|
1
|
Martincorena I, Fowler JC, Wabik A, Lawson
ARJ, Abascal F, Hall MWJ, Cagan A, Murai K, Mahbubani K, Stratton
MR, et al: Somatic mutant clones colonize the human esophagus with
age. Science. 362:911–917. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yokoyama A, Kakiuchi N, Yoshizato T,
Nannya Y, Suzuki H, Takeuchi Y, Shiozawa Y, Sato Y, Aoki K, Kim SK,
et al: Age-related remodelling of oesophageal epithelia by mutated
cancer drivers. Nature. 565:312–317. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Goerttler K, Loehrke H, Schweizer J and
Hesse B: Two-stage skin carcinogenesis by systemic initiation of
pregnant mice with 7,12-dimethylbenz(a)anthracene during gestation
days 6–20 and postnatal promotion of the F 1-generation with the
phorbol ester 12-tetradecanoylphorbol-13-acetate. J Cancer Res Clin
Oncol. 98:267–275. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Goerttler K, Loehrke H, Hesse B, Milz A
and Schweizer J: Diaplacental initiation of NMRI mice with
7,12-dimethylbenz[a]anthracene during gestation days 6–20 and
postnatal treatment of the F1-generation with the phorbol ester
12-O-tetradecanoylphorbol-13-acetate: Tumor incidence in organs
other than the skin. Carcinogenesis. 2:1087–1094. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fairall L, Chapman L, Moss H, de Lange T
and Rhodes D: Structure of the TRFH dimerization domain of the
human telomeric proteins TRF1 and TRF2. Mol Cell. 8:351–361. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mondello C, Smirnova A and Giulotto E:
Gene amplification, radiation sensitivity and DNA double-strand
breaks. Mutat Res. 704:29–37. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
El Maï M, Wagner KD, Michiels JF,
Ambrosetti D, Borderie A, Destree S, Renault V, Djerbi N,
Giraud-Panis MJ, Gilson E and Wagner N: The telomeric protein TRF2
regulates angiogenesis by binding and activating the PDGFRβ
promoter. Cell Rep. 9:1047–1060. 2014. View Article : Google Scholar
|
|
8
|
Biroccio A, Cherfils-Vicini J, Augereau A,
Pinte S, Bauwens S, Ye J, Simonet T, Horard B, Jamet K, Cervera L,
et al: TRF2 inhibits a cell-extrinsic pathway through which natural
killer cells eliminate cancer cells. Nat Cell Biol. 15:818–828.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
van Steensel B, Smogorzewska A and de
Lange T: TRF2 protects human telomeres from end-to-end fusions.
Cell. 92:401–413. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
de Lange T: Shelterin: The protein complex
that shapes and safeguards human telomeres. Genes Dev.
19:2100–2110. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Smith EM, Pendlebury DF and Nandakumar J:
Structural biology of telomeres and telomerase. Cell Mol Life Sci.
77:61–79. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Deng Z, Norseen J, Wiedmer A, Riethman H
and Lieberman PM: TERRA RNA binding to TRF2 facilitates
heterochromatin formation and ORC recruitment at telomeres. Mol
Cell. 35:403–413. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Necasová I, Janoušková E, Klumpler T and
Hofr C: Basic domain of telomere guardian TRF2 reduces D-loop
unwinding whereas Rap1 restores it. Nucleic Acids Res.
45:12170–12180. 2017. View Article : Google Scholar
|
|
14
|
O'Connor MS, Safari A, Xin H, Liu D and
Songyang Z: A critical role for TPP1 and TIN2 interaction in
high-order telomeric complex assembly. Proc Natl Acad Sci USA.
103:11874–11879. 2006. View Article : Google Scholar
|
|
15
|
Xin H, Liu D, Wan M, Safari A, Kim H, Sun
W, O'Connor MS and Songyang Z: TPP1 is a homologue of ciliate
TEBP-beta and interacts with POT1 to recruit telomerase. Nature.
445:559–562. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
van Overbeek M and de Lange T: Apollo, an
Artemis-related nuclease, interacts with TRF2 and protects human
telomeres in S phase. Curr Biol. 16:1295–1302. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lenain C, Bauwens S, Amiard S, Brunori M,
Giraud-Panis MJ and Gilson E: The Apollo 5′exonuclease functions
together with TRF2 to protect telomeres from DNA repair. Curr Biol.
16:1303–1310. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kim H, Lee OH, Xin H, Chen LY, Qin J, Chae
HK, Lin SY, Safari A, Liu D and Songyang Z: TRF2 functions as a
protein hub and regulates telomere maintenance by recognizing
specific peptide motifs. Nat Struct Mol Biol. 16:372–379. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Benarroch-Popivker D, Pisano S,
Mendez-Bermudez A, Lototska L, Kaur P, Bauwens S, Djerbi N, Latrick
CM, Fraisier V, Pei B, et al: TRF2-mediated control of telomere DNA
topology as a mechanism for chromosome-end protection. Mol Cell.
