Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
April-2021 Volume 45 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2021 Volume 45 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

SIRT1 and gynecological malignancies (Review)

  • Authors:
    • Jiayu Chen
    • Houzao Chen
    • Lingya Pan
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China, State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 43
    |
    Published online on: February 24, 2021
       https://doi.org/10.3892/or.2021.7994
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sirtuin 1 (SIRT1), a member of the sirtuin protein family, is a nicotinamide adenine dinucleotide (NAD+)‑dependent type III histone deacetylase and mono‑ADP‑ribosyltransferase. SIRT1 can deacetylate histones (H1, H3, and H4) and non‑histone proteins, and it is widely involved in various physiological and pathological processes in the body, including metabolism, aging, transcription, DNA damage and repair, apoptosis, cell cycle regulation, inflammation and cancer. Research has shown that SIRT1 is involved in tumorigenesis, tumor metastasis and chemotherapy resistance, but it exerts opposing effects and plays different roles in different pathogenic processes. Recent studies have demonstrated that SIRT1 may be implicated in the pathogenesis, development, treatment and prognosis of tumors; however, its role in gynecological tumors remains elusive. The aim of the present review was to summarize the pathogenic roles of SIRT1 in cancer, and to provide what is, to the best of our knowledge, the first review of recent advances involving SIRT1 in cervical cancer, endometrial cancer (EC) and ovarian cancer (OC). In addition, the critical research gaps regarding SIRT1, particularly its potential involvement in the concurrence of EC and cervical cancer and its antagonistic effect against poly(ADP‑ribose) polymerase inhibitors in OC, were highlighted.
View Figures

Figure 1

Figure 2

View References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Vaccarella S, Lortet-Tieulent J, Plummer M, Franceschi S and Bray F: Worldwide trends in cervical cancer incidence: Impact of screening against changes in disease risk factors. Eur J Cancer. 49:3262–3273. 2013. View Article : Google Scholar : PubMed/NCBI

3 

WHO. Cervical cancer, . World Health Organization; Geneva: 2018, http://www.who.int/cancer/prevention/diagnosis-screening/cervical-cancer/enJanuary 10–2020

4 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Cohen PA, Jhingran A, Oaknin A and Denny L: Cervical cancer. Lancet. 393:169–182. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Morice P, Leary A, Creutzberg C, Abu-Rustum N and Darai E: Endometrial cancer. Lancet. 387:1094–1108. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Lheureux S, Gourley C, Vergote I and Oza AM: Epithelial ovarian cancer. Lancet. 393:1240–1253. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT and Tschöp MH: Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol Rev. 92:1479–1514. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Michishita E, Park JY, Burneskis JM, Barrett JC and Horikawa I: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 16:4623–4635. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Morris BJ: Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 56:133–171. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M and Sinclair DA: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem. 277:45099–45107. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Guarente L and Franklin H: Epstein lecture: Sirtuins, aging, and medicine. N Engl J Med. 364:2235–2244. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Alves-Fernandes DK and Jasiulionis MG: The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci. 20:31532019. View Article : Google Scholar

14 

O'Hagan HM: Chromatin modifications during repair of environmental exposure-induced DNA damage: A potential mechanism for stable epigenetic alterations. Environ Mol Mutagen. 55:278–291. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Ura K, Araki M, Saeki H, Masutani C, Ito T, Iwai S, Mizukoshi T, Kaneda Y and Hanaoka F: ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J. 20:2004–2014. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Kala R, Shah HN, Martin SL and Tollefsbol TO: Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer. 15:6722015. View Article : Google Scholar : PubMed/NCBI

17 

Ding N, Bonham EM, Hannon BE, Amick TR, Baylin SB and O'Hagan HM: Mismatch repair proteins recruit DNA methyltransferase 1 to sites of oxidative DNA damage. J Mol Cell Biol. 8:244–254. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Deng CX: SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci. 5:147–152. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Dobbin MM, Madabhushi R, Pan L, Chen Y, Kim D, Gao J, Ahanonu B, Pao PC, Qiu Y, Zhao Y and Tsai LH: SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons. Nat Neurosci. 16:1008–1015. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Ong ALC and Ramasamy TS: Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev. 43:64–80. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Guarente L: Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol. 72:483–488. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Hamanaka RB and Chandel NS: Targeting glucose metabolism for cancer therapy. J Exp Med. 209:211–215. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Maan M, Peters JM, Dutta M and Patterson AD: Lipid metabolism and lipophagy in cancer. Biochem Biophys Res Commun. 504:582–589. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI

