Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
August-2021 Volume 46 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2021 Volume 46 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation

  • Authors:
    • Yusha Zhu
    • Qiao Yi Chen
    • Ashley Jordan
    • Hong Sun
    • Nirmal Roy
    • Max Costa
  • View Affiliations / Copyright

    Affiliations: Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710000, P.R. China
  • Article Number: 154
    |
    Published online on: June 7, 2021
       https://doi.org/10.3892/or.2021.8105
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Nickel (Ni) compounds are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) and are known to be carcinogenic to the lungs. In our previous study, special AT‑rich sequence‑binding protein 2 (SATB2) was required for Ni‑induced BEAS‑2B cell transformation. In the present study, a pathway that regulates the expression of SATB2 protein was investigated in Ni‑transformed BEAS‑2B cells using western blotting and RT‑qPCR for expression, and soft agar, migration and invasion assays for cell transformation. Runt‑related transcription factor 2 (RUNX2), a master regulator of osteogenesis and an oncogene, was identified as an upstream regulator for SATB2. Ni induced RUNX2 expression and initiated BEAS‑2B transformation and metastatic potential. Previously, miRNA‑31 was identified as a negative regulator of SATB2 during arsenic‑induced cell transformation, and in the present study it was identified as a downstream target of RUNX2 during carcinogenesis. miR‑31 expression was reduced in Ni‑transformed BEAS‑2B cells, which was required to maintain cancer hallmarks. The expression level of miR‑31 was suppressed by RUNX2 in BEAS‑2B cells, and this increased the expression level of SATB2, initiating cell transformation. Ni caused the repression of miR‑31 by placing repressive marks at its promoter, which in turn increased the expression level of SATB2, leading to cell transformation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Huvinen M and Pukkala E: Cancer incidence among Finnish ferrochromium and stainless steel production workers in 1967–2011: A cohort study. BMJ Open. 3:e0038192013. View Article : Google Scholar : PubMed/NCBI

2 

Grimsrud TK and Andersen A: Evidence of carcinogenicity in humans of water-soluble nickel salts. J Occup Med Toxicol. 5:72010. View Article : Google Scholar : PubMed/NCBI

3 

Andersen A, Berge SR, Engeland A and Norseth T: Exposure to nickel compounds and smoking in relation to incidence of lung and nasal cancer among nickel refinery workers. Occup Environ Med. 53:708–713. 1996. View Article : Google Scholar : PubMed/NCBI

4 

Seilkop SK and Oller AR: Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regul Toxicol Pharmacol. 37:173–190. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Anttila A, Pukkala E, Aitio A, Rantanen T and Karjalainen S: Update of cancer incidence among workers at a copper/nickel smelter and nickel refinery. Int Arch Occup Environ Health. 71:245–250. 1998. View Article : Google Scholar : PubMed/NCBI

6 

Moulin JJ, Clavel T, Roy D, Dananche B, Marquis N, Fevotte J and Fontana JM: Risk of lung cancer in workers producing stainless steel and metallic alloys. Int Arch Occup Environ Health. 73:171–180. 2000. View Article : Google Scholar : PubMed/NCBI

7 

Clancy HA, Sun H, Passantino L, Kluz T, Munoz A, Zavadil J and Costa M: Gene expression changes in human lung cells exposed to arsenic, chromium, nickel or vanadium indicate the first steps in cancer. Metallomics. 4:784–793. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Savarese F, Davila A, Nechanitzky R, De La Rosa-Velazquez I, Pereira CF, Engelke R, Takahashi K, Jenuwein T, Kohwi-Shigematsu T, Fisher AG and Grosschedl R: Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression. Genes Dev. 23:2625–2638. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Magnusson K, de Wit M, Brennan DJ, Johnson LB, McGee SF, Lundberg E, Naicker K, Klinger R, Kampf C, Asplund A, et al: SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol. 35:937–948. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Jiang G, Cui Y, Yu X, Wu Z, Ding G and Cao L: miR-211 suppresses hepatocellular carcinoma by downregulating SATB2. Oncotarget. 6:9457–9466. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Cartularo L, Kluz T, Cohen L, Shen SS and Costa M: Molecular mechanisms of malignant transformation by low dose cadmium in normal human bronchial epithelial cells. PLoS One. 11:e01550022016. View Article : Google Scholar : PubMed/NCBI

