Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
April-2021 Volume 45 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2021 Volume 45 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review)

  • Authors:
    • Xiaoxi Wang
    • Liping Zhong
    • Yongxiang Zhao
  • View Affiliations / Copyright

    Affiliations: National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 49
    |
    Published online on: March 2, 2021
       https://doi.org/10.3892/or.2021.8000
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Immunogene therapy can enhance the antitumor immune effect by introducing genes encoding co‑stimulation molecules, cytokines, chemokines and tumor‑associated antigens into treatment cells or human cells through genetic engineering techniques. Oncolytic viruses can specifically target tumor cells and replicate indefinitely until they kill tumor cells. If combined with immunogene therapy, oncolytic viruses can play a more powerful antitumor role. The high pressure, hypoxia and acidity in the tumor microenvironment (TME) provide suitable conditions for tumor cells to survive. To maximize the potency of oncolytic viruses, various methods are being developed to promote the reversal of the TME, thereby maximizing transmission of replication and immunogenicity. The aim of the present review was to discuss the basic mechanisms underlying the effects of oncolytic adenoviruses on the TME, and suggest how to combine the modification of the adenovirus with the TME to further combat malignant tumors.
View Figures

Figure 1

Figure 2

View References

1 

Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F, Validire P, Ingels A, Cathelineau X, Fridman WH and Sautès-Fridman C: The clinical role of the TME in solid cancer. Br J Cancer. 120:45–53. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Chen Y, Liu J, Wang W, Xiang L, Wang J, Liu S, Zhou H and Guo Z: High expression of hnRNPA1 promotes cell invasion by inducing EMT in gastric cancer. Oncol Rep. 39:1693–1701. 2018.PubMed/NCBI

3 

Choi J, Gyamfi J, Jang H and Koo JS: The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol. 33:133–145. 2018.PubMed/NCBI

4 

Sun Y: Tumor microenvironment and cancer therapy resistance. Cancer Lett. 380:205–215. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Akbulut H, Coleri A, Sahin G, Tang Y and Icli F: A bicistronic adenoviral vector carrying cytosine deaminase and granulocyte-macrophage colony-stimulating factor increases the therapeutic efficacy of cancer gene therapy. Hum Gene Ther. 30:999–1007. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA and Curiel DT: Combinatorial strategies based on CRAd-IL24 and CRAd-ING4 virotherapy with anti-angiogenesis treatment for ovarian cancer. J Ovarian Res. 9:382016. View Article : Google Scholar : PubMed/NCBI

7 

Athanasopoulos T, Munye MM and Yanez-Munoz RJ: Nonintegrating gene therapy vectors. Hematol Oncol Clin North Am. 31:753–770. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Salzman R, Cook F, Hunt T, Malech HL, Reilly P, Foss-Campbell B and Barrett D: Addressing the value of gene therapy and enhancing patient access to transformative treatments. Mol Ther. 26:2717–2726. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Stasiak AC and Stehle T: Human adenovirus binding to host cell receptors: A structural view. Med Microbiol Immunol. 209:325–333. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Greber UF and Flatt JW: Adenovirus entry: From infection to immunity. Annu Rev Virol. 6:177–197. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Hoeben RC and Uil TG: Adenovirus DNA replication. Cold Spring Harb Perspect Biol. 5:a0130032013. View Article : Google Scholar : PubMed/NCBI

12 

Gao J, Zhang W and Ehrhardt A: Expanding the spectrum of adenoviral vectors for cancer therapy. Cancers (Basel). 12:11392020. View Article : Google Scholar