26 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

27 

Kleszcz R, Paluszczak J and Baer-Dubowska W: Targeting aberrant cancer metabolism - The role of sirtuins. Pharmacol Rep. 67:1068–1080. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Taylor DM, Maxwell MM, Luthi-Carter R and Kazantsev AG: Biological and potential therapeutic roles of sirtuin deacetylases. Cell Mol Life Sci. 65:4000–4018. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Haigis MC and Guarente LP: Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20:2913–2921. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Chalkiadaki A and Guarente L: The multifaceted functions of sirtuins in cancer. Nat Rev Cancer. 15:608–624. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Ye X, Li M, Hou T, Gao T, Zhu WG and Yang Y: Sirtuins in glucose and lipid metabolism. Oncotarget. 8:1845–1859. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Zhu S, Dong Z, Ke X, Hou J, Zhao E, Zhang K, Wang F, Yang L, Xiang Z and Cui H: The roles of sirtuins family in cell metabolism during tumor development. Semin Cancer Biol. 57:59–71. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Moore RL, Dai Y and Faller DV: Sirtuin 1 (SIRT1) and steroid hormone receptor activity in cancer. J Endocrinol. 213:37–48. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Zhong J, Ji L, Chen H, Li X, Zhang J, Wang X, Wu W, Xu Y, Huang F, Cai W and Sun ZS: Acetylation of hMOF modulates H4K16ac to regulate DNA repair genes in response to oxidative stress. Int J Biol Sci. 13:923–934. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J and Sawyers CL: Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2:117–125. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Roth M, Wang Z and Chen WY: SIRT1 and LSD1 competitively regulate KU70 functions in DNA repair and mutation acquisition in cancer cells. Oncotarget. 7:50195–50214. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Jeong J, Juhn K, Lee H, Kim SH, Min BH, Lee KM, Cho MH, Park GH and Lee KH: SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med. 39:8–13. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Byles V, Zhu L, Lovaas JD, Chmilewski LK, Wang J, Faller DV and Dai Y: SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene. 31:4619–4629. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Simic P, Williams EO, Bell EL, Gong JJ, Bonkowski M and Guarente L: SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep. 3:1175–1186. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Nakopoulou L, Tsirmpa I, Alexandrou P, Louvrou A, Ampela C, Markaki S and Davaris PS: MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival. Breast Cancer Res Treat. 77:145–155. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Abdelmawgoud H and El Awady RR: Effect of Sirtuin 1 inhibition on matrix metalloproteinase 2 and Forkhead box O3a expression in breast cancer cells. Genes Dis. 4:240–246. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Shi L, Tang X, Qian M, Liu Z, Meng F, Fu L, Wang Z, Zhu WG, Huang JD, Zhou Z and Liu B: A SIRT1-centered circuitry regulates breast cancer stemness and metastasis. Oncogene. 37:6299–6315. 2018. View Article : Google Scholar : PubMed/NCBI

44 

García-Vizcaíno EM, Liarte S, Alonso-Romero JL and Nicolás FJ: Sirt1 interaction with active Smad2 modulates transforming growth factor-β regulated transcription. Cell Commun Signal. 15:502017. View Article : Google Scholar : PubMed/NCBI

45 

Kelland L: The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 7:573–584. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Ceccaldi R, O'Connor KW, Mouw KW, Li AY, Matulonis UA, D'Andrea AD and Konstantinopoulos PA: A unique subset of epithelial ovarian cancers with platinum sensitivity and PARP inhibitor resistance. Cancer Res. 75:628–634. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Jarrett SG, Carter KM, Bautista RM, He D, Wang C and D'Orazio JA: Sirtuin 1-mediated deacetylation of XPA DNA repair protein enhances its interaction with ATR protein and promotes cAMP-induced DNA repair of UV damage. J Biol Chem. 293:19025–19037. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Joo HY, Woo SR, Shen YN, Yun MY, Shin HJ, Park ER, Kim SH, Park JE, Ju YJ, Hong SH, et al: SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: Implications for cell survival after irradiation. Biochem Biophys Res Commun. 424:681–686. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N and Miller WH Jr: A review of cancer immunotherapy: From the past, to the present, to the future. Curr Oncol. 27 (Suppl 2):S87–S97. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Van Coillie S, Wiernicki B and Xu J: Molecular and cellular functions of CTLA-4. Adv Exp Med Biol. 1248:7–32. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI

