Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
October-2021 Volume 46 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2021 Volume 46 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review)

  • Authors:
    • Lin Cao
    • Tianqiao Huang
    • Xiaohong Chen
    • Weisha Li
    • Xingjiu Yang
    • Wenlong Zhang
    • Mengyuan Li
    • Ran Gao
  • View Affiliations / Copyright

    Affiliations: Department of The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing 100020, P.R. China, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China, Department of Otolaryngology‑Head and Neck Surgery, Beijing Tongren Hospital, Beijing 100010, P.R. China
  • Article Number: 228
    |
    Published online on: September 3, 2021
       https://doi.org/10.3892/or.2021.8179
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Extracellular acidosis is associated with various immunopathological states. The microenvironment of numerous solid tumours and inflammatory responses during acute or chronic infection are all related to a pH range of 5.5‑7.0. The relationship between inflammation and immune escape, cancer metabolism, and immunologic suppression drives researchers to focus on the effects of low pH on diverse components of disease immune monitoring. The potential effect of low extracellular pH on the immune function reveals the importance of pH in inflammatory and immunoreactive processes. In this review, the mechanism of how pH receptors, including monocarboxylate transporters (MCTs), Na+/H+ exchanger 1, carbonic anhydrases (CAs), vacuolar‑ATPase, and proton‑sensing G‑protein coupled receptors (GPCRs), modulate the immune system in disease, especially in cancer, were studied. Their role in immunocyte growth and signal transduction as part of the immune response, as well as cytokine production, have been documented in great detail. Currently, immunotherapy strategies have positive therapeutic effects for patients. However, the acidic microenvironment may block the effect of immunotherapy through compensatory feedback mechanisms, leading to drug resistance. Therefore, we highlight promising therapeutic developments regarding pH manipulation and provide a framework for future research.
View Figures

Figure 1

Figure 2

View References

1 

Imtiyaz HZ and Simon MC: Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol. 345:105–120. 2010.PubMed/NCBI

2 

Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI

3 

Koltai T: The Ph paradigm in cancer. Eur J Clin Nutr. 74 (Suppl 1):S14–S19. 2020. View Article : Google Scholar

4 

Jancic CC, Cabrini M, Gabelloni ML, Rodríguez Rodrigues C, Salamone G, Trevani AS and Geffner J: Low extracellular pH stimulates the production of IL-1beta by human monocytes. Cytokine. 57:258–268. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, et al: Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 153:1239–1251. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M and Takahashi H: Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett. 167:72–86. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Chalmin F, Bruchard M, Vegran F and Ghiringhelli F: Regulation of T cell antitumor immune response by tumor induced metabolic stress. Cell Stress. 3:9–18. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Gardner A and Ruffell B: Dendritic cells and cancer immunity. Trends Immunol. 37:855–865. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Hargadon KM: Tumor-altered dendritic cell function: Implications for anti-tumor immunity. Front Immunol. 4:1922013. View Article : Google Scholar : PubMed/NCBI

10 

Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, et al: HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 112:645–657. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Lee JH, Elly C, Park Y and Liu YC: E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity. 42:1062–1074. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Martínez D, Vermeulen M, Trevani A, Ceballos A, Sabatté J, Gamberale R, Alvarez ME, Salamone G, Tanos T, Coso OA and Geffner J: Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways. J Immunol. 176:1163–1171. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG and Li MO: The cellular and molecular origin of tumor-associated macrophages. Science. 344:921–925. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Erra Díaz F, Dantas E and Geffner J: Unravelling the interplay between extracellular acidosis and immune cells. Mediators Inflamm. 2018:12182972018. View Article : Google Scholar : PubMed/NCBI

15 

Roma-Rodrigues C, Mendes R, Baptista PV and Fernandes AR: Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 20:8402019. View Article : Google Scholar : PubMed/NCBI

16 

Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, Tuccitto A, Tagliabue E, Castelli C and Rivoltini L: Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol. 43:74–89. 2017. View Article : Google Scholar : PubMed/NCBI

17 

McDonald PC, Chafe SC and Dedhar S: Overcoming hypoxia-mediated tumor progression: Combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction. Front Cell Dev Biol. 4:272016. View Article : Google Scholar : PubMed/NCBI

18 

Li J, Guo B, Wang J, Cheng X, Xu Y and Sang J: Ovarian cancer G protein coupled receptor 1 suppresses cell migration of MCF7 breast cancer cells via a Gα12/13-Rho-Rac1 pathway. J Mol Signal. 8:62013. View Article : Google Scholar : PubMed/NCBI

19 

Wiley SZ, Sriram K, Liang W, Chang SE, French R, McCann T, Sicklick J, Nishihara H, Lowy AM and Insel PA: GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells. FASEB J. 32:1170–1183. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L and Sonveaux P: Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta. 1863:2481–2497. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Halestrap AP and Wilson MC: The monocarboxylate transporter family-role and regulation. IUBMB Life. 64:109–119. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Alfarouk KO: Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J Enzyme Inhib Med Chem. 31:859–866. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Merezhinskaya N, Ogunwuyi SA, Mullick FG and Fishbein WN: Presence and localization of three lactic acid transporters (MCT1, −2, and −4) in separated human granulocytes, lymphocytes, and monocytes. J Histochem Cytochem. 52:1483–1493. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Merezhinskaya N, Ogunwuyi SA and Fishbein WN: Expression of monocarboxylate transporter 4 in human platelets, leukocytes, and tissues assessed by antibodies raised against terminal versus pre-terminal peptides. Mol Genet Metab. 87:152–161. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Long Y, Gao Z, Hu X, Xiang F, Wu Z, Zhang J, Han X, Yin L, Qin J, Lan L, et al: Downregulation of MCT4 for lactate exchange promotes the cytotoxicity of NK cells in breast carcinoma. Cancer Med. 7:4690–4700. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Sukumar M, Liu J, Ji Y, Subramanian M, Crompton JG, Yu Z, Roychoudhuri R, Palmer DC, Muranski P, Karoly ED, et al: Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest. 123:4479–4488. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, et al: Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 109:3812–3819. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Murray CM, Hutchinson R, Bantick JR, Belfield GP, Benjamin AD, Brazma D, Bundick RV, Cook ID, Craggs RI, Edwards S, et al: Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol. 1:371–376. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Végran F, Boidot R, Michiels C, Sonveaux P and Feron O: Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 71:2550–2560. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Huang T, Feng Q, Wang Z, Li W, Sun Z, Wilhelm J, Huang G, Vo T, Sumer BD and Gao J: Tumor-targeted inhibition of monocarboxylate transporter 1 improves T-cell immunotherapy of solid tumors. Adv Healthc Mater. 10:e20005492021. View Article : Google Scholar : PubMed/NCBI

