with PDZ domain. Cancer
Res. 68:6908–6912. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hubbard BP and Sinclair DA: Small molecule
SIRT1 activators for the treatment of aging and age-related
diseases. Trends Pharmacol Sci. 35:146–154. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Vonsky M, Shabaeva M, Runov A, Lebedeva N,
Chowdhury S, Palefsky JM and Isaguliants M: Carcinogenesis
associated with human papillomavirus infection. Mechanisms and
potential for immunotherapy. Biochemistry (Mosc). 84:782–799. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Almeida AM, Queiroz JA, Sousa F and Sousa
Â: Cervical cancer and HPV infection: Ongoing therapeutic research
to counteract the action of E6 and E7 oncoproteins. Drug Discov
Today. 24:2044–2057. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Velez-Perez A, Wang XI, Li M and Zhang S:
SIRT1 overexpression in cervical squamous intraepithelial lesions
and invasive squamous cell carcinoma. Hum Pathol. 59:102–107. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Singh S, Kumar PU, Thakur S, Kiran S, Sen
B, Sharma S, Rao VV, Poongothai AR and Ramakrishna G:
Expression/localization patterns of sirtuins (SIRT1, SIRT2, and
SIRT7) during progression of cervical cancer and effects of sirtuin
inhibitors on growth of cervical cancer cells. Tumour Biol.
36:6159–6171. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Das D, Smith N, Wang X and Morgan IM: The
deacetylase SIRT1 regulates the replication properties of human
papillomavirus 16 E1 and E2. J Virol. 91:e00102–17. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Das D, Bristol ML, Smith NW, James CD,
Wang X, Pichierri P and Morgan IM: Werner helicase control of human
papillomavirus 16 E1-E2 DNA replication is regulated by SIRT1
deacetylation. mBio. 10:e00263–19. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Allison SJ, Jiang M and Milner J:
Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity
protein in human cervical cancer cells. Aging (Albany NY).
1:316–327. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Brooks CL and Gu W: Anti-aging protein
SIRT1: A role in cervical cancer? Aging (Albany NY). 1:278–280.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
So D, Shin HW, Kim J, Lee M, Myeong J,
Chun YS and Park JW: Cervical cancer is addicted to SIRT1 disarming
the AIM2 antiviral defense. Oncogene. 37:5191–5204. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lu X, Wang J, Shan X and Li Y: Selecting
key genes associated with ovarian cancer based on differential
expression network. J BUON. 22:48–57. 2017.PubMed/NCBI
|
|
97
|
Sun X, Wang S and Li Q: Comprehensive
analysis of expression and prognostic value of sirtuins in ovarian
cancer. Front Genet. 10:8792019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kanda R, Miyagawa Y, Wada-Hiraike O,
Hiraike H, Fukui S, Nagasaka K, Ryo E, Fujii T, Osuga Y and Ayabe
T: Rikkunshito attenuates induction of epithelial-mesenchymal
switch via activation of Sirtuin1 in ovarian cancer cells. Endocr
J. 67:379–386. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Dufresne J, Bowden P, Thavarajah T,
Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT,
Phan M, Mohamed N, et al: The plasma peptides of ovarian cancer.
Clin Proteomics. 15:412018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Shin DH, Choi YJ, Jin P, Yoon H, Chun YS,
Shin HW, Kim JE and Park JW: Distinct effects of SIRT1 in cancer
and stromal cells on tumor promotion. Oncotarget. 7:23975–23987.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jiang W, Jiang P, Yang R and Liu DF:
Functional role of SIRT1-induced HMGB1 expression and acetylation
in migration, invasion and angiogenesis of ovarian cancer. Eur Rev
Med Pharmacol Sci. 22:4431–4439. 2018.PubMed/NCBI
|
|
102
|
Mvunta DH, Miyamoto T, Asaka R, Yamada Y,
Ando H, Higuchi S, Ida K, Kashima H and Shiozawa T: Overexpression
of SIRT1 is associated with poor outcomes in patients with ovarian
carcinoma. Appl Immunohistochem Mol Morphol. 25:415–421. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Benayoun BA, Georges AB, L'Hôte D,
Andersson N, Dipietromaria A, Todeschini AL, Caburet S, Bazin C,
Anttonen M and Veitia RA: Transcription factor FOXL2 protects
granulosa cells from stress and delays cell cycle: Role of its
regulation by the SIRT1 deacetylase. Hum Mol Genet. 20:1673–1686.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Kojima YA, Assylbekova B, Zhao B, Nugent E