52 

Galluzzi L, Buqué A, Kepp O, Zitvogel L and Kroemer G: Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 28:690–714. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, Portela Catani JP, Hannani D, Duret H, Steegh K, et al: Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 38:729–741. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Ma Y, Pitt JM, Li Q and Yang H: The renaissance of anti-neoplastic immunity from tumor cell demise. Immunol Rev. 280:194–206. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Vacchelli E, Ma Y, Baracco EE, Sistigu A, Enot DP, Pietrocola F, Yang H, Adjemian S, Chaba K, Semeraro M, et al: Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science. 350:972–978. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Morris BJ: Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 56:133–171. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Qureshi AA, Guan XQ, Reis JC, Papasian CJ, Jabre S, Morrison DC and Qureshi N: Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor. Lipids Health Dis. 11:762012. View Article : Google Scholar : PubMed/NCBI

58 

Lanzilli G, Cottarelli A, Nicotera G, Guida S, Ravagnan G and Fuggetta MP: Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation. Inflammation. 35:240–248. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Yang H, Xia L, Chen J, Zhang S, Martin V, Li Q, Lin S, Chen J, Calmette J, Lu M, et al: Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 25:1428–1441. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Bokhman JV: Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 15:10–17. 1983. View Article : Google Scholar : PubMed/NCBI

61 

Asaka R, Miyamoto T, Yamada Y, Ando H, Mvunta DH, Kobara H and Shiozawa T: Sirtuin 1 promotes the growth and cisplatin resistance of endometrial carcinoma cells: A novel therapeutic target. Lab Invest. 95:1363–1373. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Lin L, Zheng X, Qiu C, Dongol S, Lv Q, Jiang J, Kong B and Wang C: SIRT1 promotes endometrial tumor growth by targeting SREBP1 and lipogenesis. Oncol Rep. 32:2831–2835. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Bartosch C, Monteiro-Reis S, Almeida-Rios D, Vieira R, Castro A, Moutinho M, Rodrigues M, Graça I, Lopes JM and Jerónimo C: Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget. 7:1144–1154. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Huang P, Chandra V and Rastinejad F: Structural overview of the nuclear receptor superfamily: Insights into physiology and therapeutics. Annu Rev Physiol. 72:247–272. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Burns KA and Korach KS: Estrogen receptors and human disease: An update. Arch Toxicol. 86:1491–1504. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Sanchez R, Nguyen D, Rocha W, White JH and Mader S: Diversity in the mechanisms of gene regulation by estrogen receptors. Bioessays. 24:244–254. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Weigel NL and Zhang Y: Ligand-independent activation of steroid hormone receptors. J Mol Med (Berl). 76:469–479. 1998. View Article : Google Scholar : PubMed/NCBI

68 

Cenni B and Picard D: Ligand-independent activation of steroid receptors: New roles for old players. Trends Endocrinol Metab. 10:41–46. 1999. View Article : Google Scholar : PubMed/NCBI

69 

Kinyamu HK and Archer TK: Modifying chromatin to permit steroid hormone receptor-dependent transcription. Biochim Biophys Acta. 1677:30–45. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Perissi V and Rosenfeld MG: Controlling nuclear receptors: The circular logic of cofactor cycles. Nat Rev Mol Cell Biol. 6:542–554. 2005. View Article : Google Scholar : PubMed/NCBI

71 

Filardo EJ, Quinn JA, Bland KI and Frackelton AR Jr: Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol. 14:1649–1660. 2000. View Article : Google Scholar : PubMed/NCBI

72 

Elangovan S, Ramachandran S, Venkatesan N, Ananth S, Gnana-Prakasam JP, Martin PM, Browning DD, Schoenlein PV, Prasad PD, Ganapathy V and Thangaraju M: SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor α in breast cancer. Cancer Res. 71:6654–6664. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Yao Y, Li H, Gu Y, Davidson NE and Zhou Q: Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis. 31:382–387. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Santolla MF, Avino S, Pellegrino M, De Francesco EM, De Marco P, Lappano R, Vivacqua A, Cirillo F, Rigiracciolo DC, Scarpelli A, et al: SIRT1 is involved in oncogenic signaling mediated by GPER in breast cancer. Cell Death Dis. 6:e18342015. View Article : Google Scholar : PubMed/NCBI