31 

Raychaudhuri D, Bhattacharya R, Sinha BP, Liu CSC, Ghosh AR, Rahaman O, Bandopadhyay P, Sarif J, D'Rozario R, Paul S, et al: Lactate induces pro-tumor reprogramming in intratumoral plasmacytoid dendritic cells. Front Immunol. 10:18782019. View Article : Google Scholar : PubMed/NCBI

32 

Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A and Kreutz M: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 107:2013–2021. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, et al: The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 9:1960–1971. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Wei L, Zhou Y, Yao J, Qiao C, Ni T, Guo R, Guo Q and Lu N: Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor. Oncotarget. 6:16198–16214. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ and Liu G: The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem. 290:46–55. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Zhang L and Li S: Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer. Exp Cell Res. 388:1118462020. View Article : Google Scholar : PubMed/NCBI

38 

Stone SC, Rossetti RA, Alvarez KL, Carvalho JP, Margarido PF, Baracat EC, Tacla M, Boccardo E, Yokochi K, Lorenzi NP and Lepique AP: Lactate secreted by cervical cancer cells modulates macrophage phenotype. J Leukoc Biol. 105:1041–1054. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Kong L, Wang Z, Liang X, Wang Y, Gao L and Ma C: Monocarboxylate transporter 1 promotes classical microglial activation and pro-inflammatory effect via 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3. J Neuroinflammation. 16:2402019. View Article : Google Scholar : PubMed/NCBI

40 

Silva LS, Poschet G, Nonnenmacher Y, Becker HM, Sapcariu S, Gaupel AC, Schlotter M, Wu Y, Kneisel N, Seiffert M, et al: Branched-chain ketoacids secreted by glioblastoma cells via MCT1 modulate macrophage phenotype. EMBO Rep. 18:2172–2185. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Contreras-Baeza Y, Sandoval PY, Alarcón R, Galaz A, Cortés-Molina F, Alegría K, Baeza-Lehnert F, Arce-Molina R, Guequén A, Flores CA, et al: Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments. J Biol Chem. 294:20135–20147. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Mikkilineni L, Whitaker-Menezes D, Domingo-Vidal M, Sprandio J, Avena P, Cotzia P, Dulau-Florea A, Gong J, Uppal G, Zhan T, et al: Hodgkin lymphoma: A complex metabolic ecosystem with glycolytic reprogramming of the tumor microenvironment. Semin Oncol. 44:218–225. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Afonso J, Pinto T, Simões-Sousa S, Schmitt F, Longatto-Filho A, Pinheiro C, Marques H and Baltazar F: Clinical significance of metabolism-related biomarkers in non-Hodgkin lymphoma-MCT1 as potential target in diffuse large B cell lymphoma. Cell Oncol (Dordr). 42:303–318. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Beloueche-Babari M, Casals Galobart T, Delgado-Goni T, Wantuch S, Parkes HG, Tandy D, Harker JA and Leach MO: Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration. Br J Cancer. 122:895–903. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Noble RA, Bell N, Blair H, Sikka A, Thomas H, Phillips N, Nakjang S, Miwa S, Crossland R, Rand V, et al: Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma. Haematologica. 102:1247–1257. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Braga M, Kaliszczak M, Carroll L, Schug ZT, Heinzmann K, Baxan N, Benito A, Valbuena GN, Stribbling S, Beckley A, et al: Tracing nutrient flux following monocarboxylate transporter-1 inhibition with AZD3965. Cancers (Basel). 12:17032020. View Article : Google Scholar : PubMed/NCBI

47 

Draoui N, Schicke O, Seront E, Bouzin C, Sonveaux P, Riant O and Feron O: Antitumor activity of 7-aminocarboxycoumarin derivatives, a new class of potent inhibitors of lactate influx but not efflux. Mol Cancer Ther. 13:1410–1418. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Quanz M, Bender E, Kopitz C, Grünewald S, Schlicker A, Schwede W, Eheim A, Toschi L, Neuhaus R, Richter C, et al: Preclinical efficacy of the novel monocarboxylate transporter 1 inhibitor BAY-8002 and associated markers of resistance. Mol Cancer Ther. 17:2285–2296. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M, Menevse AN, Kauer N, Blazquez R, Hacker L, et al: Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep. 29:135–150.e9. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Cho KS, Yamada T, Wynn C, Behanna HA, Hong IC, Manaves V, Nakanishi T, Hirose J, Abe Y, Jiang H, et al: Mechanism analysis of long-term graft survival by monocarboxylate transporter-1 inhibition. Transplantation. 90:1299–1306. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Kondapalli KC, Prasad H and Rao R: An inside job: How endosomal Na(+)/H(+) exchangers link to autism and neurological disease. Front Cell Neurosci. 8:1722014. View Article : Google Scholar : PubMed/NCBI

