|
1
|
Giraldo NA, Sanchez-Salas R, Peske JD,
Vano Y, Becht E, Petitprez F, Validire P, Ingels A, Cathelineau X,
Fridman WH and Sautès-Fridman C: The clinical role of the TME in
solid cancer. Br J Cancer. 120:45–53. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen Y, Liu J, Wang W, Xiang L, Wang J,
Liu S, Zhou H and Guo Z: High expression of hnRNPA1 promotes cell
invasion by inducing EMT in gastric cancer. Oncol Rep.
39:1693–1701. 2018.PubMed/NCBI
|
|
3
|
Choi J, Gyamfi J, Jang H and Koo JS: The
role of tumor-associated macrophage in breast cancer biology.
Histol Histopathol. 33:133–145. 2018.PubMed/NCBI
|
|
4
|
Sun Y: Tumor microenvironment and cancer
therapy resistance. Cancer Lett. 380:205–215. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Akbulut H, Coleri A, Sahin G, Tang Y and
Icli F: A bicistronic adenoviral vector carrying cytosine deaminase
and granulocyte-macrophage colony-stimulating factor increases the
therapeutic efficacy of cancer gene therapy. Hum Gene Ther.
30:999–1007. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ashshi AM, El-Shemi AG, Dmitriev IP,
Kashentseva EA and Curiel DT: Combinatorial strategies based on
CRAd-IL24 and CRAd-ING4 virotherapy with anti-angiogenesis
treatment for ovarian cancer. J Ovarian Res. 9:382016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Athanasopoulos T, Munye MM and Yanez-Munoz
RJ: Nonintegrating gene therapy vectors. Hematol Oncol Clin North
Am. 31:753–770. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Salzman R, Cook F, Hunt T, Malech HL,
Reilly P, Foss-Campbell B and Barrett D: Addressing the value of
gene therapy and enhancing patient access to transformative
treatments. Mol Ther. 26:2717–2726. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Stasiak AC and Stehle T: Human adenovirus
binding to host cell receptors: A structural view. Med Microbiol
Immunol. 209:325–333. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Greber UF and Flatt JW: Adenovirus entry:
From infection to immunity. Annu Rev Virol. 6:177–197. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hoeben RC and Uil TG: Adenovirus DNA
replication. Cold Spring Harb Perspect Biol. 5:a0130032013.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gao J, Zhang W and Ehrhardt A: Expanding
the spectrum of adenoviral vectors for cancer therapy. Cancers
(Basel). 12:11392020. View Article : Google Scholar
|
|
13
|
Ip WH and Dobner T: Cell transformation by
the adenovirus oncogenes E1 and E4. FEBS Lett. 594:1848–1860. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bradley RR, Maxfield LF, Lynch DM,
Iampietro MJ, Borducchi EN and Barouch DH: Adenovirus serotype
5-specific neutralizing antibodies target multiple hexon
hypervariable regions. J Virol. 86:1267–1272. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Niemann J and Kuhnel F: Oncolytic viruses:
Adenoviruses. Virus Genes. 53:700–706. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Machitani M, Katayama K, Sakurai F, Matsui
H, Yamaguchi T, Suzuki T, Miyoshi H, Kawabata K and Mizuguchi H:
Development of an adenovirus vector lacking the expression of
virus-associated RNAs. J Control Release. 154:285–289. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zheng Y, Stamminger T and Hearing P:
E2F/Rb family proteins mediate interferon induced repression of
adenovirus immediate early transcription to promote persistent
viral infection. PLoS Pathog. 12:e10054152016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yamauchi S, Zhong B, Kawamura K, Yang S,
Kubo S, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, et al:
Cytotoxicity of replication-competent adenoviruses powered by an
exogenous regulatory region is not linearly correlated with the
viral infectivity/gene expression or with the E1A-activating
ability but is associated with the p53 genotypes. BMC Cancer.