75 

Holloway KR, Barbieri A, Malyarchuk S, Saxena M, Nedeljkovic-Kurepa A, Cameron Mehl M, Wang A, Gu X and Pruitt K: SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. Mol Endocrinol. 27:480–490. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Kim MY, Woo EM, Chong YT, Homenko DR and Kraus WL: Acetylation of estrogen receptor alpha by p300 at lysines 266 and 268 enhances the deoxyribonucleic acid binding and transactivation activities of the receptor. Mol Endocrinol. 20:1479–1493. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Xu Z, Yang Y, Li B, Li Y, Xia K, Yang Y, Li X, Wang M, Li S and Wu H: Checkpoint suppressor 1 suppresses transcriptional activity of ERα and breast cancer cell proliferation via deacetylase SIRT1. Cell Death Dis. 9:5592018. View Article : Google Scholar : PubMed/NCBI

78 

Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, et al: SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15:675–690. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, et al: Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 444:337–342. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Baur JA and Sinclair DA: Therapeutic potential of resveratrol: The in vivo evidence. Nat Rev Drug Discov. 5:493–506. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Moynihan KA, Grimm AA, Plueger MM, Bernal-Mizrachi E, Ford E, Cras-Méneur C, Permutt M and Imai S: Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2:105–117. 2005. View Article : Google Scholar : PubMed/NCBI

82 

Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, et al: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4:e312006. View Article : Google Scholar : PubMed/NCBI

83 

Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W and Accili D: FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2:153–163. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Fontana L, Meyer TE, Klein S and Holloszy JO: Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA. 101:6659–6663. 2004. View Article : Google Scholar : PubMed/NCBI

85 

Ikenoue T, Inoki K, Zhao B and Guan KL: PTEN acetylation modulates its interaction with PDZ domain. Cancer Res. 68:6908–6912. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Hubbard BP and Sinclair DA: Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 35:146–154. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Vonsky M, Shabaeva M, Runov A, Lebedeva N, Chowdhury S, Palefsky JM and Isaguliants M: Carcinogenesis associated with human papillomavirus infection. Mechanisms and potential for immunotherapy. Biochemistry (Mosc). 84:782–799. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Almeida AM, Queiroz JA, Sousa F and Sousa Â: Cervical cancer and HPV infection: Ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov Today. 24:2044–2057. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Velez-Perez A, Wang XI, Li M and Zhang S: SIRT1 overexpression in cervical squamous intraepithelial lesions and invasive squamous cell carcinoma. Hum Pathol. 59:102–107. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Singh S, Kumar PU, Thakur S, Kiran S, Sen B, Sharma S, Rao VV, Poongothai AR and Ramakrishna G: Expression/localization patterns of sirtuins (SIRT1, SIRT2, and SIRT7) during progression of cervical cancer and effects of sirtuin inhibitors on growth of cervical cancer cells. Tumour Biol. 36:6159–6171. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Das D, Smith N, Wang X and Morgan IM: The deacetylase SIRT1 regulates the replication properties of human papillomavirus 16 E1 and E2. J Virol. 91:e00102–17. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Das D, Bristol ML, Smith NW, James CD, Wang X, Pichierri P and Morgan IM: Werner helicase control of human papillomavirus 16 E1-E2 DNA replication is regulated by SIRT1 deacetylation. mBio. 10:e00263–19. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Allison SJ, Jiang M and Milner J: Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells. Aging (Albany NY). 1:316–327. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Brooks CL and Gu W: Anti-aging protein SIRT1: A role in cervical cancer? Aging (Albany NY). 1:278–280. 2009. View Article : Google Scholar : PubMed/NCBI

95 

So D, Shin HW, Kim J, Lee M, Myeong J, Chun YS and Park JW: Cervical cancer is addicted to SIRT1 disarming the AIM2 antiviral defense. Oncogene. 37:5191–5204. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Lu X, Wang J, Shan X and Li Y: Selecting key genes associated with ovarian cancer based on differential expression network. J BUON. 22:48–57. 2017.PubMed/NCBI

97 

Sun X, Wang S and Li Q: Comprehensive analysis of expression and prognostic value of sirtuins in ovarian cancer. Front Genet. 10:8792019. View Article : Google Scholar : PubMed/NCBI