61:274–286. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Giraud-Panis MJ, Pisano S,
Benarroch-Popivker D, Pei B, Le Du MH and Gilson E: One identity or
more for telomeres? Front Oncol. 3:482013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Broccoli D, Smogorzewska A, Chong L and de
Lange T: Human telomeres contain two distinct Myb-related proteins,
TRF1 and TRF2. Nat Genet. 17:231–235. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Baker AM, Fu Q, Hayward W, Lindsay SM and
Fletcher TM: The Myb/SANT domain of the telomere-binding protein
TRF2 alters chromatin structure. Nucleic Acids Res. 37:5019–5031.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bilaud T, Brun C, Ancelin K, Koering CE,
Laroche T and Gilson E: Telomeric localization of TRF2, a novel
human telobox protein. Nat Genet. 17:236–239. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Denchi EL and de Lange T: Protection of
telomeres through independent control of ATM and ATR by TRF2 and
POT1. Nature. 448:1068–1071. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gilson E and Géli V: How telomeres are
replicated. Nat Rev Mol Cell Biol. 8:825–838. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ye J, Lenain C, Bauwens S, Rizzo A,
Saint-Léger A, Poulet A, Benarroch D, Magdinier F, Morere J, Amiard
S, et al: TRF2 and apollo cooperate with topoisomerase 2alpha to
protect human telomeres from replicative damage. Cell. 142:230–242.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Greider CW: Telomeres do D-loop-T-loop.
Cell. 97:419–422. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Griffith JD, Comeau L, Rosenfield S,
Stansel RM, Bianchi A, Moss H and de Lange T: Mammalian telomeres
end in a large duplex loop. Cell. 97:503–514. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Timashev LA and De Lange T:
Characterization of t-loop formation by TRF2. Nucleus. 11:164–177.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Feuerhahn S, Chen LY, Luke B and Porro A:
No DDRama at chromosome ends: TRF2 takes centre stage. Trends
Biochem Sci. 40:275–285. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Schmutz I, Timashev L, Xie W, Patel DJ and
de Lange T: TRF2 binds branched DNA to safeguard telomere
integrity. Nat Struct Mol Biol. 24:734–742. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sarek G, Kotsantis P, Ruis P, Van Ly D,
Margalef P, Borel V, Zheng XF, Flynn HR, Snijders AP, Chowdhury D,
et al: CDK phosphorylation of TRF2 controls t-loop dynamics during
the cell cycle. Nature. 575:523–527. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sarek G, Vannier JB, Panier S, Petrini JHJ
and Boulton SJ: TRF2 Recruits RTEL1 to Telomeres in S Phase to
Promote T-Loop Unwinding. Mol Cell. 61:788–789. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bower BD and Griffith JD: TRF1 and TRF2
differentially modulate Rad51-mediated telomeric and nontelomeric
displacement loop formation in vitro. Biochemistry. 53:5485–5495.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
d'Adda di Fagagna F, Reaper PM,
Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G,
Carter NP and Jackson SP: A DNA damage checkpoint response in
telomere-initiated senescence. Nature. 426:194–198. 2003.
View Article : Google Scholar
|
|
36
|
Takai H, Smogorzewska A and de Lange T:
DNA damage foci at dysfunctional telomeres. Curr Biol.
13:1549–1556. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Okamoto K, Bartocci C, Ouzounov I,
Diedrich JK, Yates JR III and Denchi EL: A two-step mechanism for
TRF2-mediated chromosome-end protection. Nature. 494:502–505. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Frescas D and de Lange T: TRF2-tethered
TIN2 can mediate telomere protection by TPP1/POT1. Mol Cell Biol.
34:1349–1362. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Takai KK, Kibe T, Donigian JR, Frescas D
and de Lange T: Telomere protection by TPP1/POT1 requires tethering
to TIN2. Mol Cell. 67:1622017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fuchs E: The tortoise and the hair:
Slow-cycling cells in the stem cell race. Cell. 137:811–819. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Opresko PL, von Kobbe C, Laine JP,
Harrigan J, Hickson ID and Bohr VA: Telomere-binding protein TRF2
binds to and stimulates the Werner and Bloom syndrome helicases. J
Biol Chem. 277:41110–41119. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Stavropoulos DJ, Bradshaw PS, Li X, Pasic
I, Truong K, Ikura M, Ungrin M and Meyn MS: The Bloom syndrome
helicase BLM interacts with TRF2 in ALT cells and promotes
telomeric DNA synthesis. Hum Mol Genet. 11:3135–3144. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Rothkamm K, Krüger I, Thompson LH and
Löbrich M: Pathways of DNA double-strand break repair during the
mammalian cell cycle. Mol Cell Biol. 23:5706–5715. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mladenov E and Iliakis G: Induction and
repair of DNA double strand breaks: The increasing spectrum of
non-homologous end joining pathways. Mutat Res. 711:61–72. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ribes-Zamora A, Indiviglio SM, Mihalek I,
Williams CL and Bertuch AA: TRF2 interaction with Ku
heterotetramerization interface gives insight into c-NHEJ
prevention at human telomeres. Cell Rep. 5:194–206. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dimitrova N, Chen YC, Spector DL and de
Lange T: 53BP1 promotes non-homologous end joining of telomeres by
increasing chromatin mobility. Nature. 456:524–528. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Mirman Z, Lottersberger F, Takai H, Kibe
T, Gong Y, Takai K, Bianchi A, Zimmermann M, Durocher D and de
Lange T: 53BP1-RIF1-shieldin counteracts DSB resection through CST-
and Polα-dependent fill-in. Nature. 560:112–116. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Timashev LA, Babcock H, Zhuang X and de
Lange T: The DDR at telomeres lacking intact shelterin does not
require substantial chromatin decompaction. Genes Dev. 31:578–589.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Blasco MA: Telomeres and human disease:
Ageing, cancer and beyond. Nat Rev Genet. 6:611–622. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sfeir A and de Lange T: Removal of
shelterin reveals the telomere end-protection problem. Science.