17:6222017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cervera-Carrascon V, Quixabeira DCA,
Havunen R, Santos JM, Kutvonen E, Clubb JHA, Siurala M, Heiniö C,
Zafar S, Koivula T, et al: Comparison of clinically relevant
oncolytic virus platforms for enhancing T cell therapy of solid
tumors. Mol Ther Oncolytics. 17:47–60. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huang H, Liu Y, Liao W, Cao Y, Liu Q, Guo
Y, Lu Y and Xie Z: Oncolytic adenovirus programmed by synthetic
gene circuit for cancer immunotherapy. Nat Commun. 10:48012019.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rosewell Shaw A and Suzuki M: Recent
advances in oncolytic adenovirus therapies for cancer. Curr Opin
Virol. 21:9–15. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ran L, Tan X, Li Y, Zhang H, Ma R, Ji T,
Dong W, Tong T, Liu Y, Chen D, et al: Delivery of oncolytic
adenovirus into the nucleus of tumorigenic cells by tumor
microparticles for virotherapy. Biomaterials. 89:56–66. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tazawaa H, Kagawab S and Fujiwarab T:
Oncolytic adenovirus-induced autophagy: Tumor-suppressive effect
and molecular basis. Acta Med Okayama. 67:333–342. 2013.PubMed/NCBI
|
|
24
|
Freedman JD, Duffy MR, Lei-Rossmann J,
Muntzer A, Scott EM, Hagel J, Campo L, Bryant RJ, Verrill C,
Lambert A, et al: An oncolytic virus expressing a T-cell engager
simultaneously targets cancer and immunosuppressive stromal cells.
Cancer Res. 78:6852–6865. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jung KH, Choi IK, Lee HS, Yan HH, Son MK,
Ahn HM, Hong J, Yun CO and Hong SS: Oncolytic adenovirus expressing
relaxin (YDC002) enhances therapeutic efficacy of gemcitabine
against pancreatic cancer. Cancer Lett. 396:155–166. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yokoda RT, Nagalo BM and Borad MJ:
Oncolytic adenoviruses in gastrointestinal cancers. Biomedicines.
6:332018. View Article : Google Scholar
|
|
27
|
Quail DF and Joyce JA: Microenvironmental
regulation of tumor progression and metastasis. Nat Med.
19:1423–1437. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
28
|
Belli C, Trapani D, Viale G, D'Amico P,
Duso BA, Della Vigna P, Orsi F and Curigliano G: Targeting the
microenvironment in solid tumors. Cancer Treat Rev. 65:22–32. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhong S, Jeong JH, Chen Z, Chen Z and Luo
JL: Targeting tumor microenvironment by small-molecule inhibitors.
Transl Oncol. 13:57–69. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Terren I, Orrantia A, Vitalle J,
Zenarruzabeitia O and Borrego F: NK cell metabolism and tumor
microenvironment. Front Immunol. 10:22782019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Maimela NR, Liu S and Zhang Y: Fates of
CD8+ T cells in tumor microenvironment. Comput Struct
Biotechnol J. 17:1–13. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Najafi M, Farhood B and Mortezaee K:
Extracellular matrix (ECM) stiffness and degradation as cancer
drivers. J Cell Biochem. 120:2782–2790. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Guo S and Deng CX: Effect of stromal cells
in tumor microenvironment on metastasis initiation. Int J Biol Sci.
14:2083–2093. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jang I and Beningo KA: Integrins, CAFs and
mechanical forces in the progression of cancer. Cancers (Basel).