98 

Kanda R, Miyagawa Y, Wada-Hiraike O, Hiraike H, Fukui S, Nagasaka K, Ryo E, Fujii T, Osuga Y and Ayabe T: Rikkunshito attenuates induction of epithelial-mesenchymal switch via activation of Sirtuin1 in ovarian cancer cells. Endocr J. 67:379–386. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M, Norzin T, Ho MT, Phan M, Mohamed N, et al: The plasma peptides of ovarian cancer. Clin Proteomics. 15:412018. View Article : Google Scholar : PubMed/NCBI

100 

Shin DH, Choi YJ, Jin P, Yoon H, Chun YS, Shin HW, Kim JE and Park JW: Distinct effects of SIRT1 in cancer and stromal cells on tumor promotion. Oncotarget. 7:23975–23987. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Jiang W, Jiang P, Yang R and Liu DF: Functional role of SIRT1-induced HMGB1 expression and acetylation in migration, invasion and angiogenesis of ovarian cancer. Eur Rev Med Pharmacol Sci. 22:4431–4439. 2018.PubMed/NCBI

102 

Mvunta DH, Miyamoto T, Asaka R, Yamada Y, Ando H, Higuchi S, Ida K, Kashima H and Shiozawa T: Overexpression of SIRT1 is associated with poor outcomes in patients with ovarian carcinoma. Appl Immunohistochem Mol Morphol. 25:415–421. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Benayoun BA, Georges AB, L'Hôte D, Andersson N, Dipietromaria A, Todeschini AL, Caburet S, Bazin C, Anttonen M and Veitia RA: Transcription factor FOXL2 protects granulosa cells from stress and delays cell cycle: Role of its regulation by the SIRT1 deacetylase. Hum Mol Genet. 20:1673–1686. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Kojima YA, Assylbekova B, Zhao B, Nugent E and Brown RE: Morphoproteomics identifies the EZH2 and SIRT1 pathways as potential blocks to differentiation in yolk sac tumor of the ovary and provides therapeutic options: A case study. Ann Clin Lab Sci. 47:88–91. 2017.PubMed/NCBI

105 

De U, Son JY, Sachan R, Park YJ, Kang D, Yoon K, Lee BM, Kim IS, Moon HR and Kim HS: A new synthetic histone deacetylase inhibitor, MHY2256, induces apoptosis and autophagy cell death in endometrial cancer cells via p53 acetylation. Int J Mol Sci. 19:27432018. View Article : Google Scholar

106 

Van Sinderen M, Griffiths M, Menkhorst E, Niven K and Dimitriadis E: Restoration of microRNA-29c in type I endometrioid cancer reduced endometrial cancer cell growth. Oncol Lett. 18:2684–2693. 2019.PubMed/NCBI

107 

Lv Y, Chen S, Wu J, Lin R, Zhou L, Chen G, Chen H and Ke Y: Upregulation of long non-coding RNA OGFRP1 facilitates endometrial cancer by regulating miR-124-3p/SIRT1 axis and by activating PI3K/AKT/GSK-3β pathway. Artif Cells Nanomed Biotechnol. 47:2083–2090. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Nan P, Niu Y, Wang X and Li Q: MiR-29a function as tumor suppressor in cervical cancer by targeting SIRT1 and predict patient prognosis. Onco Targets Ther. 12:6917–6925. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Edatt L, Maurya AK, Raji G, Kunhiraman H and Kumar SVB: MicroRNA106a regulates matrix metalloprotease 9 in a sirtuin-1 dependent mechanism. J Cell Physiol. 233:238–248. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Zhu J, Shi H, Liu H, Wang X and Li F: Long non-coding RNA TUG1 promotes cervical cancer progression by regulating the miR-138-5p-SIRT1 axis. Oncotarget. 8:65253–65264. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Ou L, Wang D, Zhang H, Yu Q and Hua F: Decreased expression of miR-138-5p by lncRNA H19 in cervical cancer promotes tumor proliferation. Oncol Res. 26:401–410. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Ma R, Wu Y, Zhai Y, Hu B, Ma W, Yang W, Yu Q, Chen Z, Workman JL, Yu X and Li S: Exogenous pyruvate represses histone gene expression and inhibits cancer cell proliferation via the NAMPT-NAD+-SIRT1 pathway. Nucleic Acids Res. 47:11132–11150. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Zhang Y, Zhang M, Dong H, Yong S, Li X, Olashaw N, Kruk PA, Cheng JQ, Bai W, Chen J, et al: Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene. 28:445–460. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Mvunta DH, Miyamoto T, Asaka R, Yamada Y, Ando H, Higuchi S, Ida K, Kashima H and Shiozawa T: SIRT1 regulates the chemoresistance and invasiveness of ovarian carcinoma cells. Transl Oncol. 10:621–631. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Pinton G, Nilsson S and Moro L: Targeting estrogen receptor beta (ERβ) for treatment of ovarian cancer: Importance of KDM6B and SIRT1 for ERβ expression and functionality. Oncogenesis. 7:152018. View Article : Google Scholar : PubMed/NCBI