12 

Fukuhara M, Agnarsdottir M, Edqvist PH, Coter A and Ponten F: SATB2 is expressed in Merkel cell carcinoma. Arch Dermatol Res. 308:449–454. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Yu W, Ma Y, Shankar S and Srivastava RK: SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Sci Rep. 7:109392017. View Article : Google Scholar : PubMed/NCBI

14 

Bae T, Rho K, Choi JW, Horimoto K, Kim W and Kim S: Identification of upstream regulators for prognostic expression signature genes in colorectal cancer. BMC Syst Biol. 7:862013. View Article : Google Scholar : PubMed/NCBI

15 

Yu W, Ma Y, Shankar S and Srivastava RK: Role of SATB2 in human pancreatic cancer: Implications in transformation and a promising biomarker. Oncotarget. 7:57783–57797. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Wu F, Jordan A, Kluz T, Shen S, Sun H, Cartularo LA and Costa M: SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells. Toxicol Appl Pharmacol. 293:30–36. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Zhao X, Qu Z, Tickner J, Xu J, Dai K and Zhang X: The role of SATB2 in skeletogenesis and human disease. Cytokine Growth Factor Rev. 25:35–44. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Komori T: Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem. 95:445–453. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR and de Crombrugghe B: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 108:17–29. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Tang W, Li Y, Osimiri L and Zhang C: Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. J Biol Chem. 286:32995–33002. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Yu L, Xu Y, Qu H, Yu Y, Li W, Zhao Y and Qiu G: Decrease of miR-31 induced by TNF-α inhibitor activates SATB2/RUNX2 pathway and promotes osteogenic differentiation in ethanol-induced osteonecrosis. J Cell Physiol. 234:4314–4326. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Deng Y, Wu S, Zhou H, Bi X, Wang Y, Hu Y, Gu P and Fan X: Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev. 22:2278–2286. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, Stein GS and Lian JB: A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA. 107:19879–19884. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G and Grosschedl R: SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell. 125:971–986. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Dowrey T, Schwager EE, Duong J, Merkuri F, Zarate YA and Fish JL: Satb2 regulates proliferation and nuclear integrity of pre-osteoblasts. Bone. 127:488–498. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Zhang J, Tu Q, Grosschedl R, Kim MS, Griffin T, Drissi H, Yang P and Chen J: Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng Part A. 17:1767–1776. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Kayed H, Jiang X, Keleg S, Jesnowski R, Giese T, Berger MR, Esposito I, Lohr M, Friess H and Kleeff J: Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. Br J Cancer. 97:1106–1115. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL and Stein GS: Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 25:589–600. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Niu DF, Kondo T, Nakazawa T, Oishi N, Kawasaki T, Mochizuki K, Yamane T and Katoh R: Transcription factor Runx2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. Lab Invest. 92:1181–1190. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Thomas DM, Johnson SA, Sims NA, Trivett MK, Slavin JL, Rubin BP, Waring P, McArthur GA, Walkley CR, Holloway AJ, et al: Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol. 167:925–934. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA, van Wijnen AJ, Stein JL, Languino LR, Altieri DC, et al: Runx2 association with progression of prostate cancer in patients: Mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene. 29:811–821. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Sun X, Wei L, Chen Q and Terek RM: HDAC4 represses vascular endothelial growth factor expression in chondrosarcoma by modulating RUNX2 activity. J Biol Chem. 284:21881–21890. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Papachristou DJ, Papachristou GI, Papaefthimiou OA, Agnantis NJ, Basdra EK and Papavassiliou AG: The MAPK-AP-1/-Runx2 signalling axes are implicated in chondrosarcoma pathobiology either independently or via up-regulation of VEGF. Histopathology. 47:565–574. 2005.PubMed/NCBI

34 

Inman CK and Shore P: The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem. 278:48684–48689. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Baniwal SK, Khalid O, Gabet Y, Shah RR, Purcell DJ, Mav D, Kohn-Gabet AE, Shi Y, Coetzee GA and Frenkel B: Runx2 transcriptome of prostate cancer cells: Insights into invasiveness and bone metastasis. Mol Cancer. 9:2582010. View Article : Google Scholar : PubMed/NCBI