52 

De Vito P: The sodium/hydrogen exchanger: A possible mediator of immunity. Cell Immunol. 240:69–85. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Vereninov AA, Vassilieva IO, Yurinskaya VE, Matveev VV, Glushankova LN, Lang F and Matskevitch JA: Differential transcription of ion transporters, NHE1, ATP1B1, NKCC1 in human peripheral blood lymphocytes activated to proliferation. Cell Physiol Biochem. 11:19–26. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Chang CP, Wang SW, Huang ZL, Wang OY, Huang MI, Lu LM, Tarng DC, Chien CH and Chien EJ: Non-genomic rapid inhibition of Na+/H+-exchange 1 and apoptotic immunosuppression in human T cells by glucocorticoids. J Cell Physiol. 223:679–686. 2010.PubMed/NCBI

55 

Chien EJ, Hsu CH, Chang VH, Lin EP, Kuo TP, Chien CH and Lin HY: In human T cells mifepristone antagonizes glucocorticoid non-genomic rapid responses in terms of Na(+)/H(+)-exchange 1 activity, but not ezrin/radixin/moesin phosphorylation. Steroids. 111:29–36. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Xing K, Gu B, Zhang P and Wu X: Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: An insight into the optimum application of glucocorticoids in anti-cancer therapy. BMC Immunol. 16:392015. View Article : Google Scholar : PubMed/NCBI

57 

Lai JN, Wang OY, Lin VH, Liao CF, Tarng DC and Chien EJ: The non-genomic rapid acidification in peripheral T cells by progesterone depends on intracellular calcium increase and not on Na+/H+-exchange inhibition. Steroids. 77:1017–1024. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Singh Y, Zhou Y, Shi X, Zhang S, Umbach AT, Salker MS, Lang KS and Lang F: Alkaline cytosolic pH and high sodium hydrogen exchanger 1 (NHE1) activity in Th9 cells. J Biol Chem. 291:23662–23671. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Rotte A, Pasham V, Eichenmüller M, Yang W, Bhandaru M and Lang F: Influence of dexamethasone on Na+/H+ exchanger activity in dendritic cells. Cell Physiol Biochem. 28:305–314. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Yang W, Bhandaru M, Pasham V, Bobbala D, Zelenak C, Jilani K, Rotte A and Lang F: Effect of thymoquinone on cytosolic pH and Na+/H+ exchanger activity in mouse dendritic cells. Cell Physiol Biochem. 29:21–30. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Zhou Y, Pasham V, Chatterjee S, Rotte A, Yang W, Bhandaru M, Singh Y and Lang F: Regulation of Na+/H+ exchanger in dendritic cells by Akt1. Cell Physiol Biochem. 36:1237–1249. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Zhu W, Carney KE, Pigott VM, Falgoust LM, Clark PA, Kuo JS and Sun D: Glioma-mediated microglial activation promotes glioma proliferation and migration: Roles of Na+/H+ exchanger isoform 1. Carcinogenesis. 37:839–851. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Song S, Wang S, Pigott VM, Jiang T, Foley LM, Mishra A, Nayak R, Zhu W, Begum G, Shi Y, et al: Selective role of Na+/H+ exchanger in Cx3cr1+ microglial activation, white matter demyelination, and post-stroke function recovery. Glia. 66:2279–2298. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Liu CL, Zhang X, Liu J, Wang Y, Sukhova GK, Wojtkiewicz GR, Liu T, Tang R, Achilefu S, Nahrendorf M, et al: Na+-H+ exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nat Commun. 10:39782019. View Article : Google Scholar : PubMed/NCBI

65 

Takakuwa S, Mizuno N, Takano T, Asakawa S, Sato T, Hiratsuka M and Hirasawa N: Down-regulation of Na+/H+ exchanger 1 by Toll-like receptor stimulation in macrophages. Immunobiology. 222:176–182. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Provost JJ and Wallert MA: Inside out: Targeting NHE1 as an intracellular and extracellular regulator of cancer progression. Chem Biol Drug Des. 81:85–101. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Asgharzadeh MR, Barar J, Pourseif MM, Eskandani M, Jafari Niya M, Mashayekhi MR and Omidi Y: Molecular machineries of pH dysregulation in tumor microenvironment: Potential targets for cancer therapy. Bioimpacts. 7:115–133. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Shi Y, Chanana V, Watters JJ, Ferrazzano P and Sun D: Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains. J Neurochem. 119:124–135. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Liu CL, Liu X, Wang Y, Deng Z, Liu T, Sukhova GK, Wojtkiewicz GR, Tang R, Zhang JY, Achilefu S, et al: Reduced Nhe1 (Na+-H+ Exchanger-1) function protects ApoE-deficient mice From Ang II (Angiotensin II)-induced abdominal aortic aneurysms. Hypertension. 76:87–100. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Guan X, Hasan MN, Begum G, Kohanbash G, Carney KE, Pigott VM, Persson AI, Castro MG, Jia W and Sun D: Blockade of Na/H exchanger stimulates glioma tumor immunogenicity and enhances combinatorial TMZ and anti-PD-1 therapy. Cell Death Dis. 9:10102018. View Article : Google Scholar : PubMed/NCBI

71 

Jin W, Li Q, Wang J, Chang G, Lin Y, Li H, Wang L, Gao W and Pang T: Na+/H+ exchanger 1 inhibition contributes to K562 leukaemic cell differentiation. Cell Biol Int. 36:739–745. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Fliegel L: Structural and functional changes in the Na+/H+ exchanger isoform 1, induced by Erk1/2 phosphorylation. Int J Mol Sci. 20:23782019. View Article : Google Scholar : PubMed/NCBI