116 

Ding YH, Zhou ZW, Ha CF, Zhang XY, Pan ST, He ZX, Edelman JL, Wang D, Yang YX, Zhang X, et al: Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells. Drug Des Devel Ther. 9:425–464. 2015.PubMed/NCBI

117 

Sun L, Li H, Chen J, Iwasaki Y, Kubota T, Matsuoka M, Shen A, Chen Q and Xu Y: PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. J Cell Sci. 126:3939–3947. 2013. View Article : Google Scholar : PubMed/NCBI

118 

de Jong E, Winkel P, Poelstra K and Prakash J: Anticancer effects of 15d-prostaglandin-J2 in wild-type and doxorubicin-resistant ovarian cancer cells: Novel actions on SIRT1 and HDAC. PLoS One. 6:e251922011. View Article : Google Scholar : PubMed/NCBI

119 

Yang T, Zhou R, Yu S, Yu S, Cui Z, Hu P, Liu J, Qiao Q and Zhang J: Cytoplasmic SIRT1 inhibits cell migration and invasion by impeding epithelial-mesenchymal transition in ovarian carcinoma. Mol Cell Biochem. 459:157–169. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Zhang X, Chen J, Sun L and Xu Y: SIRT1 deacetylates KLF4 to activate Claudin-5 transcription in ovarian cancer cells. J Cell Biochem. 119:2418–2426. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Ray U, Roy SS and Chowdhury SR: Lysophosphatidic acid promotes epithelial to mesenchymal transition in ovarian cancer cells by repressing SIRT1. Cell Physiol Biochem. 41:795–805. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Hou M, Zuo X, Li C, Zhang Y and Teng Y: Mir-29b regulates oxidative stress by targeting SIRT1 in ovarian cancer cells. Cell Physiol Biochem. 43:1767–1776. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Yang A, Wang X, Yu C, Jin Z, Wei L, Cao J, Wang Q, Zhang M, Zhang L, Zhang L and Hao C: MicroRNA-494 is a potential prognostic marker and inhibits cellular proliferation, migration and invasion by targeting SIRT1 in epithelial ovarian cancer. Oncol Lett. 14:3177–3184. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Chen X, Zhang XL, Zhang GH and Gao YF: Artesunate promotes Th1 differentiation from CD4+ T cells to enhance cell apoptosis in ovarian cancer via miR-142. Braz J Med Biol Res. 52:e79922019. View Article : Google Scholar : PubMed/NCBI

125 

Tae IH, Park EY, Dey P, Son JY, Lee SY, Jung JH, Saloni S, Kim MH and Kim HS: Novel SIRT1 inhibitor 15-deoxy-delta12,14-prostaglandin J2 and its derivatives exhibit anticancer activity through apoptotic or autophagic cell death pathways in SKOV3 cells. Int J Oncol. 53:2518–2530. 2018.PubMed/NCBI

126 

Al-Wahab Z, Mert I, Tebbe C, Chhina J, Hijaz M, Morris RT, Ali-Fehmi R, Giri S, Munkarah AR and Rattan R: Metformin prevents aggressive ovarian cancer growth driven by high-energy diet: Similarity with calorie restriction. Oncotarget. 6:10908–10923. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Al-Wahab Z, Tebbe C, Chhina J, Dar SA, Morris RT, Ali-Fehmi R, Giri S, Munkarah AR and Rattan R: Dietary energy balance modulates ovarian cancer progression and metastasis. Oncotarget. 5:6063–6075. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Wang Y, Zhang L, Che X, Li W, Liu Z and Jiang J: Roles of SIRT1/FoxO1/SREBP-1 in the development of progestin resistance in endometrial cancer. Arch Gynecol Obstet. 298:961–969. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Xia X and Zhou X: Knockdown of SIRT1 inhibits proliferation and promotes apoptosis of paclitaxel-resistant human cervical cancer cells. Cell Mol Biol (Noisy-le-grand). 64:36–41. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Raji GR, Sruthi TV, Edatt L, Haritha K, Sharath Shankar S and Sameer Kumar VB: Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin. Cell Signal. 38:146–158. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Chen H, Zhang W, Cheng X, Guo L, Xie S, Ma Y, Guo N and Shi M: β2-AR activation induces chemoresistance by modulating p53 acetylation through upregulating Sirt1 in cervical cancer cells. Cancer Sci. 108:1310–1317. 2017. View Article : Google Scholar : PubMed/NCBI