36 

Yuen HF, Kwok WK, Chan KK, Chua CW, Chan YP, Chu YY, Wong YC, Wang X and Chan KW: TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction. Carcinogenesis. 29:1509–1518. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Aprelikova O, Yu X, Palla J, Wei BR, John S, Yi M, Stephens R, Simpson RM, Risinger JI, Jazaeri A and Niederhuber J: The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle. 9:4387–4398. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Yang MH, Yu J, Chen N, Wang XY, Liu XY, Wang S and Ding YQ: Elevated microRNA-31 expression regulates colorectal cancer progression by repressing its target gene SATB2. PLoS One. 8:e853532013. View Article : Google Scholar : PubMed/NCBI

39 

Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ and Stein GS: A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA. 108:9863–9868. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Chen QY, Li J, Sun H, Wu F, Zhu Y, Kluz T, Jordan A, DesMarais T, Zhang X, Murphy A and Costa M: Role of miR-31 and SATB2 in arsenic-induced malignant BEAS-2B cell transformation. Mol Carcinog. 57:968–977. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Ge J, Guo S, Fu Y, Zhou P, Zhang P, Du Y, Li M, Cheng J and Jiang H: Dental follicle cells participate in tooth eruption via the RUNX2-miR-31-SATB2 Loop. J Dent Res. 94:936–944. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB and Stein GS: A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA. 105:13906–13911. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS and Lian JB: Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem. 284:15676–15684. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

45 

Pawlicki JM and Steitz JA: Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol. 20:52–61. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Zhu Y, Chen QY, Li AH and Costa M: The role of non-coding RNAs involved in nickel-induced lung carcinogenic mechanisms. Inorganics. 7:812019. View Article : Google Scholar

48 

Chen QY, Des Marais T and Costa M: Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis. 40:393–402. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Tian W, Wang G, Liu Y, Huang Z, Zhang C, Ning K, Yu C, Shen Y, Wang M, Li Y, et al: The miR-599 promotes non-small cell lung cancer cell invasion via SATB2. Biochem Biophys Res Commun. 485:35–40. 2017. View Article : Google Scholar : PubMed/NCBI

50 

El Bezawy R, Cominetti D, Fenderico N, Zuco V, Beretta GL, Dugo M, Arrighetti N, Stucchi C, Rancati T, Valdagni R, et al: miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Lett. 395:53–62. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Gu J, Wang G, Liu H and Xiong C: SATB2 targeted by methylated miR-34c-5p suppresses proliferation and metastasis attenuating the epithelial-mesenchymal transition in colorectal cancer. Cell Prolif. 51:e124552018. View Article : Google Scholar : PubMed/NCBI

52 

Sun X, Liu S, Chen P, Fu D, Hou Y, Hu J, Liu Z, Jiang Y, Cao X, Cheng C, et al: miR-449a inhibits colorectal cancer progression by targeting SATB2. Oncotarget. 8:100975–100988. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Luo LJ, Yang F, Ding JJ, Yan DL, Wang DD, Yang SJ, Ding L, Li J, Chen D, Ma R, et al: miR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer. Gene. 594:47–58. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Gong Y, Xu F, Zhang L, Qian Y, Chen J, Huang H and Yu Y: MicroRNA expression signature for Satb2-induced osteogenic differentiation in bone marrow stromal cells. Mol Cell Biochem. 387:227–239. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Ratnadiwakara M and Änkö ML: mRNA stability assay using transcription inhibition by actinomycin D in mouse pluripotent stem cells. Bio-Protocol. 8:e30722018. View Article : Google Scholar

57 

Costa M: Molecular mechanisms of nickel carcinogenesis. Annu Rev Pharmacol Toxicol. 31:321–337. 1991. View Article : Google Scholar : PubMed/NCBI