336:593–597. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Celli GB, Denchi EL and de Lange T: Ku70
stimulates fusion of dysfunctional telomeres yet protects
chromosome ends from homologous recombination. Nat Cell Biol.
8:885–890. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kibe T, Osawa GA, Keegan CE and de Lange
T: Telomere protection by TPP1 is mediated by POT1a and POT1b. Mol
Cell Biol. 30:1059–1066. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shamanna RA, Lu H, de Freitas JK, Tian J,
Croteau DL and Bohr VA: WRN regulates pathway choice between
classical and alternative non-homologous end joining. Nat Commun.
7:137852016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Fallet E, Jolivet P, Soudet J, Lisby M,
Gilson E and Teixeira MT: Length-dependent processing of telomeres
in the absence of telomerase. Nucleic Acids Res. 42:3648–3665.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wu L, Multani AS, He H, Cosme-Blanco W,
Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, et al:
Pot1 deficiency initiates DNA damage checkpoint activation and
aberrant homologous recombination at telomeres. Cell. 126:49–62.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Rai R, Chen Y, Lei M and Chang S:
TRF2-RAP1 is required to protect telomeres from engaging in
homologous recombination-mediated deletions and fusions. Nat
Commun. 7:108812016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
González-Prieto R, Cuijpers SA,
Luijsterburg MS, van Attikum H and Vertegaal AC: SUMOylation and
PARylation cooperate to recruit and stabilize SLX4 at DNA damage
sites. EMBO Rep. 16:512–519. 2015. View Article : Google Scholar
|
|
58
|
Capper R, Britt-Compton B, Tankimanova M,
Rowson J, Letsolo B, Man S, Haughton M and Baird DM: The nature of
telomere fusion and a definition of the critical telomere length in
human cells. Genes Dev. 21:2495–2508. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Karlseder J, Smogorzewska A and de Lange
T: Senescence induced by altered telomere state, not telomere loss.
Science. 295:2446–2449. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Smogorzewska A, van Steensel B, Bianchi A,
Oelmann S, Schaefer MR, Schnapp G and de Lange T: Control of human
telomere length by TRF1 and TRF2. Mol Cell Biol. 20:1659–1668.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Muñoz P, Blanco R and Blasco MA: Role of
the TRF2 telomeric protein in cancer and ageing. Cell Cycle.
5:718–721. 2006. View Article : Google Scholar
|
|
62
|
Saint-Léger A, Koelblen M, Civitelli L,
Bah A, Djerbi N, Giraud-Panis MJ, Londoño-Vallejo A, Ascenzioni F
and Gilson E: The basic N-terminal domain of TRF2 limits
recombination endonuclease action at human telomeres. Cell Cycle.
13:2469–2474. 2014. View Article : Google Scholar
|
|
63
|
Wilson JS, Tejera AM, Castor D, Toth R,
Blasco MA and Rouse J: Localization-dependent and -independent
roles of SLX4 in regulating telomeres. Cell Rep. 4:853–860. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wu Y, Zacal NJ, Rainbow AJ and Zhu XD: XPF
with mutations in its conserved nuclease domain is defective in DNA
repair but functions in TRF2-mediated telomere shortening. DNA
Repair (Amst). 6:157–166. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wu Y, Mitchell TR and Zhu XD: Human XPF
controls TRF2 and telomere length maintenance through distinctive
mechanisms. Mech Ageing Dev. 129:602–610. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Menendez JA, Rubio MA, Campisi J and Lupu
R: Heregulin, a new regulator of telomere length in human cells.
Oncotarget. 6:39422–39436. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Menendez JA, Benboudjema L, Vellon L,
Rubio MA, Espinoza I, Campisi J and Lupu R: Heregulin, a new
interactor of the telosome/shelterin complex in human telomeres.
Oncotarget. 6:39408–39421. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Baur JA, Zou Y, Shay JW and Wright WE:
Telomere position effect in human cells. Science. 292:2075–2077.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kim W, Ludlow AT, Min J, Robin JD, Stadler
G, Mender I, Lai TP, Zhang N, Wright WE and Shay JW: Regulation of
the human telomerase gene TERT by telomere position effect-over
long distances (TPE-OLD): Implications for aging and cancer. PLoS
Biol. 14:e20000162016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mukherjee AK, Sharma S, Bagri S, Kutum R,
Kumar P, Hussain A, Singh P, Saha D, Kar A, Dash D and Chowdhury S:
Telomere repeat-binding factor 2 binds extensively to
extra-telomeric G-quadruplexes and regulates the epigenetic status
of several gene promoters. J Biol Chem. 294:17709–17722. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Bradshaw PS, Stavropoulos DJ and Meyn MS:
Human telomeric protein TRF2 associates with genomic double-strand
breaks as an early response to DNA damage. Nat Genet. 37:193–197.