73 

Smith AN, Lovering RC, Futai M, Takeda J, Brown D and Karet FE: Revised nomenclature for mammalian vacuolar-type H+ -ATPase subunit genes. Mol Cell. 12:801–803. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Forgac M: Vacuolar ATPases: Rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol. 8:917–929. 2007. View Article : Google Scholar : PubMed/NCBI

75 

McGuire C, Stransky L, Cotter K and Forgac M: Regulation of V-ATPase activity. Front Biosci (Landmark Ed). 22:609–622. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Kulshrestha A, Katara GK, Ginter J, Pamarthy S, Ibrahim SA, Jaiswal MK, Sandulescu C, Periakaruppan R, Dolan J, Gilman-Sachs A and Beaman KD: Selective inhibition of tumor cell associated Vacuolar-ATPase ‘a2’ isoform overcomes cisplatin resistance in ovarian cancer cells. Mol Oncol. 10:789–805. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Smith GA, Howell GJ, Phillips C, Muench SP, Ponnambalam S and Harrison MA: Extracellular and luminal pH regulation by vacuolar H+-ATPase isoform expression and targeting to the plasma membrane and endosomes. J Biol Chem. 291:8500–8515. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Stransky L, Cotter K and Forgac M: The function of V-ATPases in cancer. Physiol Rev. 96:1071–1091. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Rao Z, Jordan PM, Wang Y, Menche D, Pace S, Gerstmeier J and Werz O: Differential role of vacuolar (H+)-ATPase in the expression and activity of cyclooxygenase-2 in human monocytes. Biochem Pharmacol. 175:1138582020. View Article : Google Scholar : PubMed/NCBI

80 

Sahoo M, Katara GK, Bilal MY, Ibrahim SA, Kulshrestha A, Fleetwood S, Suzue K and Beaman KD: Hematopoietic stem cell specific V-ATPase controls breast cancer progression and metastasis via cytotoxic T cells. Oncotarget. 9:33215–33231. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Peterson TV, Jaiswal MK, Beaman KD and Reynolds JM: Conditional deletion of the V-ATPase a2-subunit disrupts intrathymic T cell development. Front Immunol. 10:19112019. View Article : Google Scholar : PubMed/NCBI

82 

Rothenberg EV, Ungerbäck J and Champhekar A: Forging T-lymphocyte identity: Intersecting networks of transcriptional control. Adv Immunol. 129:109–174. 2016. View Article : Google Scholar : PubMed/NCBI

83 

McGuire C, Cotter K, Stransky L and Forgac M: Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. Biochim Biophys Acta. 1857:1213–1218. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Ibrahim SA, Kulshrestha A, Katara GK, Amin MA and Beaman KD: Cancer derived peptide of vacuolar ATPase ‘a2’ isoform promotes neutrophil migration by autocrine secretion of IL-8. Sci Rep. 6:368652016. View Article : Google Scholar : PubMed/NCBI

85 

Katara GK, Jaiswal MK, Kulshrestha A, Kolli B, Gilman-Sachs A and Beaman KD: Tumor-associated vacuolar ATPase subunit promotes tumorigenic characteristics in macrophages. Oncogene. 33:5649–5654. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Katara GK, Kulshrestha A, Mao L, Wang X, Sahoo M, Ibrahim S, Pamarthy S, Suzue K, Shekhawat GS, Gilman-Sachs A and Beaman KD: Mammary epithelium-specific inactivation of V-ATPase reduces stiffness of extracellular matrix and enhances metastasis of breast cancer. Mol Oncol. 12:208–223. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Ibrahim SA, Kulshrestha A, Katara GK, Riehl V, Sahoo M and Beaman KD: Cancer-associated V-ATPase induces delayed apoptosis of protumorigenic neutrophils. Mol Oncol. 14:590–610. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Gilman-Sachs A, Tikoo A, Akman-Anderson L, Jaiswal M, Ntrivalas E and Beaman K: Expression and role of a2 vacuolar-ATPase (a2V) in trafficking of human neutrophil granules and exocytosis. J Leukoc Biol. 97:1121–1131. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Xia Y, Liu N, Xie X, Bi G, Ba H, Li L, Zhang J, Deng X, Yao Y, Tang Z, et al: The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion. Autophagy. 15:960–975. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Murase M, Kawasaki T, Hakozaki R, Sueyoshi T, Putri DD, Kitai Y, Sato S, Ikawa M and Kawai T: Intravesicular acidification regulates lipopolysaccharide inflammation and tolerance through TLR4 trafficking. J Immunol. 200:2798–2808. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, Ito D, Morimoto K, Hosokawa T, Hayama Y, et al: Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 7:131302016. View Article : Google Scholar : PubMed/NCBI

92 

Rao Z, Pace S, Jordan PM, Bilancia R, Troisi F, Börner F, Andreas N, Kamradt T, Menche D, Rossi A, et al: Vacuolar (H+)-ATPase critically regulates specialized proresolving mediator pathways in human M2-like monocyte-derived macrophages and has a crucial role in resolution of inflammation. J Immunol. 203:1031–1043. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Kuchuk O, Tuccitto A, Citterio D, Huber V, Camisaschi C, Milione M, Vergani B, Villa A, Alison MR, Carradori S, et al: pH regulators to target the tumor immune microenvironment in human hepatocellular carcinoma. OncoImmunology. 7:e14454522018. View Article : Google Scholar : PubMed/NCBI

94 

Thomas L, Rao Z, Gerstmeier J, Raasch M, Weinigel C, Rummler S, Menche D, Müller R, Pergola C, Mosig A and Werz O: Selective upregulation of TNFα expression in classically-activated human monocyte-derived macrophages (M1) through pharmacological interference with V-ATPase. Biochem Pharmacol. 130:71–82. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Bowman EJ, Graham LA, Stevens TH and Bowman BJ: The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem. 279:33131–33138. 2004. View Article : Google Scholar : PubMed/NCBI