and Brown RE: Morphoproteomics identifies the EZH2 and SIRT1
pathways as potential blocks to differentiation in yolk sac tumor
of the ovary and provides therapeutic options: A case study. Ann
Clin Lab Sci. 47:88–91. 2017.PubMed/NCBI
|
|
105
|
De U, Son JY, Sachan R, Park YJ, Kang D,
Yoon K, Lee BM, Kim IS, Moon HR and Kim HS: A new synthetic histone
deacetylase inhibitor, MHY2256, induces apoptosis and autophagy
cell death in endometrial cancer cells via p53 acetylation. Int J
Mol Sci. 19:27432018. View Article : Google Scholar
|
|
106
|
Van Sinderen M, Griffiths M, Menkhorst E,
Niven K and Dimitriadis E: Restoration of microRNA-29c in type I
endometrioid cancer reduced endometrial cancer cell growth. Oncol
Lett. 18:2684–2693. 2019.PubMed/NCBI
|
|
107
|
Lv Y, Chen S, Wu J, Lin R, Zhou L, Chen G,
Chen H and Ke Y: Upregulation of long non-coding RNA OGFRP1
facilitates endometrial cancer by regulating miR-124-3p/SIRT1 axis
and by activating PI3K/AKT/GSK-3β pathway. Artif Cells Nanomed
Biotechnol. 47:2083–2090. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Nan P, Niu Y, Wang X and Li Q: MiR-29a
function as tumor suppressor in cervical cancer by targeting SIRT1
and predict patient prognosis. Onco Targets Ther. 12:6917–6925.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Edatt L, Maurya AK, Raji G, Kunhiraman H
and Kumar SVB: MicroRNA106a regulates matrix metalloprotease 9 in a
sirtuin-1 dependent mechanism. J Cell Physiol. 233:238–248. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhu J, Shi H, Liu H, Wang X and Li F: Long
non-coding RNA TUG1 promotes cervical cancer progression by
regulating the miR-138-5p-SIRT1 axis. Oncotarget. 8:65253–65264.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ou L, Wang D, Zhang H, Yu Q and Hua F:
Decreased expression of miR-138-5p by lncRNA H19 in cervical cancer
promotes tumor proliferation. Oncol Res. 26:401–410. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ma R, Wu Y, Zhai Y, Hu B, Ma W, Yang W, Yu
Q, Chen Z, Workman JL, Yu X and Li S: Exogenous pyruvate represses
histone gene expression and inhibits cancer cell proliferation via
the NAMPT-NAD+-SIRT1 pathway. Nucleic Acids Res.
47:11132–11150. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang Y, Zhang M, Dong H, Yong S, Li X,
Olashaw N, Kruk PA, Cheng JQ, Bai W, Chen J, et al: Deacetylation
of cortactin by SIRT1 promotes cell migration. Oncogene.
28:445–460. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Mvunta DH, Miyamoto T, Asaka R, Yamada Y,
Ando H, Higuchi S, Ida K, Kashima H and Shiozawa T: SIRT1 regulates
the chemoresistance and invasiveness of ovarian carcinoma cells.
Transl Oncol. 10:621–631. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Pinton G, Nilsson S and Moro L: Targeting
estrogen receptor beta (ERβ) for treatment of ovarian cancer:
Importance of KDM6B and SIRT1 for ERβ expression and functionality.
Oncogenesis. 7:152018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ding YH, Zhou ZW, Ha CF, Zhang XY, Pan ST,
He ZX, Edelman JL, Wang D, Yang YX, Zhang X, et al: Alisertib, an
Aurora kinase A inhibitor, induces apoptosis and autophagy but
inhibits epithelial to mesenchymal transition in human epithelial
ovarian cancer cells. Drug Des Devel Ther. 9:425–464.
2015.PubMed/NCBI
|
|
117
|
Sun L, Li H, Chen J, Iwasaki Y, Kubota T,
Matsuoka M, Shen A, Chen Q and Xu Y: PIASy mediates hypoxia-induced
SIRT1 transcriptional repression and epithelial-to-mesenchymal
transition in ovarian cancer cells. J Cell Sci. 126:3939–3947.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
de Jong E, Winkel P, Poelstra K and
Prakash J: Anticancer effects of 15d-prostaglandin-J2 in wild-type
and doxorubicin-resistant ovarian cancer cells: Novel actions on
SIRT1 and HDAC. PLoS One. 6:e251922011. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Yang T, Zhou R, Yu S, Yu S, Cui Z, Hu P,
Liu J, Qiao Q and Zhang J: Cytoplasmic SIRT1 inhibits cell
migration and invasion by impeding epithelial-mesenchymal
transition in ovarian carcinoma. Mol Cell Biochem. 459:157–169.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang X, Chen J, Sun L and Xu Y: SIRT1
deacetylates KLF4 to activate Claudin-5 transcription in ovarian
cancer cells. J Cell Biochem. 119:2418–2426. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ray U, Roy SS and Chowdhury SR:
Lysophosphatidic acid promotes epithelial to mesenchymal transition
in ovarian cancer cells by repressing SIRT1. Cell Physiol Biochem.