132 

Teramae M, Fukuda T, Wada T, Kawanishi M, Imai K, Yamauchi M, Yasui T and Sumi T: Sirtuin1 expression predicts the efficacy of neoadjuvant chemotherapy for locally advanced uterine cervical cancer. Mol Clin Oncol. 3:73–78. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Shuang T, Wang M, Zhou Y and Shi C: Over-expression of Sirt1 contributes to chemoresistance and indicates poor prognosis in serous epithelial ovarian cancer (EOC). Med Oncol. 32:2602015. View Article : Google Scholar : PubMed/NCBI

134 

Akhter MZ, Sharawat SK, Kumar V, Kochat V, Equbal Z, Ramakrishnan M, Kumar U, Mathur S, Kumar L and Mukhopadhyay A: Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM+CD45+ phenotype. Oncogene. 37:2089–2103. 2018. View Article : Google Scholar : PubMed/NCBI

135 

Björklund M, Roos J, Gogvadze V and Shoshan M: Resveratrol induces SIRT1- and energy-stress-independent inhibition of tumor cell regrowth after low-dose platinum treatment. Cancer Chemother Pharmacol. 68:1459–1467. 2011. View Article : Google Scholar : PubMed/NCBI

136 

National Comprehensive Cancer Network, . (NCCN) Clinical Practice Guidelines in Oncology. Ovarian Cancer. Version 3. 2019.https://www.nccn.org/professionals/physician_gls/f_guidelines.aspNovember 26–2019

137 

Lord CJ and Ashworth A: BRCAness revisited. Nat Rev Cancer. 16:110–120. 2016. View Article : Google Scholar : PubMed/NCBI

138 

Talens F, Jalving M, Gietema JA and Van Vugt MA: Therapeutic targeting and patient selection for cancers with homologous recombination defects. Expert Opin Drug Discov. 12:565–581. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Chung HT and Joe Y: Antagonistic crosstalk between SIRT1, PARP-1, and −2 in the regulation of chronic inflammation associated with aging and metabolic diseases. Integr Med Res. 3:198–203. 2014. View Article : Google Scholar : PubMed/NCBI

140 

El Ramy R, Magroun N, Messadecq N, Gauthier LR, Boussin FD, Kolthur-Seetharam U, Schreiber V, McBurney MW, Sassone-Corsi P and Dantzer F: Functional interplay between Parp-1 and SirT1 in genome integrity and chromatin-based processes. Cell Mol Life Sci. 66:3219–3234. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen J, Chen H and Pan L: SIRT1 and gynecological malignancies (Review). Oncol Rep 45: 43, 2021.
APA
Chen, J., Chen, H., & Pan, L. (2021). SIRT1 and gynecological malignancies (Review). Oncology Reports, 45, 43. https://doi.org/10.3892/or.2021.7994
MLA
Chen, J., Chen, H., Pan, L."SIRT1 and gynecological malignancies (Review)". Oncology Reports 45.4 (2021): 43.
Chicago
Chen, J., Chen, H., Pan, L."SIRT1 and gynecological malignancies (Review)". Oncology Reports 45, no. 4 (2021): 43. https://doi.org/10.3892/or.2021.7994
Copy and paste a formatted citation
x
Spandidos Publications style
Chen J, Chen H and Pan L: SIRT1 and gynecological malignancies (Review). Oncol Rep 45: 43, 2021.
APA
Chen, J., Chen, H., & Pan, L. (2021). SIRT1 and gynecological malignancies (Review). Oncology Reports, 45, 43. https://doi.org/10.3892/or.2021.7994
MLA
Chen, J., Chen, H., Pan, L."SIRT1 and gynecological malignancies (Review)". Oncology Reports 45.4 (2021): 43.
Chicago
Chen, J., Chen, H., Pan, L."SIRT1 and gynecological malignancies (Review)". Oncology Reports 45, no. 4 (2021): 43. https://doi.org/10.3892/or.2021.7994
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team