2005. View
Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hussain T, Saha D, Purohit G, Kar A,
Kishore Mukherjee A, Sharma S, Sengupta S, Dhapola P, Maji B,
Vedagopuram S, et al: Transcription regulation of CDKN1A
(p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the
REST repressor complex. Sci Rep. 7:115412017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Purohit G, Mukherjee AK, Sharma S and
Chowdhury S: Extratelomeric binding of the telomere binding protein
TRF2 at the PCGF3 promoter is G-Quadruplex Motif-dependent.
Biochemistry. 57:2317–2324. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Williamson JR, Raghuraman MK and Cech TR:
Monovalent cation-induced structure of telomeric DNA: The G-quartet
model. Cell. 59:871–880. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Phan AT: Human telomeric G-quadruplex:
Structures of DNA and RNA sequences. FEBS J. 277:1107–1117. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Muniyappa K and Kironmai KM: Telomere
structure, replication and length maintenance. Crit Rev Biochem Mol
Biol. 33:297–336. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Luu KN, Phan AT, Kuryavyi V, Lacroix L and
Patel DJ: Structure of the human telomere in K+ solution: An
intramolecular (3 + 1) G-quadruplex scaffold. J Am Chem Soc.
128:9963–9970. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Brázda V, Hároníková L, Liao JC and Fojta
M: DNA and RNA quadruplex-binding proteins. Int J Mol Sci.
15:17493–17517. 2014. View Article : Google Scholar
|
|
79
|
Pedroso IM, Hayward W and Fletcher TM: The
effect of the TRF2 N-terminal and TRFH regions on telomeric
G-quadruplex structures. Nucleic Acids Res. 37:1541–1554. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Rawal P, Kummarasetti VB, Ravindran J,
Kumar N, Halder K, Sharma R, Mukerji M, Das SK and Chowdhury S:
Genome-wide prediction of G4 DNA as regulatory motifs: Role in
Escherichia coli global regulation. Genome Res. 16:644–655. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sengupta A, Roy SS and Chowdhury S:
Non-duplex G-Quadruplex DNA Structure: A developing story from
predicted sequences to DNA structure-dependent epigenetics and
beyond. Acc Chem Res. 54:46–56. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Killela PJ, Pirozzi CJ, Healy P, Reitman
ZJ, Lipp E, Rasheed BA, Yang R, Diplas BH, Wang Z, Greer PK, et al:
Mutations in IDH1, IDH2, and in the TERT promoter define clinically
distinct subgroups of adult malignant gliomas. Oncotarget.
5:1515–1525. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Heidenreich B, Nagore E, Rachakonda PS,
Garcia-Casado Z, Requena C, Traves V, Becker J, Soufir N, Hemminki
K and Kumar R: Telomerase reverse transcriptase promoter mutations
in primary cutaneous melanoma. Nat Commun. 5:34012014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Pinyol R, Tovar V and Llovet JM: TERT
promoter mutations: Gatekeeper and driver of hepatocellular
carcinoma. J Hepatol. 61:685–687. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Rachakonda PS, Hosen I, de Verdier PJ,
Fallah M, Heidenreich B, Ryk C, Wiklund NP, Steineck G, Schadendorf
D, Hemminki K and Kumar R: TERT promoter mutations in bladder
cancer affect patient survival and disease recurrence through
modification by a common polymorphism. Proc Natl Acad Sci USA.
110:17426–17431. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Thakur RK, Kumar P, Halder K, Verma A, Kar
A, Parent JL, Basundra R, Kumar A and Chowdhury S: Metastases
suppressor NM23-H2 interaction with G-quadruplex DNA within c-MYC
promoter nuclease hypersensitive element induces c-MYC expression.
Nucleic Acids Res. 37:172–183. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Paramasivam M, Membrino A, Cogoi S, Fukuda
H, Nakagama H and Xodo LE: Protein hnRNP A1 and its derivative Up1
unfold quadruplex DNA in the human KRAS promoter: Implications for
transcription. Nucleic Acids Res. 37:2841–2853. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cogoi S, Paramasivam M, Membrino A,
Yokoyama KK and Xodo LE: The KRAS promoter responds to
Myc-associated zinc finger and poly(ADP-ribose) polymerase 1
proteins, which recognize a critical quadruplex-forming GA-element.
J Biol Chem. 285:22003–22016. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yadav VK, Abraham JK, Mani P, Kulshrestha
R and Chowdhury S: QuadBase: Genome-wide database of G4
DNA-occurrence and conservation in human, chimpanzee, mouse and rat
promoters and 146 microbes. Nucleic Acids Res. 36:D381–D385. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Mukherjee AK, Sharma S, Sengupta S, Saha
D, Kumar P, Hussain T, Srivastava V, Roy SD, Shay JW and Chowdhury
S: Telomere length-dependent transcription and epigenetic
modifications in promoters remote from telomere ends. PLoS Genet.
14:e10077822018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Shay JW and Wright WE: Telomeres and
telomerase: Three decades of progress. Nat Rev Genet. 20:299–309.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Rajagopalan H and Lengauer C: CIN-ful
cancers. Cancer Chemother Pharmacol. 54 (Suppl 1):S65–S68.