13 

Ip WH and Dobner T: Cell transformation by the adenovirus oncogenes E1 and E4. FEBS Lett. 594:1848–1860. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Bradley RR, Maxfield LF, Lynch DM, Iampietro MJ, Borducchi EN and Barouch DH: Adenovirus serotype 5-specific neutralizing antibodies target multiple hexon hypervariable regions. J Virol. 86:1267–1272. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Niemann J and Kuhnel F: Oncolytic viruses: Adenoviruses. Virus Genes. 53:700–706. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Machitani M, Katayama K, Sakurai F, Matsui H, Yamaguchi T, Suzuki T, Miyoshi H, Kawabata K and Mizuguchi H: Development of an adenovirus vector lacking the expression of virus-associated RNAs. J Control Release. 154:285–289. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Zheng Y, Stamminger T and Hearing P: E2F/Rb family proteins mediate interferon induced repression of adenovirus immediate early transcription to promote persistent viral infection. PLoS Pathog. 12:e10054152016. View Article : Google Scholar : PubMed/NCBI

18 

Yamauchi S, Zhong B, Kawamura K, Yang S, Kubo S, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, et al: Cytotoxicity of replication-competent adenoviruses powered by an exogenous regulatory region is not linearly correlated with the viral infectivity/gene expression or with the E1A-activating ability but is associated with the p53 genotypes. BMC Cancer. 17:6222017. View Article : Google Scholar : PubMed/NCBI

19 

Cervera-Carrascon V, Quixabeira DCA, Havunen R, Santos JM, Kutvonen E, Clubb JHA, Siurala M, Heiniö C, Zafar S, Koivula T, et al: Comparison of clinically relevant oncolytic virus platforms for enhancing T cell therapy of solid tumors. Mol Ther Oncolytics. 17:47–60. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Huang H, Liu Y, Liao W, Cao Y, Liu Q, Guo Y, Lu Y and Xie Z: Oncolytic adenovirus programmed by synthetic gene circuit for cancer immunotherapy. Nat Commun. 10:48012019. View Article : Google Scholar : PubMed/NCBI

21 

Rosewell Shaw A and Suzuki M: Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol. 21:9–15. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Ran L, Tan X, Li Y, Zhang H, Ma R, Ji T, Dong W, Tong T, Liu Y, Chen D, et al: Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy. Biomaterials. 89:56–66. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Tazawaa H, Kagawab S and Fujiwarab T: Oncolytic adenovirus-induced autophagy: Tumor-suppressive effect and molecular basis. Acta Med Okayama. 67:333–342. 2013.PubMed/NCBI

24 

Freedman JD, Duffy MR, Lei-Rossmann J, Muntzer A, Scott EM, Hagel J, Campo L, Bryant RJ, Verrill C, Lambert A, et al: An oncolytic virus expressing a T-cell engager simultaneously targets cancer and immunosuppressive stromal cells. Cancer Res. 78:6852–6865. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Jung KH, Choi IK, Lee HS, Yan HH, Son MK, Ahn HM, Hong J, Yun CO and Hong SS: Oncolytic adenovirus expressing relaxin (YDC002) enhances therapeutic efficacy of gemcitabine against pancreatic cancer. Cancer Lett. 396:155–166. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Yokoda RT, Nagalo BM and Borad MJ: Oncolytic adenoviruses in gastrointestinal cancers. Biomedicines. 6:332018. View Article : Google Scholar

27 

Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Belli C, Trapani D, Viale G, D'Amico P, Duso BA, Della Vigna P, Orsi F and Curigliano G: Targeting the microenvironment in solid tumors. Cancer Treat Rev. 65:22–32. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Zhong S, Jeong JH, Chen Z, Chen Z and Luo JL: Targeting tumor microenvironment by small-molecule inhibitors. Transl Oncol. 13:57–69. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Terren I, Orrantia A, Vitalle J, Zenarruzabeitia O and Borrego F: NK cell metabolism and tumor microenvironment. Front Immunol. 10:22782019. View Article : Google Scholar : PubMed/NCBI

31 

Maimela NR, Liu S and Zhang Y: Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J. 17:1–13. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Najafi M, Farhood B and Mortezaee K: Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Guo S and Deng CX: Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci. 14:2083–2093. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Jang I and Beningo KA: Integrins, CAFs and mechanical forces in the progression of cancer. Cancers (Basel). 11:7212019. View Article : Google Scholar