11:7212019. View Article : Google Scholar
|
|
35
|
Jarosz-Biej M, Smolarczyk R, Cichon T and
Kulach N: Tumor microenvironment as A ‘Game Changer’ in cancer
radiotherapy. Int J Mol Sci. 20:32122019. View Article : Google Scholar
|
|
36
|
Nishide S, Uchida J, Matsunaga S, Tokudome
K, Yamaguchi T, Kabei K, Moriya T, Miura K, Nakatani T and Tomita
S: Prolyl-hydroxylase inhibitors reconstitute tumor blood vessels
in mice. J Pharmacol Sci. 143:122–126. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Carretero R, Sektioglu IM, Garbi N,
Salgado OC, Beckhove P and Hammerling GJ: Eosinophils orchestrate
cancer rejection by normalizing tumor vessels and enhancing
infiltration of CD8(+) T cells. Nat Immunol. 16:609–617. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhao H, Tian X, He L, Li Y, Pu W, Liu Q,
Tang J, Wu J, Cheng X, Liu Y, et al: Apj+ vessels drive
tumor growth and represent a tractable therapeutic target. Cell
Rep. 25:1241–1254.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Brand A, Singer K, Koehl GE, Kolitzus M,
Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et
al: LDHA-Associated lactic acid production blunts tumor
immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fischer K, Hoffmann P, Voelkl S,
Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G,
Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid
on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Colegio OR, Chu NQ, Szabo AL, Chu T,
Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC,
Phillips GM, et al: Functional polarization of tumour-associated
macrophages by tumour-derived lactic acid. Nature. 513:559–563.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ohashi T, Aoki M, Tomita H, Akazawa T,
Sato K, Kuze B, Mizuta K, Hara A, Nagaoka H, Inoue N and Ito Y:
M2-like macrophage polarization in high lactic acid-producing head
and neck cancer. Cancer Sci. 108:1128–1134. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Urbanska K and Orzechowski A:
Unappreciated role of LDHA and LDHB to control apoptosis and
autophagy in tumor cells. Int J Mol Sci. 20:20852019. View Article : Google Scholar
|
|
44
|
Fleming V, Hu X, Weber R, Nagibin V, Groth
C, Altevogt P, Utikal J and Umansky V: Targeting myeloid-derived
suppressor cells to bypass tumor-induced immunosuppression. Front
Immunol. 9:3982018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hinshaw DC and Shevde LA: The tumor
microenvironment innately modulates cancer progression. Cancer Res.
79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Safarzadeh E, Orangi M, Mohammadi H,
Babaie F and Baradaran B: Myeloid-derived suppressor cells:
Important contributors to tumor progression and metastasis. J Cell
Physiol. 233:3024–3036. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Dysthe M and Parihar R: Myeloid-Derived
suppressor cells in the tumor microenvironment. Adv Exp Med Biol.
1224:117–140. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ribatti D, Tamma R and Crivellato E: Cross
talk between natural killer cells and mast cells in tumor
angiogenesis. Inflamm Res. 68:19–23. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Albini A, Bruno A, Noonan DM and Mortara
L: Contribution to tumor angiogenesis from innate immune cells
within the tumor microenvironment: Implications for immunotherapy.
Front Immunol. 9:5272018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kabiraj A, Jaiswal R, Singh A, Gupta J,
Singh A and Samadi FM: Immunohistochemical evaluation of tumor
angiogenesis and the role of mast cells in oral squamous cell
carcinoma. J Cancer Res Ther. 14:495–502. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shee K, Yang W, Hinds JW, Hampsch RA, Varn
FS, Traphagen NA, Patel K, Cheng C, Jenkins NP, Kettenbach AN, et
al: Therapeutically targeting tumor microenvironment-mediated drug
resistance in estrogen receptor-positive breast cancer. J Exp Med.
215:895–910. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Binnewies M, Roberts EW, Kersten K, Chan
V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI,
Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor
immune microenvironment (TIME) for effective therapy. Nat Med.
24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
de Sostoa J, Fajardo CA, Moreno R, Ramos
MD, Farrera-Sal M and Alemany R: Targeting the tumor stroma with an
oncolytic adenovirus secreting a fibroblast activation
protein-targeted bispecific T-cell engager. J Immunother Cancer.
7:192019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lang FF, Conrad C, Gomez-Manzano C, Yung
WKA, Sawaya R, Weinberg JS, Prabhu SS, Rao G, Fuller GN, Aldape KD,
et al: Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic
Adenovirus: Replication and immunotherapeutic effects in recurrent
malignant glioma. J Clin Oncol. 36:1419–1427. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Havunen R, Siurala M, Sorsa S,
Grönberg-Vähä-Koskela S, Behr M, Tähtinen S, Santos JM, Karell P,
Rusanen J, Nettelbeck DM, et al: Oncolytic adenoviruses armed with
tumor necrosis factor alpha and interleukin-2 enable successful
adoptive cell therapy. Mol Ther Oncolytics. 4:77–86. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Santos JM, Cervera-Carrascon V, Havunen R,
Zafar S, Siurala M, Sorsa S, Anttila M, Kanerva A and Hemminki A:
Adenovirus coding for interleukin-2 and tumor necrosis factor alpha
replaces lymphodepleting chemotherapy in adoptive T cell therapy.