58 

Chen QY and Costa M: A comprehensive review of metal-induced cellular transformation studies. Toxicol Appl Pharmacol. 331:33–40. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Huang H, Zhu J, Li Y, Zhang L, Gu J, Xie Q, Jin H, Che X, Li J, Huang C, et al: Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells. Autophagy. 12:1687–1703. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Pang Y, Li W, Ma R, Ji W, Wang Q, Li D, Xiao Y, Wei Q, Lai Y, Yang P, et al: Development of human cell models for assessing the carcinogenic potential of chemicals. Toxicol Appl Pharmacol. 232:478–486. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Rani AS, Qu DQ, Sidhu MK, Panagakos F, Shah V, Klein KM, Brown N, Pathak S and Kumar S: Transformation of immortal, non-tumorigenic osteoblast-like human osteosarcoma cells to the tumorigenic phenotype by nickel sulfate. Carcinogenesis. 14:947–953. 1993. View Article : Google Scholar : PubMed/NCBI

62 

Wang L, Fan J, Hitron JA, Son YO, Wise JT, Roy RV, Kim D, Dai J, Pratheeshkumar P, Zhang Z and Shi X: Cancer stem-like cells accumulated in nickel-induced malignant transformation. Toxicol Sci. 151:376–387. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Zhang Q, Salnikow K, Kluz T, Chen LC, Su WC and Costa M: Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A. Toxicol Appl Pharmacol. 192:201–211. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK and Winn RA: The soft agar colony formation assay. J Vis Exp. e519982014.PubMed/NCBI

65 

Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M, Thompson SK, Zollo M, Spano D, Dhawan P, et al: Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol. 35 Suppl:S244–S275. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Sahai E: Mechanisms of cancer cell invasion. Curr Opin Genet Dev. 15:87–96. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 89:755–764. 1997. View Article : Google Scholar : PubMed/NCBI

68 

Valenti MT, Serafini P, Innamorati G, Gili A, Cheri S, Bassi C and Dalle Carbonare L: Runx2 expression: A mesenchymal stem marker for cancer. Oncol Lett. 12:4167–4172. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Thomas DM, Carty SA, Piscopo DM, Lee JS, Wang WF, Forrester WC and Hinds PW: The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell. 8:303–316. 2001. View Article : Google Scholar : PubMed/NCBI

70 

Bai X, Meng L, Sun H, Li Z, Zhang X and Hua S: MicroRNA-196b Inhibits cell growth and metastasis of lung cancer cells by targeting Runx2. Cell Physiol Biochem. 43:757–767. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Herreno AM, Ramirez AC, Chaparro VP, Fernandez MJ, Canas A, Morantes CF, Moreno OM, Bruges RE, Mejia JA, Bustos FJ, et al: Role of RUNX2 transcription factor in epithelial mesenchymal transition in non-small cell lung cancer lung cancer: Epigenetic control of the RUNX2 P1 promoter. Tumour Biol. 41:10104283198510142019. View Article : Google Scholar : PubMed/NCBI

72 

Li H, Zhou RJ, Zhang GQ and Xu JP: Clinical significance of RUNX2 expression in patients with nonsmall cell lung cancer: A 5-year follow-up study. Tumour Biol. 34:1807–1812. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Underwood KF, D'Souza DR, Mochin-Peters M, Pierce AD, Kommineni S, Choe M, Bennett J, Gnatt A, Habtemariam B, MacKerell AD Jr and Passaniti A: Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity. J Bone Miner Res. 27:913–925. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Underwood KF, Mochin MT, Brusgard JL, Choe M, Gnatt A and Passaniti A: A quantitative assay to study protein: DNA interactions, discover transcriptional regulators of gene expression, and identify novel anti-tumor agents. J Vis Exp. 78:e505122013.PubMed/NCBI

75 

Kim MS, Gernapudi R, Choi EY, Lapidus RG and Passaniti A: Characterization of CADD522, a small molecule that inhibits RUNX2-DNA binding and exhibits antitumor activity. Oncotarget. 8:70916–70940. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Dobreva G, Dambacher J and Grosschedl R: SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev. 17:3048–3061. 2003. View Article : Google Scholar : PubMed/NCBI

77 

O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar

78 

Flynt AS and Lai EC: Biological principles of microRNA-mediated regulation: Shared themes amid diversity. Nat Rev Genet. 9:831–842. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Cameron KS, Buchner V and Tchounwou PB: Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: A literature review. Rev Environ Health. 26:81–92. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Lee JW, Bae SH, Jeong JW, Kim SH and Kim KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI

81 

Ke Q and Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70:1469–1480. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Li Q, Chen H, Huang X and Costa M: Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1alpha) and HIF-regulated genes. Toxicol Appl Pharmacol. 213:245–255. 2006. View Article : Google Scholar : PubMed/NCBI