35 

Jarosz-Biej M, Smolarczyk R, Cichon T and Kulach N: Tumor microenvironment as A ‘Game Changer’ in cancer radiotherapy. Int J Mol Sci. 20:32122019. View Article : Google Scholar

36 

Nishide S, Uchida J, Matsunaga S, Tokudome K, Yamaguchi T, Kabei K, Moriya T, Miura K, Nakatani T and Tomita S: Prolyl-hydroxylase inhibitors reconstitute tumor blood vessels in mice. J Pharmacol Sci. 143:122–126. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P and Hammerling GJ: Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol. 16:609–617. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Zhao H, Tian X, He L, Li Y, Pu W, Liu Q, Tang J, Wu J, Cheng X, Liu Y, et al: Apj+ vessels drive tumor growth and represent a tractable therapeutic target. Cell Rep. 25:1241–1254.e5. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et al: LDHA-Associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Ohashi T, Aoki M, Tomita H, Akazawa T, Sato K, Kuze B, Mizuta K, Hara A, Nagaoka H, Inoue N and Ito Y: M2-like macrophage polarization in high lactic acid-producing head and neck cancer. Cancer Sci. 108:1128–1134. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Urbanska K and Orzechowski A: Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int J Mol Sci. 20:20852019. View Article : Google Scholar

44 

Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J and Umansky V: Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 9:3982018. View Article : Google Scholar : PubMed/NCBI

45 

Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Safarzadeh E, Orangi M, Mohammadi H, Babaie F and Baradaran B: Myeloid-derived suppressor cells: Important contributors to tumor progression and metastasis. J Cell Physiol. 233:3024–3036. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Dysthe M and Parihar R: Myeloid-Derived suppressor cells in the tumor microenvironment. Adv Exp Med Biol. 1224:117–140. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Ribatti D, Tamma R and Crivellato E: Cross talk between natural killer cells and mast cells in tumor angiogenesis. Inflamm Res. 68:19–23. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Albini A, Bruno A, Noonan DM and Mortara L: Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: Implications for immunotherapy. Front Immunol. 9:5272018. View Article : Google Scholar : PubMed/NCBI

50 

Kabiraj A, Jaiswal R, Singh A, Gupta J, Singh A and Samadi FM: Immunohistochemical evaluation of tumor angiogenesis and the role of mast cells in oral squamous cell carcinoma. J Cancer Res Ther. 14:495–502. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Shee K, Yang W, Hinds JW, Hampsch RA, Varn FS, Traphagen NA, Patel K, Cheng C, Jenkins NP, Kettenbach AN, et al: Therapeutically targeting tumor microenvironment-mediated drug resistance in estrogen receptor-positive breast cancer. J Exp Med. 215:895–910. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI

53 

de Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M and Alemany R: Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J Immunother Cancer. 7:192019. View Article : Google Scholar : PubMed/NCBI