96 

Lu X, Chen L, Chen Y, Shao Q and Qin W: Bafilomycin A1 inhibits the growth and metastatic potential of the BEL-7402 liver cancer and HO-8910 ovarian cancer cell lines and induces alterations in their microRNA expression. Exp Ther Med. 10:1829–1834. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Halcrow P, Khan N, Datta G, Ohm JE, Chen X and Geiger JD: Importance of measuring endolysosome, cytosolic, and extracellular pH in understanding the pathogenesis of and possible treatments for glioblastoma multiforme. Cancer Rep. 2:e11932019.PubMed/NCBI

98 

Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, Fang Y, Wang Z, Zhang H, Li X, et al: Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 100:345–356. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Emruli VK, Olsson R, Ek F and Ek S: Identification of V-ATPase as a molecular sensor of SOX11-levels and potential therapeutic target for mantle cell lymphoma. BMC Cancer. 16:4932016. View Article : Google Scholar : PubMed/NCBI

100 

Fais S: Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism. J Intern Med. 267:515–525. 2010. View Article : Google Scholar : PubMed/NCBI

101 

De Milito A, Canese R, Marino ML, Borghi M, Iero M, Villa A, Venturi G, Lozupone F, Iessi E, Logozzi M, et al: pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int J Cancer. 127:207–219. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Denny WA and Wilson WR: Considerations for the design of nitrophenyl mustards as agents with selective toxicity for hypoxic tumor cells. J Med Chem. 29:879–887. 1986. View Article : Google Scholar : PubMed/NCBI

103 

Luciani F, Spada M, De Milito A, Molinari A, Rivoltini L, Montinaro A, Marra M, Lugini L, Logozzi M, Lozupone F, et al: Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst. 96:1702–1713. 2004. View Article : Google Scholar : PubMed/NCBI

104 

Corbet C and Feron O: Tumour acidosis: From the passenger to the driver's seat. Nat Rev Cancer. 17:577–593. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Neri D and Supuran CT: Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov. 10:767–777. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T and Rabinowitz JD: Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol. 9:7122013. View Article : Google Scholar : PubMed/NCBI

107 

Sedlakova O, Svastova E, Takacova M, Kopacek J, Pastorek J and Pastorekova S: Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol. 4:4002014. View Article : Google Scholar : PubMed/NCBI

108 

Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TA and Gaston B: Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med. 161((3 Pt 1)): 694–699. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Wen T, Mingler MK, Wahl B, Khorki ME, Pabst O, Zimmermann N and Rothenberg ME: Carbonic anhydrase IV is expressed on IL-5-activated murine eosinophils. J Immunol. 192:5481–5489. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Pulendran B and Artis D: New paradigms in type 2 immunity. Science. 337:431–435. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Henry EK, Sy CB, Inclan-Rico JM, Espinosa V, Ghanny SS, Dwyer DF, Soteropoulos P, Rivera A and Siracusa MC: Carbonic anhydrase enzymes regulate mast cell-mediated inflammation. J Exp Med. 213:1663–1673. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Noti M, Kim BS, Siracusa MC, Rak GD, Kubo M, Moghaddam AE, Sattentau QA, Comeau MR, Spergel JM and Artis D: Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J Allergy Clin Immunol. 133:1390–1399, 1399.e1-6. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Winum JY: Carbonic anhydrase enzymes for regulating mast cell hematopoiesis and type-2 inflammation: A patent evaluation (WO2017/058370). Expert Opin Ther Pat. 28:741–743. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Supuran CT: Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat. 28:709–712. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Supuran CT, Altamimi ASA and Carta F: Carbonic anhydrase inhibition and the management of glaucoma: A literature and patent review 2013–2019. Expert Opin Ther Pat. 29:781–792. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Borenshtein D, Schlieper KA, Rickman BH, Chapman JM, Schweinfest CW, Fox JG and Schauer DB: Decreased expression of colonic Slc26a3 and carbonic anhydrase iv as a cause of fatal infectious diarrhea in mice. Infect Immun. 77:3639–3650. 2009. View Article : Google Scholar : PubMed/NCBI

117 

Mori K, Yamanishi H, Ikeda Y, Kumagi T, Hiasa Y, Matsuura B, Abe M and Onji M: Oral administration of carbonic anhydrase I ameliorates murine experimental colitis induced by Foxp3-CD4+CD25-T cells. J Leukoc Biol. 93:963–972. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S and Amit I: Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 159:1312–1326. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Lounnas N, Rosilio C, Nebout M, Mary D, Griessinger E, Neffati Z, Chiche J, Spits H, Hagenbeek TJ, Asnafi V, et al: Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas. Cancer Lett. 333:76–88. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Ibrahim-Hashim A and Estrella V: Acidosis and cancer: From mechanism to neutralization. Cancer Metastasis Rev. 38:149–155. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Chafe SC, McDonald PC, Saberi S, Nemirovsky O, Venkateswaran G, Burugu S, Gao D, Delaidelli A, Kyle AH, Baker JHE, et al: Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint blockade locally and systemically. Cancer Immunol Res. 7:1064–1078. 2019. View Article : Google Scholar : PubMed/NCBI