Mol Ther. 26:2243–2254. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lee YS and Radford KJ: The role of
dendritic cells in cancer. Int Rev Cell Mol Biol. 348:123–178.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Palucka K and Banchereau J: Cancer
immunotherapy via dendritic cells. Nat Rev Cancer. 12:265–277.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Parnas O, Jovanovic M, Eisenhaure TM,
Herbst RH, Dixit A, Ye CJ, Przybylski D, Platt RJ, Tirosh I,
Sanjana NE, et al: A genome-wide CRISPR screen in primary immune
cells to dissect regulatory networks. Cell. 162:675–686. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Oh DS and Lee HK: Autophagy protein ATG5
regulates CD36 expression and anti-tumor MHC class II antigen
presentation in dendritic cells. Autophagy. 15:2091–2106. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen L, Hasni MS, Jondal M and Yakimchuk
K: Modification of anti-tumor immunity by tolerogenic dendritic
cells. Autoimmunity. 50:370–376. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Karnell JL, Rieder SA, Ettinger R and
Kolbeck R: Targeting the CD40-CD40L pathway in autoimmune diseases:
Humoral immunity and beyond. Adv Drug Deliv Rev. 141:92–103. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Vitale LA, Thomas LJ, He LZ, O'Neill T,
Widger J, Crocker A, Sundarapandiyan K, Storey JR, Forsberg EM,
Weidlick J, et al: Development of CDX-1140, an agonist CD40
antibody for cancer immunotherapy. Cancer Immunol Immunother.
68:233–245. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zafar S, Sorsa S, Siurala M, Hemminki O,
Havunen R, Cervera-Carrascon V, Santos JM, Wang H, Lieber A, De
Gruijl T, et al: CD40L coding oncolytic adenovirus allows long-term
survival of humanized mice receiving dendritic cell therapy.
Oncoimmunology. 7:e14908562018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Eriksson E, Milenova I, Wenthe J, Moreno
R, Alemany R and Loskog A: IL-6 signaling blockade during
CD40-mediated immune activation favors antitumor factors by
reducing TGF-β, collagen type I, and PD-L1/PD-1. J Immunol.
202:787–798. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Guo X, Ding C, Lu J, Zhou T, Liang T, Ji
Z, Xie P, Liu X and Kang Q: HP-NAP ameliorates OXA-induced atopic
dermatitis symptoms in mice. Immunopharmacol Immunotoxicol.
42:416–422. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Codolo G, Fassan M, Munari F, Volpe A,
Bassi P, Rugge M, Pagano F, D'Elios MM and de Bernard M: HP-NAP
inhibits the growth of bladder cancer in mice by activating a
cytotoxic Th1 response. Cancer Immunol Immunother. 61:31–40. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
D'Elios MM, Amedei A, Cappon A, Del Prete
G and de Bernard M: The neutrophil-activating protein of
Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS
Immunol Med Microbiol. 50:157–164. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ramachandran M, Jin C, Yu D, Eriksson F
and Essand M: Vector-encoded Helicobacter pylori
neutrophil-activating protein promotes maturation of dendritic
cells with Th1 polarization and improved migration. J Immunol.
193:2287–2296. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mantovani A, Marchesi F, Malesci A, Laghi
L and Allavena P: Tumour-associated macrophages as treatment
targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ubil E, Caskey L, Holtzhausen A, Hunter D,
Story C and Earp HS: Tumor-secreted Pros1 inhibits macrophage M1
polarization to reduce antitumor immune response. J Clin Invest.