54 

Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, Prabhu SS, Rao G, Fuller GN, Aldape KD, et al: Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 36:1419–1427. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Havunen R, Siurala M, Sorsa S, Grönberg-Vähä-Koskela S, Behr M, Tähtinen S, Santos JM, Karell P, Rusanen J, Nettelbeck DM, et al: Oncolytic adenoviruses armed with tumor necrosis factor alpha and interleukin-2 enable successful adoptive cell therapy. Mol Ther Oncolytics. 4:77–86. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Santos JM, Cervera-Carrascon V, Havunen R, Zafar S, Siurala M, Sorsa S, Anttila M, Kanerva A and Hemminki A: Adenovirus coding for interleukin-2 and tumor necrosis factor alpha replaces lymphodepleting chemotherapy in adoptive T cell therapy. Mol Ther. 26:2243–2254. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Lee YS and Radford KJ: The role of dendritic cells in cancer. Int Rev Cell Mol Biol. 348:123–178. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Palucka K and Banchereau J: Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 12:265–277. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A, Ye CJ, Przybylski D, Platt RJ, Tirosh I, Sanjana NE, et al: A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell. 162:675–686. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Oh DS and Lee HK: Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy. 15:2091–2106. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Chen L, Hasni MS, Jondal M and Yakimchuk K: Modification of anti-tumor immunity by tolerogenic dendritic cells. Autoimmunity. 50:370–376. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Karnell JL, Rieder SA, Ettinger R and Kolbeck R: Targeting the CD40-CD40L pathway in autoimmune diseases: Humoral immunity and beyond. Adv Drug Deliv Rev. 141:92–103. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Vitale LA, Thomas LJ, He LZ, O'Neill T, Widger J, Crocker A, Sundarapandiyan K, Storey JR, Forsberg EM, Weidlick J, et al: Development of CDX-1140, an agonist CD40 antibody for cancer immunotherapy. Cancer Immunol Immunother. 68:233–245. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Zafar S, Sorsa S, Siurala M, Hemminki O, Havunen R, Cervera-Carrascon V, Santos JM, Wang H, Lieber A, De Gruijl T, et al: CD40L coding oncolytic adenovirus allows long-term survival of humanized mice receiving dendritic cell therapy. Oncoimmunology. 7:e14908562018. View Article : Google Scholar : PubMed/NCBI

65 

Eriksson E, Milenova I, Wenthe J, Moreno R, Alemany R and Loskog A: IL-6 signaling blockade during CD40-mediated immune activation favors antitumor factors by reducing TGF-β, collagen type I, and PD-L1/PD-1. J Immunol. 202:787–798. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Guo X, Ding C, Lu J, Zhou T, Liang T, Ji Z, Xie P, Liu X and Kang Q: HP-NAP ameliorates OXA-induced atopic dermatitis symptoms in mice. Immunopharmacol Immunotoxicol. 42:416–422. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Codolo G, Fassan M, Munari F, Volpe A, Bassi P, Rugge M, Pagano F, D'Elios MM and de Bernard M: HP-NAP inhibits the growth of bladder cancer in mice by activating a cytotoxic Th1 response. Cancer Immunol Immunother. 61:31–40. 2012. View Article : Google Scholar : PubMed/NCBI

68 

D'Elios MM, Amedei A, Cappon A, Del Prete G and de Bernard M: The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunol Med Microbiol. 50:157–164. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Ramachandran M, Jin C, Yu D, Eriksson F and Essand M: Vector-encoded Helicobacter pylori neutrophil-activating protein promotes maturation of dendritic cells with Th1 polarization and improved migration. J Immunol. 193:2287–2296. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C and Earp HS: Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 128:2356–2369. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Myers KV, Amend SR and Pienta KJ: Targeting Tyro3, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol Cancer. 18:942019. View Article : Google Scholar : PubMed/NCBI

73 

Huang YJ, Yang CK, Wei PL, Huynh TT, Whang-Peng J, Meng TC, Hsiao M, Tzeng YM, Wu AT and Yen Y: Ovatodiolide suppresses colon tumorigenesis and prevents polarization of M2 tumor-associated macrophages through YAP oncogenic pathways. J Hematol Oncol. 10:602017. View Article : Google Scholar : PubMed/NCBI