122 

McDonald PC, Chia S, Bedard PL, Chu Q, Lyle M, Tang L, Singh M, Zhang Z, Supuran CT, Renouf DJ and Dedhar S: A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am J Clin Oncol. 43:484–490. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Nasu K, Yamaguchi K, Takanashi T, Tamai K, Sato I, Ine S, Sasaki O, Satoh K, Tanaka N, Tanaka Y, et al: Crucial role of carbonic anhydrase IX in tumorigenicity of xenotransplanted adult T-cell leukemia-derived cells. Cancer Sci. 108:435–443. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Chen LQ, Howison CM, Spier C, Stopeck AT, Malm SW, Pagel MD and Baker AF: Assessment of carbonic anhydrase IX expression and extracellular pH in B-cell lymphoma cell line models. Leuk Lymphoma. 56:1432–1439. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Mei Y, Zhao L, Liu Y, Gong H, Song Y, Lei L, Zhu Y, Jin Z, Ma S, Hu B, et al: Combining DNA vaccine and AIDA-1 in attenuated Salmonella activates tumor-specific CD4+ and CD8+ T-cell responses. Cancer Immunol Res. 5:503–514. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Sun YY, Peng S, Han L, Qiu J, Song L, Tsai Y, Yang B, Roden RB, Trimble CL, Hung CF and Wu TC: Local HPV Recombinant vaccinia boost following priming with an HPV DNA vaccine enhances local HPV-specific CD8+ T-cell-mediated tumor control in the genital tract. Clin Cancer Res. 22:657–669. 2016. View Article : Google Scholar : PubMed/NCBI

127 

Duan Y, Yang C, Zhang Z, Liu J, Zheng J and Kong D: Poly(ethylene glycol)-grafted polyethylenimine modified with G250 monoclonal antibody for tumor gene therapy. Hum Gene Ther. 21:191–198. 2010. View Article : Google Scholar : PubMed/NCBI

128 

Zhao Y, Wei Z, Yang H, Li X, Wang Q, Wang L and Li S: Enhance the anti-renca carcinoma effect of a DNA vaccine targeting G250 gene by co-expression with cytotoxic T-lymphocyte associated antigen-4(CTLA-4). Biomed Pharmacother. 90:147–152. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Chai D, Shan H, Wang G, Zhang Q, Li H, Fang L, Song J, Liu N, Zhang Q, Yao H and Zheng J: Combining DNA vaccine and AIM2 in H1 nanoparticles exert anti-renal carcinoma effects via enhancing tumor-specific multi-functional CD8+ T-cell responses. Mol Cancer Ther. 18:323–334. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Zhang Q, Xu J, Ding J, Liu H, Li H, Li H, Lu M, Miao Y, Wang Z, Fu Q and Zheng J: Bortezomib improves adoptive carbonic anhydrase IX-specific chimeric antigen receptor-modified NK92 cell therapy in mouse models of human renal cell carcinoma. Oncol Rep. 40:3714–3724. 2018.PubMed/NCBI

131 

Li H, Ding J, Lu M, Liu H, Miao Y, Li L, Wang G, Zheng J, Pei D and Zhang Q: CAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer models. J Immunother. 43:16–28. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Lau J, Liu Z, Lin KS, Pan J, Zhang Z, Vullo D, Supuran CT, Perrin DM and Bénard F: Trimeric radiofluorinated sulfonamide derivatives to achieve in vivo selectivity for carbonic anhydrase IX-targeted PET imaging. J Nucl Med. 56:1434–1440. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Dubois LJ, Niemans R, van Kuijk SJ, Panth KM, Parvathaneni NK, Peeters SG, Zegers CM, Rekers NH, van Gisbergen MW, Biemans R, et al: New ways to image and target tumour hypoxia and its molecular responses. Radiother Oncol. 116:352–357. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Justus CR, Dong L and Yang LV: Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol. 4:3542013. View Article : Google Scholar : PubMed/NCBI

135 

Liu JP, Nakakura T, Tomura H, Tobo M, Mogi C, Wang JQ, He XD, Takano M, Damirin A, Komachi M, et al: Each one of certain histidine residues in G-protein-coupled receptor GPR4 is critical for extracellular proton-induced stimulation of multiple G-protein-signaling pathways. Pharmacol Res. 61:499–505. 2010. View Article : Google Scholar : PubMed/NCBI

136 

Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM and Seuwen K: Proton-sensing G-protein-coupled receptors. Nature. 425:93–98. 2003. View Article : Google Scholar : PubMed/NCBI

137 

Damaghi M, Wojtkowiak JW and Gillies RJ: pH sensing and regulation in cancer. Front Physiol. 4:3702013. View Article : Google Scholar : PubMed/NCBI

138 

Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, Damaghi M, Wojtkowiak JW, Mulé JJ, Ibrahim-Hashim A and Gillies RJ: Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76:1381–1390. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Wiley SZ, Sriram K, Salmerón C and Insel PA: GPR68: An emerging drug target in cancer. Int J Mol Sci. 20:5592019. View Article : Google Scholar : PubMed/NCBI

140 

Lardner A: The effects of extracellular pH on immune function. J Leukoc Biol. 69:522–530. 2001.PubMed/NCBI

141 

de Vallière C, Wang Y, Eloranta JJ, Vidal S, Clay I, Spalinger MR, Tcymbarevich I, Terhalle A, Ludwig MG, Suply T, et al: G Protein-coupled pH-sensing receptor OGR1 is a regulator of intestinal inflammation. Inflamm Bowel Dis. 21:1269–1281. 2015.PubMed/NCBI