128:2356–2369. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Myers KV, Amend SR and Pienta KJ:
Targeting Tyro3, Axl and MerTK (TAM receptors): Implications for
macrophages in the tumor microenvironment. Mol Cancer. 18:942019.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Huang YJ, Yang CK, Wei PL, Huynh TT,
Whang-Peng J, Meng TC, Hsiao M, Tzeng YM, Wu AT and Yen Y:
Ovatodiolide suppresses colon tumorigenesis and prevents
polarization of M2 tumor-associated macrophages through YAP
oncogenic pathways. J Hematol Oncol. 10:602017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim
JH, Soh J, Kim HS, Lee H, Kim J, et al: Cancer-Stimulated CAFs
enhance monocyte differentiation and protumoral TAM activation via
IL6 and GM-CSF secretion. Clin Cancer Res. 24:5407–5421. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kuryk L, Moller AW, Garofalo M, Cerullo V,
Pesonen S, Alemany R and Jaderberg M: Antitumor-specific T-cell
responses induced by oncolytic adenovirus ONCOS-102
(AdV5/3-D24-GM-CSF) in peritoneal mesothelioma mouse model. J Med
Virol. 90:1669–1673. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hayat SMG, Biancon V, Pirro M, Jaafari MR,
Hatamipour M and Sahebkar A: CD47 role in the immune system and
application to cancer therapy. Cell Oncol (Dordr.). 43:19–30. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Huang Y, Lv SQ, Liu PY, Ye ZL, Yang H, Li
LF, Zhu HL, Wang Y, Cui LZ, Jiang DQ, et al: A SIRPα-Fc fusion
protein enhances the antitumor effect of oncolytic adenovirus
against ovarian cancer. Mol Oncol. 14:657–668. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang KL, Li RP, Zhang BP, Gao ST, Li B,
Huang CJ, Cao R, Cheng JY, Xie XD, Yu ZH and Feng XY: Efficacy of a
new oncolytic adenovirus armed with IL-13 against oral carcinoma
models. Onco Targets Ther. 12:6515–6523. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Scott EM, Jacobus EJ, Lyons B, Frost S,
Freedman JD, Dyer A, Khalique H, Taverner WK, Carr A, Champion BR,
et al: Bi- and tri-valent T cell engagers deplete tumour-associated
macrophages in cancer patient samples. J Immunother Cancer.
7:3202019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yao C, Ni Z, Gong C, Zhu X, Wang L, Xu Z,
Zhou C, Li S, Zhou W, Zou C and Zhu S: Rocaglamide enhances NK
cell-mediated killing of non-small cell lung cancer cells by
inhibiting autophagy. Autophagy. 14:1831–1844. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Davis MR, Zhu Z, Hansen DM, Bai Q and Fang
Y: The role of IL-21 in immunity and cancer. Cancer Lett.
358:107–114. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li Y, Li YF, Si CZ, Zhu YH, Jin Y, Zhu TT,
Liu MY and Liu GY: CCL21/IL21-armed oncolytic adenovirus enhances
antitumor activity against TERT-positive tumor cells. Virus Res.
220:172–178. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Rhode PR, Egan JO, Xu W, Hong H, Webb GM,
Chen X, Liu B, Zhu X, Wen J, You L, et al: Comparison of the
superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics
in animal models. Cancer Immunol Res. 4:49–60. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yan Y, Li S, Jia T, Du X, Xu Y, Zhao Y, Li
L, Liang K, Liang W, Sun H and Li R: Combined therapy with CTL
cells and oncolytic adenovirus expressing IL-15-induced enhanced
antitumor activity. Tumour Biol. 36:4535–4543. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kubo N, Araki K, Kuwano H and Shirabe K:
Cancer-associated fibroblasts in hepatocellular carcinoma. World J
Gastroenterol. 22:6841–6850. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chen X and Song E: Turning foes to
friends: Targeting cancer-associated fibroblasts. Nat Rev Drug
Discov. 18:99–115. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Feig C, Jones JO, Kraman M, Wells RJ,
Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL,
et al: Targeting CXCL12 from FAP-expressing carcinoma-associated
fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic
cancer. Proc Natl Acad Sci USA. 110:20212–20217. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Erdogan B, Ao M, White LM, Means AL,
Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, et
al: Cancer-associated fibroblasts promote directional cancer cell
migration by aligning fibronectin. J Cell Biol. 216:3799–3816.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Erdogan B and Webb DJ: Cancer-associated
fibroblasts modulate growth factor signaling and extracellular
matrix remodeling to regulate tumor metastasis. Biochem Soc Trans.
45:229–236. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Arwert EN, Milford EL, Rullan A, Derzsi S,
Hooper S, Kato T, Mansfield D, Melcher A, Harrington KJ and Sahai
E: STING and IRF3 in stromal fibroblasts enable sensing of genomic
stress in cancer cells to undermine oncolytic viral therapy. Nat
Cell Biol. 22:758–766. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Puig-Saus C, Gros A, Alemany R and
Cascallo M: Adenovirus i-leader truncation bioselected against
cancer-associated fibroblasts to overcome tumor stromal barriers.