74 

Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim JH, Soh J, Kim HS, Lee H, Kim J, et al: Cancer-Stimulated CAFs enhance monocyte differentiation and protumoral TAM activation via IL6 and GM-CSF secretion. Clin Cancer Res. 24:5407–5421. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Kuryk L, Moller AW, Garofalo M, Cerullo V, Pesonen S, Alemany R and Jaderberg M: Antitumor-specific T-cell responses induced by oncolytic adenovirus ONCOS-102 (AdV5/3-D24-GM-CSF) in peritoneal mesothelioma mouse model. J Med Virol. 90:1669–1673. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Hayat SMG, Biancon V, Pirro M, Jaafari MR, Hatamipour M and Sahebkar A: CD47 role in the immune system and application to cancer therapy. Cell Oncol (Dordr.). 43:19–30. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Huang Y, Lv SQ, Liu PY, Ye ZL, Yang H, Li LF, Zhu HL, Wang Y, Cui LZ, Jiang DQ, et al: A SIRPα-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer. Mol Oncol. 14:657–668. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Zhang KL, Li RP, Zhang BP, Gao ST, Li B, Huang CJ, Cao R, Cheng JY, Xie XD, Yu ZH and Feng XY: Efficacy of a new oncolytic adenovirus armed with IL-13 against oral carcinoma models. Onco Targets Ther. 12:6515–6523. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Scott EM, Jacobus EJ, Lyons B, Frost S, Freedman JD, Dyer A, Khalique H, Taverner WK, Carr A, Champion BR, et al: Bi- and tri-valent T cell engagers deplete tumour-associated macrophages in cancer patient samples. J Immunother Cancer. 7:3202019. View Article : Google Scholar : PubMed/NCBI

80 

Yao C, Ni Z, Gong C, Zhu X, Wang L, Xu Z, Zhou C, Li S, Zhou W, Zou C and Zhu S: Rocaglamide enhances NK cell-mediated killing of non-small cell lung cancer cells by inhibiting autophagy. Autophagy. 14:1831–1844. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Davis MR, Zhu Z, Hansen DM, Bai Q and Fang Y: The role of IL-21 in immunity and cancer. Cancer Lett. 358:107–114. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Li Y, Li YF, Si CZ, Zhu YH, Jin Y, Zhu TT, Liu MY and Liu GY: CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against TERT-positive tumor cells. Virus Res. 220:172–178. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Rhode PR, Egan JO, Xu W, Hong H, Webb GM, Chen X, Liu B, Zhu X, Wen J, You L, et al: Comparison of the superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics in animal models. Cancer Immunol Res. 4:49–60. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Yan Y, Li S, Jia T, Du X, Xu Y, Zhao Y, Li L, Liang K, Liang W, Sun H and Li R: Combined therapy with CTL cells and oncolytic adenovirus expressing IL-15-induced enhanced antitumor activity. Tumour Biol. 36:4535–4543. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Kubo N, Araki K, Kuwano H and Shirabe K: Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol. 22:6841–6850. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, et al: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA. 110:20212–20217. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, et al: Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol. 216:3799–3816. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Erdogan B and Webb DJ: Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 45:229–236. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Arwert EN, Milford EL, Rullan A, Derzsi S, Hooper S, Kato T, Mansfield D, Melcher A, Harrington KJ and Sahai E: STING and IRF3 in stromal fibroblasts enable sensing of genomic stress in cancer cells to undermine oncolytic viral therapy. Nat Cell Biol. 22:758–766. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Puig-Saus C, Gros A, Alemany R and Cascallo M: Adenovirus i-leader truncation bioselected against cancer-associated fibroblasts to overcome tumor stromal barriers. Mol Ther. 20:54–62. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X and Merchan JR: Molecular effects of stromal-selective targeting by uPAR-retargeted oncolytic virus in breast cancer. Mol Cancer Res. 15:1410–1420. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Czekierdowska S, Stachowicz N, Chrosciel M and Czekierdowski A: Proliferation and maturation of intratumoral blood vessels in women with malignant ovarian tumors assessed with cancer stem cells marker nestin and platelet derived growth factor PDGF-B. Ginekol Pol. 88:120–128. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C and Tabar V: Glioblastoma stem-like cells give rise to tumour endothelium. Nature. 468:829–833. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R and Olson EN: The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 15:261–271. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Feng SD, Mao Z, Liu C, Nie YS, Sun B, Guo M and Su C: Simultaneous overexpression of miR-126 and miR-34a induces a superior antitumor efficacy in pancreatic adenocarcinoma. Onco Targets Ther. 10:5591–5604. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Harada A, Uchino J, Harada T, Nakagaki N, Hisasue J, Fujita M and Takayama K: Vascular endothelial growth factor promoter-based conditionally replicative adenoviruses effectively suppress growth of malignant pleural mesothelioma. Cancer Sci. 108:116–123. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Chen QN, Chen X, Chen ZY, Nie FQ, Wei CC, Ma HW, Wan L, Yan S, Ren SN and Wang ZX: Long intergenic non-coding RNA 00152 promotes lung adenocarcinoma proliferation via interacting with EZH2 and repressing IL24 expression. Mol Cancer. 16:172017. View Article : Google Scholar : PubMed/NCBI