142 

Wang Y, de Vallière C, Imenez Silva PH, Leonardi I, Gruber S, Gerstgrasser A, Melhem H, Weber A, Leucht K, Wolfram L, et al: The proton-activated receptor GPR4 modulates intestinal inflammation. J Crohn's Colitis. 12:355–368. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Frasch SC, McNamee EN, Kominsky D, Jedlicka P, Jakubzick C, Zemski Berry K, Mack M, Furuta GT, Lee JJ, Henson PM, et al: G2A signaling dampens colitic inflammation via production of IFN-γ. J Immunol. 197:1425–1434. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Li HM, Jang JH, Jung JS, Shin J, Park CO, Kim YJ, Ahn WG, Nam JS, Hong CW, Lee J, et al: G2A protects mice against sepsis by modulating kupffer cell activation: Cooperativity with adenosine receptor 2b. J Immunol. 202:527–538. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Su YS, Huang YF, Wong J, Lee CW, Hsieh WS and Sun WH: G2A as a Threshold regulator of inflammatory hyperalgesia modulates chronic hyperalgesia. J Mol Neurosci. 64:39–50. 2018. View Article : Google Scholar : PubMed/NCBI

146 

Osthues T, Zimmer B, Rimola V, Klann K, Schilling K, Mathoor P, Angioni C, Weigert A, Geisslinger G, Münch C, et al: The lipid receptor G2A (GPR132) mediates macrophage migration in nerve injury-induced neuropathic pain. Cells. 9:17402020. View Article : Google Scholar : PubMed/NCBI

147 

Kern K, Schäfer SMG, Cohnen J, Pierre S, Osthues T, Tarighi N, Hohmann S, Ferreiros N, Brüne B, Weigert A, et al: The G2A receptor controls polarization of macrophage by determining their localization within the inflamed tissue. Front Immunol. 9:22612018. View Article : Google Scholar : PubMed/NCBI

148 

Kung CC, Dai SP, Chiang H, Huang HS and Sun WH: Temporal expression patterns of distinct cytokines and M1/M2 macrophage polarization regulate rheumatoid arthritis progression. Mol Biol Rep. 47:3423–3437. 2020. View Article : Google Scholar : PubMed/NCBI

149 

Dai SP, Hsieh WS, Chen CH, Lu YH, Huang HS, Chang DM, Huang SL and Sun WH: TDAG8 deficiency reduces satellite glial number and pro-inflammatory macrophage number to relieve rheumatoid arthritis disease severity and chronic pain. J Neuroinflammation. 17:1702020. View Article : Google Scholar : PubMed/NCBI

150 

Tsurumaki H, Mogi C, Aoki-Saito H, Tobo M, Kamide Y, Yatomi M, Sato K, Dobashi K, Ishizuka T, Hisada T, et al: Protective role of proton-sensing TDAG8 in lipopolysaccharide-induced acute lung injury. Int J Mol Sci. 16:28931–28942. 2015. View Article : Google Scholar : PubMed/NCBI

151 

Tcymbarevich I, Richards SM, Russo G, Kühn-Georgijevic J, Cosin-Roger J, Baebler K, Lang S, Bengs S, Atrott K, Bettoni C, et al: Lack of the pH-sensing receptor TDAG8 [GPR65] in macrophages plays a detrimental role in murine models of inflammatory bowel disease. J Crohns Colitis. 13:245–258. 2019. View Article : Google Scholar : PubMed/NCBI

152 

Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q, Saghatelian A, Siegwart DJ and Wan Y: Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc Natl Acad Sci USA. 114:580–585. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Yan L, Singh LS, Zhang L and Xu Y: Role of OGR1 in myeloid-derived cells in prostate cancer. Oncogene. 33:157–164. 2014. View Article : Google Scholar : PubMed/NCBI

154 

Holgate ST: Innate and adaptive immune responses in asthma. Nat Med. 18:673–683. 2012. View Article : Google Scholar : PubMed/NCBI

155 

Aoki H, Mogi C, Hisada T, Nakakura T, Kamide Y, Ichimonji I, Tomura H, Tobo M, Sato K, Tsurumaki H, et al: Proton-sensing ovarian cancer G protein-coupled receptor 1 on dendritic cells is required for airway responses in a murine asthma model. PLoS One. 8:e799852013. View Article : Google Scholar : PubMed/NCBI

156 

Kottyan LC, Collier AR, Cao KH, Niese KA, Hedgebeth M, Radu CG, Witte ON, Khurana Hershey GK, Rothenberg ME and Zimmermann N: Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner. Blood. 114:2774–2782. 2009. View Article : Google Scholar : PubMed/NCBI

157 

Sanderlin EJ, Marie M, Velcicky J, Loetscher P and Yang LV: Pharmacological inhibition of GPR4 remediates intestinal inflammation in a mouse colitis model. Eur J Pharmacol. 852:218–230. 2019. View Article : Google Scholar : PubMed/NCBI

158 

Velcicky J, Miltz W, Oberhauser B, Orain D, Vaupel A, Weigand K, Dawson King J, Littlewood-Evans A, Nash M, Feifel R and Loetscher P: Development of selective, orally active GPR4 antagonists with modulatory effects on nociception, inflammation, and angiogenesis. J Med Chem. 60:3672–3683. 2017. View Article : Google Scholar : PubMed/NCBI

159 

Miltz W, Velcicky J, Dawson J, Littlewood-Evans A, Ludwig MG, Seuwen K, Feifel R, Oberhauser B, Meyer A, Gabriel D, et al: Design and synthesis of potent and orally active GPR4 antagonists with modulatory effects on nociception, inflammation, and angiogenesis. Bioorg Med Chem. 25:4512–4525. 2017. View Article : Google Scholar : PubMed/NCBI

160 

Fukuda H, Ito S, Watari K, Mogi C, Arisawa M, Okajima F, Kurose H and Shuto S: Identification of a potent and selective GPR4 antagonist as a drug lead for the treatment of myocardial infarction. ACS Med Chem Lett. 7:493–497. 2016. View Article : Google Scholar : PubMed/NCBI