2004.PubMed/NCBI
|
|
93
|
Tlsty TD: Genomic instability and its role
in neoplasia. Curr Top Microbiol Immunol. 221:37–46.
1997.PubMed/NCBI
|
|
94
|
Lengauer C, Kinzler KW and Vogelstein B:
Genetic instabilities in human cancers. Nature. 396:643–649. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Palm W and de Lange T: How shelterin
protects mammalian telomeres. Annu Rev Genet. 42:301–334. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wright WE, Pereira-Smith OM and Shay JW:
Reversible cellular senescence: Implications for immortalization of
normal human diploid fibroblasts. Mol Cell Biol. 9:3088–3092. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
O'Hagan RC, Chang S, Maser RS, Mohan R,
Artandi SE, Chin L and DePinho RA: Telomere dysfunction provokes
regional amplification and deletion in cancer genomes. Cancer Cell.
2:149–155. 2002. View Article : Google Scholar
|
|
98
|
Fumagalli M, Rossiello F, Clerici M,
Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V,
Beausejour CM, et al: Telomeric DNA damage is irreparable and
causes persistent DNA-damage-response activation. Nat Cell Biol.
14:355–365. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Feldser DM and Greider CW: Short telomeres
limit tumor progression in vivo by inducing senescence. Cancer
Cell. 11:461–469. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Counter CM, Avilion AA, LeFeuvre CE,
Stewart NG, Greider CW, Harley CB and Bacchetti S: Telomere
shortening associated with chromosome instability is arrested in
immortal cells which express telomerase activity. EMBO J.
11:1921–1929. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Hayashi MT, Cesare AJ, Rivera T and
Karlseder J: Cell death during crisis is mediated by mitotic
telomere deprotection. Nature. 522:492–496. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Sabatier L, Ricoul M, Pottier G and
Murnane JP: The loss of a single telomere can result in instability
of multiple chromosomes in a human tumor cell line. Mol Cancer Res.
3:139–150. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Bailey SM and Murnane JP: Telomeres,
chromosome instability and cancer. Nucleic Acids Res. 34:2408–2417.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Maciejowski J and de Lange T: Telomeres in
cancer: Tumour suppression and genome instability. Nat Rev Mol Cell
Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Martínez P and Blasco MA: Telomere-driven
diseases and telomere-targeting therapies. J Cell Biol.
216:875–887. 2017. View Article : Google Scholar
|
|
106
|
Murnane JP and Sabatier L: Chromosome
rearrangements resulting from telomere dysfunction and their role
in cancer. Bioessays. 26:1164–1174. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Giraud-Panis MJ, Pisano S, Poulet A, Le Du
MH and Gilson E: Structural identity of telomeric complexes. FEBS
Lett. 584:3785–3799. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Salhab M, Jiang WG, Newbold RF and Mokbel
K: The expression of gene transcripts of telomere-associated genes
in human breast cancer: Correlation with clinico-pathological
parameters and clinical outcome. Breast Cancer Res Treat.
109:35–46. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Pascua I, Fernández-Marcelo T,
Sánchez-Pernaute A, de Juan C, Head J, Torres-García AJ and Iniesta
P: Prognostic value of telomere function in gastric cancers with
and without microsatellite instability. Eur J Gastroenterol
Hepatol. 27:162–169. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yamada K, Yagihashi A, Yamada M, Asanuma
K, Moriai R, Kobayashi D, Tsuji N and Watanabe N: Decreased gene
expression for telomeric-repeat binding factors and TIN2 in
malignant hematopoietic cells. Anticancer Res. 22:1315–1320.
2002.PubMed/NCBI
|
|
111
|
Su CH, Cheng C, Tzeng TY, Lin IH and Hsu
MT: An H2A Histone Isotype, H2ac, associates with telomere and
maintains telomere integrity. PLoS One. 11:e01563782016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Bojovic B, Ho HY, Wu J and Crowe DL: Stem
cell expansion during carcinogenesis in stem cell-depleted
conditional telomeric repeat factor 2 null mutant mice. Oncogene.
32:5156–5166. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lagunas AM, Wu J and Crowe DL: Telomere
DNA damage signaling regulates cancer stem cell evolution,
epithelial mesenchymal transition, and metastasis. Oncotarget.
8:80139–80155. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Rossi DJ, Jamieson CH and Weissman IL:
Stems cells and the pathways to aging and cancer. Cell.