Mol Ther. 20:54–62. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Jing Y, Chavez V, Ban Y, Acquavella N,
El-Ashry D, Pronin A, Chen X and Merchan JR: Molecular effects of
stromal-selective targeting by uPAR-retargeted oncolytic virus in
breast cancer. Mol Cancer Res. 15:1410–1420. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Czekierdowska S, Stachowicz N, Chrosciel M
and Czekierdowski A: Proliferation and maturation of intratumoral
blood vessels in women with malignant ovarian tumors assessed with
cancer stem cells marker nestin and platelet derived growth factor
PDGF-B. Ginekol Pol. 88:120–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang R, Chadalavada K, Wilshire J, Kowalik
U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C and
Tabar V: Glioblastoma stem-like cells give rise to tumour
endothelium. Nature. 468:829–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang S, Aurora AB, Johnson BA, Qi X,
McAnally J, Hill JA, Richardson JA, Bassel-Duby R and Olson EN: The
endothelial-specific microRNA miR-126 governs vascular integrity
and angiogenesis. Dev Cell. 15:261–271. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Feng SD, Mao Z, Liu C, Nie YS, Sun B, Guo
M and Su C: Simultaneous overexpression of miR-126 and miR-34a
induces a superior antitumor efficacy in pancreatic adenocarcinoma.
Onco Targets Ther. 10:5591–5604. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Harada A, Uchino J, Harada T, Nakagaki N,
Hisasue J, Fujita M and Takayama K: Vascular endothelial growth
factor promoter-based conditionally replicative adenoviruses
effectively suppress growth of malignant pleural mesothelioma.
Cancer Sci. 108:116–123. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chen QN, Chen X, Chen ZY, Nie FQ, Wei CC,
Ma HW, Wan L, Yan S, Ren SN and Wang ZX: Long intergenic non-coding
RNA 00152 promotes lung adenocarcinoma proliferation via
interacting with EZH2 and repressing IL24 expression. Mol Cancer.
16:172017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhuo B, Wang R, Yin Y, Zhang H, Ma T, Liu
F, Cao H and Shi Y: Adenovirus arming human IL-24 inhibits
neuroblastoma cell proliferation in vitro and xenograft tumor
growth in vivo. Tumour Biol. 34:2419–2426. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang Y and Zheng J: Functions of immune
checkpoint molecules beyond immune evasion. Adv Exp Med Biol.
1248:201–226. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li K and Tian H: Development of
small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new
therapeutic strategy for tumour immunotherapy. J Drug Target.
27:244–256. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kurachi M, Barnitz RA, Yosef N, Odorizzi
PM, DiIorio MA, Lemieux ME, Yates K, Godec J, Klatt MG, Regev A, et
al: The transcription factor BATF operates as an essential
differentiation checkpoint in early effector CD8+ T cells. Nat
Immunol. 15:373–383. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Deng J, Wang ES, Jenkins RW, Li S, Dries
R, Yates K, Chhabra S, Huang W, Liu H, Aref AR, et al: CDK4/6
inhibition augments antitumor immunity by enhancing T-cell
activation. Cancer Discov. 8:216–233. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Johnson DB, Sullivan RJ and Menzies AM:
Immune checkpoint inhibitors in challenging populations. Cancer.
123:1904–1911. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang Y, Zhang H, Wei M, Mou T, Shi T, Ma
Y, Cai X, Li Y, Dong J and Wei J: Recombinant adenovirus expressing
a soluble fusion protein PD-1/CD137L subverts the suppression of
CD8+ T cells in HCC. Mol Ther. 27:1906–1918. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Du T, Shi G, Li YM, Zhang JF, Tian HW, Wei
YQ, Deng H and Yu DC: Tumor-specific oncolytic adenoviruses
expressing granulocyte macrophage colony-stimulating factor or
anti-CTLA4 antibody for the treatment of cancers. Cancer Gene Ther.
21:340–348. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Dias JD, Hemminki O, Diaconu I, Hirvinen
M, Bonetti A, Guse K, Escutenaire S, Kanerva A, Pesonen S, Löskog
A, et al: Targeted cancer immunotherapy with oncolytic adenovirus
coding for a fully human monoclonal antibody specific for CTLA-4.
Gene Ther. 19:988–998. 2012. View Article : Google Scholar : PubMed/NCBI
|