161 

Lengacher S, Nehiri-Sitayeb T, Steiner N, Carneiro L, Favrod C, Preitner F, Thorens B, Stehle JC, Dix L, Pralong F, et al: Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice. PLoS One. 8:e825052013. View Article : Google Scholar : PubMed/NCBI

162 

Draoui N, Schicke O, Fernandes A, Drozak X, Nahra F, Dumont A, Douxfils J, Hermans E, Dogné JM, Corbau R, et al: Synthesis and pharmacological evaluation of carboxycoumarins as a new antitumor treatment targeting lactate transport in cancer cells. Bioorg Med Chem. 21:7107–7117. 2013. View Article : Google Scholar : PubMed/NCBI

163 

Reshkin SJ, Cardone RA and Harguindey S: Na+-H+ exchanger, pH regulation and cancer. Recent Patents Anticancer Drug Discov. 8:85–99. 2013. View Article : Google Scholar : PubMed/NCBI

164 

Ferrari S, Perut F, Fagioli F, Brach Del Prever A, Meazza C, Parafioriti A, Picci P, Gambarotti M, Avnet S, Baldini N and Fais S: Proton pump inhibitor chemosensitization in human osteosarcoma: From the bench to the patients' bed. J Transl Med. 11:2682013. View Article : Google Scholar : PubMed/NCBI

165 

Mentzer RM Jr, Bartels C, Bolli R, Boyce S, Buckberg GD, Chaitman B, Haverich A, Knight J, Menasché P, Myers ML, et al: Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: Results of the EXPEDITION study. Ann Thorac Surg. 85:1261–1270. 2008. View Article : Google Scholar : PubMed/NCBI

166 

Zeymer U, Suryapranata H, Monassier JP, Opolski G, Davies J, Rasmanis G, Linssen G, Tebbe U, Schröder R, Tiemann R, et al: The Na(+)/H(+) exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the evaluation of the safety and cardioprotective effects of eniporide in acute myocardial infarction (ESCAMI) trial. J Am Coll Cardiol. 38:1644–1650. 2001. View Article : Google Scholar : PubMed/NCBI

167 

Théroux P, Chaitman BR, Danchin N, Erhardt L, Meinertz T, Schroeder JS, Tognoni G, White HD, Willerson JT and Jessel A: Inhibition of the sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) Investigators. Circulation. 102:3032–3038. 2000. View Article : Google Scholar : PubMed/NCBI

168 

Atwal KS, O'Neil SV, Ahmad S, Doweyko L, Kirby M, Dorso CR, Chandrasena G, Chen BC, Zhao R and Zahler R: Synthesis and biological activity of 5-aryl-4-(4-(5-methyl-1H-imidazol-4-yl)piperidin-1-yl)pyrimidine analogs as potent, highly selective, and orally bioavailable NHE-1 inhibitors. Bioorg Med Chem Lett. 16:4796–4799. 2006. View Article : Google Scholar : PubMed/NCBI

169 

Harguindey S, Arranz JL, Polo Orozco JD, Rauch C, Fais S, Cardone RA and Reshkin SJ: Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs-an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med. 11:2822013. View Article : Google Scholar : PubMed/NCBI

170 

Huber V, De Milito A, Harguindey S, Reshkin SJ, Wahl ML, Rauch C, Chiesi A, Pouysségur J, Gatenby RA, Rivoltini L and Fais S: Proton dynamics in cancer. J Transl Med. 8:572010. View Article : Google Scholar : PubMed/NCBI

171 

Spugnini EP, Sonveaux P, Stock C, Perez-Sayans M, De Milito A, Avnet S, Garcìa AG, Harguindey S and Fais S: Proton channels and exchangers in cancer. Biochim Biophys Acta. 1848:2715–2726. 2015. View Article : Google Scholar : PubMed/NCBI

172 

Chiche J, Ilc K, Laferrière J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC and Pouysségur J: Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 69:358–368. 2009. View Article : Google Scholar : PubMed/NCBI

173 

Salmon H, Remark R, Gnjatic S and Merad M: Host tissue determinants of tumour immunity. Nat Rev Cancer. 19:215–227. 2019.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cao L, Huang T, Chen X, Li W, Yang X, Zhang W, Li M and Gao R: Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncol Rep 46: 228, 2021.
APA
Cao, L., Huang, T., Chen, X., Li, W., Yang, X., Zhang, W. ... Gao, R. (2021). Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncology Reports, 46, 228. https://doi.org/10.3892/or.2021.8179
MLA
Cao, L., Huang, T., Chen, X., Li, W., Yang, X., Zhang, W., Li, M., Gao, R."Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review)". Oncology Reports 46.4 (2021): 228.
Chicago
Cao, L., Huang, T., Chen, X., Li, W., Yang, X., Zhang, W., Li, M., Gao, R."Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review)". Oncology Reports 46, no. 4 (2021): 228. https://doi.org/10.3892/or.2021.8179
Copy and paste a formatted citation
x
Spandidos Publications style
Cao L, Huang T, Chen X, Li W, Yang X, Zhang W, Li M and Gao R: Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncol Rep 46: 228, 2021.
APA
Cao, L., Huang, T., Chen, X., Li, W., Yang, X., Zhang, W. ... Gao, R. (2021). Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review). Oncology Reports, 46, 228. https://doi.org/10.3892/or.2021.8179
MLA
Cao, L., Huang, T., Chen, X., Li, W., Yang, X., Zhang, W., Li, M., Gao, R."Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review)". Oncology Reports 46.4 (2021): 228.
Chicago
Cao, L., Huang, T., Chen, X., Li, W., Yang, X., Zhang, W., Li, M., Gao, R."Uncovering the interplay between pH receptors and immune cells: Potential drug targets (Review)". Oncology Reports 46, no. 4 (2021): 228. https://doi.org/10.3892/or.2021.8179
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team