132:681–696. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Singh A and Settleman J: EMT, cancer stem
cells and drug resistance: An emerging axis of evil in the war on
cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Härle-Bachor C and Boukamp P: Telomerase
activity in the regenerative basal layer of the epidermis inhuman
skin and in immortal and carcinoma-derived skin keratinocytes. Proc
Natl Acad Sci USA. 93:6476–6481. 1996. View Article : Google Scholar
|
|
117
|
González-Suárez E, Samper E, Ramírez A,
Flores JM, Martín-Caballero J, Jorcano JL and Blasco MA: Increased
epidermal tumors and increased skin wound healing in transgenic
mice overexpressing the catalytic subunit of telomerase, mTERT, in
basal keratinocytes. EMBO J. 20:2619–2630. 2001. View Article : Google Scholar
|
|
118
|
Blanco R, Muñoz P, Flores JM, Klatt P and
Blasco MA: Telomerase abrogation dramatically accelerates
TRF2-induced epithelial carcinogenesis. Genes Dev. 21:206–220.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Matsutani N, Yokozaki H and Tahara E,
Tahara H, Kuniyasu H, Haruma K, Chayama K, Yasui W and Tahara E:
Expression of telomeric repeat binding factor 1 and 2 and
TRF1-interacting nuclear protein 2 in human gastric carcinomas. Int
J Oncol. 19:507–512. 2001.PubMed/NCBI
|
|
120
|
Oh BK, Kim YJ, Park C and Park YN:
Up-regulation of telomere-binding proteins, TRF1, TRF2, and TIN2 is
related to telomere shortening during human multistep
hepatocarcinogenesis. Am J Pathol. 166:73–80. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Xu L and Blackburn EH: Human cancer cells
harbor T-stumps, a distinct class of extremely short telomeres. Mol
Cell. 28:315–327. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Muñoz P, Blanco R, Flores JM and Blasco
MA: XPF nuclease-dependent telomere loss and increased DNA damage
in mice overexpressing TRF2 result in premature aging and cancer.
Nat Genet. 37:1063–1071. 2005. View
Article : Google Scholar
|
|
123
|
Nera B, Huang HS, Lai T and Xu L: Elevated
levels of TRF2 induce telomeric ultrafine anaphase bridges and
rapid telomere deletions. Nat Commun. 6:101322015. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Rai R, Zheng H, He H, Luo Y, Multani A,
Carpenter PB and Chang S: The function of classical and alternative
non-homologous end-joining pathways in the fusion of dysfunctional
telomeres. EMBO J. 29:2598–2610. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Dong W, Shen R, Wang Q, Gao Y, Qi X, Jiang
H, Yao J, Lin X, Wu Y and Wang L: Sp1 upregulates expression of
TRF2 and TRF2 inhibition reduces tumorigenesis in human colorectal
carcinoma cells. Cancer Biol Ther. 8:2166–2174. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Raynaud CM, Jang SJ, Nuciforo P,
Lantuejoul S, Brambilla E, Mounier N, Olaussen KA, André F, Morat
L, Sabatier L and Soria JC: Telomere shortening is correlated with
the DNA damage response and telomeric protein down-regulation in
colorectal preneoplastic lesions. Ann Oncol. 19:1875–1881. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Brummelkamp TR, Bernards R and Agami R: A
system for stable expression of short interfering RNAs in mammalian
cells. Science. 296:550–553. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Gartel AL, Goufman E, Najmabadi F and
Tyner AL: Sp1 and Sp3 activate p21 (WAF1/CIP1) gene transcription
in the Caco-2 colon adenocarcinoma cell line. Oncogene.
19:5182–5188. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Takami Y, Russell MB, Gao C, Mi Z, Guo H,
Mantyh CR and Kuo PC: Sp1 regulates osteopontin expression in SW480
human colon adenocarcinoma cells. Surgery. 142:163–169. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Zhu GH, Lenzi M and Schwartz EL: The Sp1
transcription factor contributes to the tumor necrosis
factor-induced expression of the angiogenic factor thymidine
phosphorylase in human colon carcinoma cells. Oncogene.
21:8477–8485. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Diala I, Wagner N, Magdinier F, Shkreli M,
Sirakov M, Bauwens S, Schluth-Bolard C, Simonet T, Renault VM, Ye
J, et al: Telomere protection and TRF2 expression are enhanced by
the canonical Wnt signalling pathway. EMBO Rep. 14:356–363. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Wu S, Ge Y, Li X, Yang Y, Zhou H, Lin K,
Zhang Z and Zhao Y: BRM-SWI/SNF chromatin remodeling complex
enables functional telomeres by promoting co-expression of TRF2 and
TRF1. PLoS Genet. 16:e10087992020. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Dong W, Wang L, Chen X, Sun P and Wu Y:
Upregulation and CpG island hypomethylation of the TRF2 gene in
human gastric cancer. Dig Dis Sci. 55:997–1003. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Luo Z, Feng X, Wang H, Xu W, Zhao Y, Ma W,
Jiang S, Liu D, Huang J and Songyang Z: Mir-23a induces telomere
dysfunction and cellular senescence by inhibiting TRF2 expression.
Aging Cell. 14:391–399. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Dinami R, Ercolani C, Petti E, Piazza S,
Ciani Y, Sestito R, Sacconi A, Biagioni F, le Sage C, Agami R, et
al: miR-155 drives telomere fragility in human breast cancer by
targeting TRF1. Cancer Res. 74:4145–4156. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Dinami R, Porru M, Amoreo CA, Sperduti I,
Mottolese M, Buglioni S, Marinelli D, Maugeri-Saccà M, Sacconi A,
Blandino G, et al: TRF2 and VEGF-A: An unknown relationship with
prognostic impact on survival of colorectal cancer patients. J Exp
Clin Cancer Res. 39:1112020. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Zizza P, Dinami R, Porru M, Cingolani C,
Salvati E, Rizzo A, D'Angelo C, Petti E, Amoreo CA, Mottolese M, et
al: TRF2 positively regulates SULF2 expression increasing VEGF-A
release and activity in tumor microenvironment. Nucleic Acids Res.