83 

Davidson TL, Chen H, Di Toro DM, D'Angelo G and Costa M: Soluble nickel inhibits HIF-prolyl-hydroxylases creating persistent hypoxic signaling in A549 cells. Mol Carcinog. 45:479–489. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Lee SH, Che X, Jeong JH, Choi JY, Lee YJ, Lee YH, Bae SC and Lee YM: Runx2 protein stabilizes hypoxia-inducible factor-1α through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J Biol Chem. 287:14760–14771. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Kwon TG, Zhao X, Yang Q, Li Y, Ge C, Zhao G and Franceschi RT: Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression. J Cell Biochem. 112:3582–3593. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Dong W, Chen Y, Qian N, Sima G, Zhang J, Guo Z and Wang C: SATB2 knockdown decreases hypoxia-induced autophagy and stemness in oral squamous cell carcinoma. Oncol Lett. 20:794–802. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Ali T, Mushtaq I, Maryam S, Farhan A, Saba K, Jan MI, Sultan A, Anees M, Duygu B, Hamera S, et al: Interplay of N acetyl cysteine and melatonin in regulating oxidative stress-induced cardiac hypertrophic factors and microRNAs. Arch Biochem Biophys. 661:56–65. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Clemens F, Verma R, Ramnath J and Landolph JR: Amplification of the Ect2 proto-oncogene and over-expression of Ect2 mRNA and protein in nickel compound and methylcholanthrene-transformed 10T1/2 mouse fibroblast cell lines. Toxicol Appl Pharmacol. 206:138–149. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Chiocca SM, Sterner DA, Biggart NW and Murphy EC Jr: Nickel mutagenesis: Alteration of the MuSVts110 thermosensitive splicing phenotype by a nickel-induced duplication of the 3′ splice site. Mol Carcinog. 4:61–71. 1991. View Article : Google Scholar : PubMed/NCBI

90 

Zhang YJ, Chen JW, He XS, Zhang HZ, Ling YH, Wen JH, Deng WH, Li P, Yun JP, Xie D and Cai MY: SATB2 is a promising biomarker for identifying a colorectal origin for liver metastatic adenocarcinomas. EBioMedicine. 28:62–69. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Dragomir A, de Wit M, Johansson C, Uhlen M and Ponten F: The role of SATB2 as a diagnostic marker for tumors of colorectal origin: Results of a pathology-based clinical prospective study. Am J Clin Pathol. 141:630–638. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Eberhard J, Gaber A, Wangefjord S, Nodin B, Uhlen M, Ericson Lindquist K and Jirstrom K: A cohort study of the prognostic and treatment predictive value of SATB2 expression in colorectal cancer. Br J Cancer. 106:931–938. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Lin F, Shi J, Zhu S, Chen Z, Li A, Chen T, Wang HL and Liu H: Cadherin-17 and SATB2 are sensitive and specific immunomarkers for medullary carcinoma of the large intestine. Arch Pathol Lab Med. 138:1015–1026. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Moh M, Krings G, Ates D, Aysal A, Kim GE and Rabban JT: SATB2 Expression distinguishes ovarian metastases of colorectal and appendiceal origin from primary ovarian tumors of mucinous or endometrioid type. Am J Surg Pathol. 40:419–432. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Yu W, Ma Y, Ochoa AC, Shankar S and Srivastava RK: Cellular transformation of human mammary epithelial cells by SATB2. Stem Cell Res. 19:139–147. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Shin MH, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, Gorlick R, Liu C and Huang J: A RUNX2-Mediated epigenetic regulation of the survival of p53 defective cancer cells. PLoS Genet. 12:e10058842016. View Article : Google Scholar : PubMed/NCBI

97 

Tang W, Yang F, Li Y, de Crombrugghe B, Jiao H, Xiao G and Zhang C: Transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) by osteoblast-specific transcription factor Osterix (Osx) in osteoblasts. J Biol Chem. 287:1671–1678. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Efe JA and Ding S: The evolving biology of small molecules: Controlling cell fate and identity. Philos Trans R Soc Lond B Biol Sci. 366:2208–2221. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Ma YN, Zhang HY, Fei LR, Zhang MY, Wang CC, Luo Y and Han YC: SATB2 suppresses non-small cell lung cancer invasiveness by G9a. Clin Exp Med. 18:37–44. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Wei MM and Zhou GB: Long non-coding RNAs and their roles in non-small-cell lung cancer. Genomics Proteomics Bioinformatics. 14:280–288. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Valencia-Sanchez MA, Liu J, Hannon GJ and Parker R: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20:515–524. 2006. View Article : Google Scholar : PubMed/NCBI