41:795–805. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Hou M, Zuo X, Li C, Zhang Y and Teng Y:
Mir-29b regulates oxidative stress by targeting SIRT1 in ovarian
cancer cells. Cell Physiol Biochem. 43:1767–1776. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yang A, Wang X, Yu C, Jin Z, Wei L, Cao J,
Wang Q, Zhang M, Zhang L, Zhang L and Hao C: MicroRNA-494 is a
potential prognostic marker and inhibits cellular proliferation,
migration and invasion by targeting SIRT1 in epithelial ovarian
cancer. Oncol Lett. 14:3177–3184. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Chen X, Zhang XL, Zhang GH and Gao YF:
Artesunate promotes Th1 differentiation from CD4+ T
cells to enhance cell apoptosis in ovarian cancer via miR-142. Braz
J Med Biol Res. 52:e79922019. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tae IH, Park EY, Dey P, Son JY, Lee SY,
Jung JH, Saloni S, Kim MH and Kim HS: Novel SIRT1 inhibitor
15-deoxy-delta12,14-prostaglandin J2 and its derivatives exhibit
anticancer activity through apoptotic or autophagic cell death
pathways in SKOV3 cells. Int J Oncol. 53:2518–2530. 2018.PubMed/NCBI
|
|
126
|
Al-Wahab Z, Mert I, Tebbe C, Chhina J,
Hijaz M, Morris RT, Ali-Fehmi R, Giri S, Munkarah AR and Rattan R:
Metformin prevents aggressive ovarian cancer growth driven by
high-energy diet: Similarity with calorie restriction. Oncotarget.
6:10908–10923. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Al-Wahab Z, Tebbe C, Chhina J, Dar SA,
Morris RT, Ali-Fehmi R, Giri S, Munkarah AR and Rattan R: Dietary
energy balance modulates ovarian cancer progression and metastasis.
Oncotarget. 5:6063–6075. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wang Y, Zhang L, Che X, Li W, Liu Z and
Jiang J: Roles of SIRT1/FoxO1/SREBP-1 in the development of
progestin resistance in endometrial cancer. Arch Gynecol Obstet.
298:961–969. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Xia X and Zhou X: Knockdown of SIRT1
inhibits proliferation and promotes apoptosis of
paclitaxel-resistant human cervical cancer cells. Cell Mol Biol
(Noisy-le-grand). 64:36–41. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Raji GR, Sruthi TV, Edatt L, Haritha K,
Sharath Shankar S and Sameer Kumar VB: Horizontal transfer of
miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter
the sensitivity of cervical cancer cells to cisplatin. Cell Signal.
38:146–158. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Chen H, Zhang W, Cheng X, Guo L, Xie S, Ma
Y, Guo N and Shi M: β2-AR activation induces chemoresistance by
modulating p53 acetylation through upregulating Sirt1 in cervical
cancer cells. Cancer Sci. 108:1310–1317. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Teramae M, Fukuda T, Wada T, Kawanishi M,
Imai K, Yamauchi M, Yasui T and Sumi T: Sirtuin1 expression
predicts the efficacy of neoadjuvant chemotherapy for locally
advanced uterine cervical cancer. Mol Clin Oncol. 3:73–78. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Shuang T, Wang M, Zhou Y and Shi C:
Over-expression of Sirt1 contributes to chemoresistance and
indicates poor prognosis in serous epithelial ovarian cancer (EOC).
Med Oncol. 32:2602015. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Akhter MZ, Sharawat SK, Kumar V, Kochat V,
Equbal Z, Ramakrishnan M, Kumar U, Mathur S, Kumar L and
Mukhopadhyay A: Aggressive serous epithelial ovarian cancer is
potentially propagated by EpCAM+CD45+
phenotype. Oncogene. 37:2089–2103. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Björklund M, Roos J, Gogvadze V and
Shoshan M: Resveratrol induces SIRT1- and energy-stress-independent
inhibition of tumor cell regrowth after low-dose platinum
treatment. Cancer Chemother Pharmacol. 68:1459–1467. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
National Comprehensive Cancer Network, .
(NCCN) Clinical Practice Guidelines in Oncology. Ovarian Cancer.
Version 3. 2019.https://www.nccn.org/professionals/physician_gls/f_guidelines.aspNovember
26–2019
|
|
137
|
Lord CJ and Ashworth A: BRCAness
revisited. Nat Rev Cancer. 16:110–120. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Talens F, Jalving M, Gietema JA and Van
Vugt MA: Therapeutic targeting and patient selection for cancers
with homologous recombination defects. Expert Opin Drug Discov.
12:565–581. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Chung HT and Joe Y: Antagonistic crosstalk
between SIRT1, PARP-1, and −2 in the regulation of chronic
inflammation associated with aging and metabolic diseases. Integr
Med Res. 3:198–203. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
El Ramy R, Magroun N, Messadecq N,
Gauthier LR, Boussin FD, Kolthur-Seetharam U, Schreiber V, McBurney
MW, Sassone-Corsi P and Dantzer F: Functional interplay between
Parp-1 and SirT1 in genome integrity and chromatin-based processes.
Cell Mol Life Sci. 66:3219–3234. 2009. View Article : Google Scholar : PubMed/NCBI
|