47:3365–3382. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Gavert N and Ben-Ze'ev A: Beta-Catenin
signaling in biological control and cancer. J Cell Biochem.
102:820–828. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Dhillon AS, Hagan S, Rath O and Kolch W:
MAP kinase signalling pathways in cancer. Oncogene. 26:3279–3290.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Jones SM and Kazlauskas A: Growth
factor-dependent signaling and cell cycle progression. FEBS Lett.
490:110–116. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Roberts EC, Shapiro PS, Nahreini TS, Pages
G, Pouyssegur J and Ahn NG: Distinct cell cycle timing requirements
for extracellular signal-regulated kinase and phosphoinositide
3-kinase signaling pathways in somatic cell mitosis. Mol Cell Biol.
22:7226–7241. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Nijjar T, Bassett E, Garbe J, Takenaka Y,
Stampfer MR, Gilley D and Yaswen P: Accumulation and altered
localization of telomere-associated protein TRF2 in immortally
transformed and tumor-derived human breast cells. Oncogene.
24:3369–3376. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Picco V, Coste I, Giraud-Panis MJ, Renno
T, Gilson E and Pagès G: ERK1/2/MAPK pathway-dependent regulation
of the telomeric factor TRF2. Oncotarget. 7:46615–46627. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Shukla S, Kanwal R, Shankar E, Datt M,
Chance MR, Fu P, MacLennan GT and Gupta S: Apigenin blocks IKKα
activation and suppresses prostate cancer progression. Oncotarget.
6:31216–31232. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Li T, Wong VK, Jiang ZH, Jiang SP, Liu Y,
Wang TY, Yao XJ, Su XH, Yan FG, Liu J, et al: Mutation of cysteine
46 in IKK-beta increases inflammatory responses. Oncotarget.
6:31805–31819. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
An J, Wu M, Xin X, Lin Z, Li X, Zheng Q,
Gui X, Li T, Pu H, Li H and Lu D: Inflammatory related gene IKKα,
IKKβ, IKKγ cooperates to determine liver cancer stem cells
progression by altering telomere via heterochromatin protein
1-HOTAIR axis. Oncotarget. 7:50131–50149. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Baskar R, Dai J, Wenlong N, Yeo R and Yeoh
KW: Biological response of cancer cells to radiation treatment.
Front Mol Biosci. 1:242014. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Saha A, Shree Padhi S, Roy S and Banerjee
B: HCT116 colonospheres shows elevated expression of hTERT and
β-catenin protein-a short report. J Stem Cells. 9:243–251.
2014.PubMed/NCBI
|
|
149
|
Saha A, Roy S, Kar M, Roy S, Thakur S,
Padhi S, Akhter Y and Banerjee B: Role of telomeric TRF2 in
orosphere formation and CSC phenotype maintenance through efficient
DNA repair pathway and its correlation with recurrence in OSCC.
Stem Cell Rev Rep. 14:871–887. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Janoušková E, Nečasová I, Pavloušková J,
Zimmermann M, Hluchý M, Marini V, Nováková M and Hofr C: Human Rap1
modulates TRF2 attraction to telomeric DNA. Nucleic Acids Res.
43:2691–2700. 2015. View Article : Google Scholar
|
|
151
|
Anuja K, Chowdhury AR, Saha A, Roy S, Rath
AK, Kar M and Banerjee B: Radiation-induced DNA damage response and
resistance in colorectal cancer stem-like cells. Int J Radiat Biol.
95:667–679. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Osterwald S, Deeg KI, Chung I, Parisotto
D, Wörz S, Rohr K, Erfle H and Rippe K: PML induces compaction,
TRF2 depletion and DNA damage signaling at telomeres and promotes
their alternative lengthening. J Cell Sci. 128:1887–1900. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Zhang P, Pazin MJ, Schwartz CM, Becker KG,
Wersto RP, Dilley CM and Mattson MP: Nontelomeric TRF2-REST
interaction modulates neuronal gene silencing and fate of tumor and
stem cells. Curr Biol. 18:1489–1494. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Preusser M, de Ribaupierre S, Wöhrer A,
Erridge SC, Hegi M, Weller M and Stupp R: Current concepts and
management of glioblastoma. Ann Neurol. 70:9–21. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q,
Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem
cells promote radioresistance by preferential activation of the DNA
damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Bai Y, Lathia JD, Zhang P, Flavahan W,
Rich JN and Mattson MP: Molecular targeting of TRF2 suppresses the
growth and tumorigenesis of glioblastoma stem cells. Glia.