102 

Stepicheva NA and Song JL: Function and regulation of microRNA-31 in development and disease. Mol Reprod Dev. 83:654–674. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Asangani IA, Harms PW, Dodson L, Pandhi M, Kunju LP, Maher CA, Fullen DR, Johnson TM, Giordano TJ, Palanisamy N and Chinnaiyan AM: Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget. 3:1011–1025. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Augoff K, Das M, Bialkowska K, McCue B, Plow EF and Sossey-Alaoui K: miR-31 is a broad regulator of β1-integrin expression and function in cancer cells. Mol Cancer Res. 9:1500–1508. 2011.PubMed/NCBI

105 

Yamagishi M, Nakano K, Miyake A, Yamochi T, Kagami Y, Tsutsumi A, Matsuda Y, Sato-Otsubo A, Muto S, Utsunomiya A, et al: Polycomb-mediated loss of miR-31 activates NIK-dependent NF-κB pathway in adult T cell leukemia and other cancers. Cancer Cell. 21:121–135. 2012.PubMed/NCBI

106 

Ling H, Fabbri M and Calin GA: MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 12:847–865. 2013.PubMed/NCBI

107 

Kim HS, Lee KS, Bae HJ, Eun JW, Shen Q, Park SJ, Shin WC, Yang HD, Park M, Park WS, et al: MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer. Oncotarget. 6:8089–8102. 2015.PubMed/NCBI

108 

Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM and Dryja TP: Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am J Hum Genet. 48:880–888. 1991.PubMed/NCBI

109 

Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT and Costa M: Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: A new model for epigenetic carcinogens. Mol Cell Biol. 15:2547–2557. 1995.PubMed/NCBI

110 

Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD and Sakai T: CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene. 8:1063–1067. 1993.PubMed/NCBI

111 

Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D and Warren ST: DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1:397–400. 1992.PubMed/NCBI

112 

Greger V, Debus N, Lohmann D, Hopping W, Passarge E and Horsthemke B: Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum Genet. 94:491–496. 1994.PubMed/NCBI

113 

Hansen RS, Gartler SM, Scott CR, Chen SH and Laird CD: Methylation analysis of CGG sites in the CpG island of the human FMR1 gene. Hum Mol Genet. 1:571–578. 1992.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu Y, Chen QY, Jordan A, Sun H, Roy N and Costa M: RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncol Rep 46: 154, 2021.
APA
Zhu, Y., Chen, Q.Y., Jordan, A., Sun, H., Roy, N., & Costa, M. (2021). RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncology Reports, 46, 154. https://doi.org/10.3892/or.2021.8105
MLA
Zhu, Y., Chen, Q. Y., Jordan, A., Sun, H., Roy, N., Costa, M."RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation". Oncology Reports 46.2 (2021): 154.
Chicago
Zhu, Y., Chen, Q. Y., Jordan, A., Sun, H., Roy, N., Costa, M."RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation". Oncology Reports 46, no. 2 (2021): 154. https://doi.org/10.3892/or.2021.8105
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu Y, Chen QY, Jordan A, Sun H, Roy N and Costa M: RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncol Rep 46: 154, 2021.
APA
Zhu, Y., Chen, Q.Y., Jordan, A., Sun, H., Roy, N., & Costa, M. (2021). RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncology Reports, 46, 154. https://doi.org/10.3892/or.2021.8105
MLA
Zhu, Y., Chen, Q. Y., Jordan, A., Sun, H., Roy, N., Costa, M."RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation". Oncology Reports 46.2 (2021): 154.
Chicago
Zhu, Y., Chen, Q. Y., Jordan, A., Sun, H., Roy, N., Costa, M."RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation". Oncology Reports 46, no. 2 (2021): 154. https://doi.org/10.3892/or.2021.8105
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team