99 

Zhuo B, Wang R, Yin Y, Zhang H, Ma T, Liu F, Cao H and Shi Y: Adenovirus arming human IL-24 inhibits neuroblastoma cell proliferation in vitro and xenograft tumor growth in vivo. Tumour Biol. 34:2419–2426. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Zhang Y and Zheng J: Functions of immune checkpoint molecules beyond immune evasion. Adv Exp Med Biol. 1248:201–226. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Li K and Tian H: Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. J Drug Target. 27:244–256. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Kurachi M, Barnitz RA, Yosef N, Odorizzi PM, DiIorio MA, Lemieux ME, Yates K, Godec J, Klatt MG, Regev A, et al: The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat Immunol. 15:373–383. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, Chhabra S, Huang W, Liu H, Aref AR, et al: CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 8:216–233. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Johnson DB, Sullivan RJ and Menzies AM: Immune checkpoint inhibitors in challenging populations. Cancer. 123:1904–1911. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Zhang Y, Zhang H, Wei M, Mou T, Shi T, Ma Y, Cai X, Li Y, Dong J and Wei J: Recombinant adenovirus expressing a soluble fusion protein PD-1/CD137L subverts the suppression of CD8+ T cells in HCC. Mol Ther. 27:1906–1918. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Du T, Shi G, Li YM, Zhang JF, Tian HW, Wei YQ, Deng H and Yu DC: Tumor-specific oncolytic adenoviruses expressing granulocyte macrophage colony-stimulating factor or anti-CTLA4 antibody for the treatment of cancers. Cancer Gene Ther. 21:340–348. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Dias JD, Hemminki O, Diaconu I, Hirvinen M, Bonetti A, Guse K, Escutenaire S, Kanerva A, Pesonen S, Löskog A, et al: Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther. 19:988–998. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Zhong L and Zhao Y: Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncol Rep 45: 49, 2021.
APA
Wang, X., Zhong, L., & Zhao, Y. (2021). Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncology Reports, 45, 49. https://doi.org/10.3892/or.2021.8000
MLA
Wang, X., Zhong, L., Zhao, Y."Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review)". Oncology Reports 45.4 (2021): 49.
Chicago
Wang, X., Zhong, L., Zhao, Y."Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review)". Oncology Reports 45, no. 4 (2021): 49. https://doi.org/10.3892/or.2021.8000
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Zhong L and Zhao Y: Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncol Rep 45: 49, 2021.
APA
Wang, X., Zhong, L., & Zhao, Y. (2021). Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review). Oncology Reports, 45, 49. https://doi.org/10.3892/or.2021.8000
MLA
Wang, X., Zhong, L., Zhao, Y."Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review)". Oncology Reports 45.4 (2021): 49.
Chicago
Wang, X., Zhong, L., Zhao, Y."Oncolytic adenovirus: A tool for reversing the tumor microenvironment and promoting cancer treatment (Review)". Oncology Reports 45, no. 4 (2021): 49. https://doi.org/10.3892/or.2021.8000
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team