62:1687–1698. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Simonet T, Zaragosi LE, Philippe C,
Lebrigand K, Schouteden C, Augereau A, Bauwens S, Ye J,
Santagostino M, Giulotto E, et al: The human TTAGGG repeat factors
1 and 2 bind to a subset of interstitial telomeric sequences and
satellite repeats. Cell Res. 21:1028–1038. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Cherfils-Vicini J, Iltis C, Cervera L,
Pisano S, Croce O, Sadouni N, Győrffy B, Collet R, Renault VM,
Rey-Millet M, et al: Cancer cells induce immune escape via
glycocalyx changes controlled by the telomeric protein TRF2. EMBO
J. 38:e1000122019. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Talmadge JE and Gabrilovich DI: History of
myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Karlseder J, Broccoli D, Dai Y, Hardy S
and de Lange T: p53- and ATM-dependent apoptosis induced by
telomeres lacking TRF2. Science. 283:1321–1325. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Pal D, Sharma U, Singh SK, Kakkar N and
Prasad R: Over-expression of telomere binding factors (TRF1 &
TRF2) in renal cell carcinoma and their inhibition by using SiRNA
induce apoptosis, reduce cell proliferation and migration in vitro.
PLoS One. 10:e01156512015. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Bidzinska J, Baginski M and Skladanowski
A: Novel anticancer strategy aimed at targeting shelterin complexes
by the induction of structural changes in telomeric DNA: Hitting
two birds with one stone. Curr Cancer Drug Targets. 14:201–216.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Horikawa I, Fujita K and Harris CC: p53
governs telomere regulation feedback too, via TRF2. Aging (Albany
NY). 3:26–32. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Yang X, Li Z, Yang L, Lei H, Yu H, Liao Z,
Zhou F, Xie C and Zhou Y: Knockdown of telomeric repeat binding
factor 2 enhances tumor radiosensitivity regardless of telomerase
status. J Cancer Res Clin Oncol. 141:1545–1552. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
165
|
Cabuy E, Newton C, Joksic G, Woodbine L,
Koller B, Jeggo PA and Slijepcevic P: Accelerated telomere
shortening and telomere abnormalities in radiosensitive cell lines.
Radiat Res. 164:53–62. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
166
|
Zhong YH, Liao ZK, Zhou FX, Xie CH, Xiao
CY, Pan DF, Luo ZG, Liu SQ and Zhou YF: Telomere length inversely
correlates with radiosensitivity in human carcinoma cells with the
same tissue background. Biochem Biophys Res Commun. 367:84–89.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
167
|
Orun O, Tiber PM and Serakinci N: Partial
knockdown of TRF2 increase radiosensitivity of human mesenchymal
stem cells. Int J Biol Macromol. 90:53–58. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Ning HB, Li JC, Liu ZG and Fan DM: DNA
damage increases telomerase activity and mRNA expression of
telomeric repeat binding factor 2 in gastric cancer cells.
Available in: www.cnki.net. World Chin J Digest. 14:942–946. 2006.
View Article : Google Scholar
|
|
169
|
Ning HB, Wang YH, Zhang LF, et al:
Reversal of multidrug resistance in gastric cancer cells by
telomeric repeat binding factor 2 small interfering RNA. Available
in: www.cnki.net. Chin J Diges. 31:481–483. 2011.
|
|
170
|
Benhamou Y, Picco V, Raybaud H, Sudaka A,
Chamorey E, Brolih S, Monteverde M, Merlano M, Lo Nigro C,
Ambrosetti D and Pagès G: Telomeric repeat-binding factor 2: A
marker for survival and anti-EGFR efficacy in oral carcinoma.
Oncotarget. 7:44236–44251. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
171
|
Roy S, Roy S, Kar M, Thakur S, Akhter Y,
Kumar A, Delogu F, Padhi S, Saha A and Banerjee B: p38 MAPK pathway
and its interaction with TRF2 in cisplatin induced chemotherapeutic
response in head and neck cancer. Oncogenesis. 7:532018. View Article : Google Scholar : PubMed/NCBI
|
|
172
|
Apetoh L, Végran F, Ladoire S and
Ghiringhelli F: Restoration of antitumor immunity through selective
inhibition of myeloid derived suppressor cells by anticancer
therapies. Curr Mol Med. 11:365–372. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
173
|
Bruchard M, Mignot G, Derangère V, Chalmin
F, Chevriaux A, Végran F, Boireau W, Simon B, Ryffel B, Connat JL,
et al: Chemotherapy-triggered cathepsin B release in
myeloid-derived suppressor cells activates the Nlrp3 inflammasome
and promotes tumor growth. Nat Med. 19:57–64. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
174
|
Sevko A, Michels T, Vrohlings M, Umansky
L, Beckhove P, Kato M, Shurin GV, Shurin MR and Umansky V:
Antitumor effect of paclitaxel is mediated by inhibition of
myeloid-derived suppressor cells and chronic inflammation in the
spontaneous melanoma model. J Immunol. 190:2464–2471. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
175
|
Wang M, Cao J, Zhu JY, Qiu J, Zhang Y, Shu
B, Ou TM, Tan JH, Gu LQ, Huang ZS, et al: Curcusone C induces
telomeric DNA-damage response in cancer cells through inhibition of
telomeric repeat factor 2. Biochim Biophys Acta Proteins Proteom.
1865:1372–1382. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
176
|
Jiao Y, Zhang W, Liu J, Ni W, Xu W, Jin J
and Qian W: Telomere attrition and chromosome instability via
downregulation of TRF2 contributes to arsenic trioxide-induced
apoptosis of human T-Cell leukemia cell line molt-4 cells. Cancer
Biol Ther. 6:1186–1192. 2007. View Article : Google Scholar : PubMed/NCBI
|