|
1
|
Miller KD, Nogueira L, Mariotto AB,
Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL and Siegel
RL: Cancer treatment and survivorship statistics, 2019. CA Cancer J
Clin. 69:363–385. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Elshami M, Yaseen A, Alser M, Al-Slaibi I,
Jabr H, Ubaiat S, Tuffaha A, Khader S, Khraishi R, Jaber I, et al:
Knowledge of ovarian cancer symptoms among women in Palestine: A
national cross-sectional study. BMC Public Health. 21:19922021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Baldwin LA, Huang B, Miller RW, Tucker T,
Goodrich ST, Podzielinski I, DeSimone CP, Ueland FR, van Nagell JR
and Seamon LG: Ten-year relative survival for epithelial ovarian
cancer. Obstet Gynecol. 120:612–618. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
De Andrade WP, Da Conceicao Braga L,
Goncales NG, Silva LM and Da Silva Filho AL: HSPA1A, HSPA1L and
TRAP1 heat shock genes may be associated with prognosis in ovarian
epithelial cancer. Oncol Lett. 19:359–367. 2020.PubMed/NCBI
|
|
5
|
Zhu H, Zou X, Lin S, Hu X and Gao J:
Effects of naringin on reversing cisplatin resistance and the
Wnt/β-catenin pathway in human ovarian cancer SKOV3/CDDP cells. J
Int Med Res. 48:3000605198878692020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fu J, Shang Y, Qian Z, Hou J, Yan F, Liu
G, Dehua L and Tian X: Chimeric Antigen receptor-T (CAR-T) cells
targeting Epithelial cell adhesion molecule (EpCAM) can inhibit
tumor growth in ovarian cancer mouse model. J Vet Med Sci.
83:241–247. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Colombo PE, Fabbro M, Theillet C, Bibeau
F, Rouanet P and Ray-Coquard I: Sensitivity and resistance to
treatment in the primary management of epithelial ovarian cancer.
Crit Rev Oncol Hematol. 89:207–216. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Elzek MA and Rodland KD: Proteomics of
ovarian cancer: Functional insights and clinical applications.
Cancer Metastasis Rev. 34:83–96. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kuroki L and Guntupalli SR: Treatment of
epithelial ovarian cancer. BMJ. 371:m37732020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang J, Da C, Su Y, Song R and Bai Z:
MKNK2 enhances chemoresistance of ovarian cancer by suppressing
autophagy via miR-125b. Biochem Biophys Res Commun. 556:31–38.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Muhanmode Y, Wen MK, Maitinuri A and Shen
G: Curcumin and resveratrol inhibit chemoresistance in
cisplatin-resistant epithelial ovarian cancer cells via targeting
P13K pathway. Hum Exp Toxicol. 40 (12_suppl):S861–S868. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Feng X, Bai X, Ni J, Wasinger VC, Beretov
J, Zhu Y, Graham P and Li Y: CHTOP in chemoresistant epithelial
ovarian cancer: A novel and potential therapeutic target. Front
Oncol. 9:5572019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hu K, Yao L, Xu Z, Yan Y and Li J:
Prognostic value and therapeutic potential of CBX family members in
ovarian cancer. Front Cell Dev Biol. 10:8323542022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hansen JM, Coleman RL and Sood AK:
Targeting the tumour microenvironment in ovarian cancer. Eur J
Cancer. 56:131–143. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Worzfeld T, Pogge von Strandmann E, Huber
M, Adhikary T, Wagner U, Reinartz S and Muller R: The unique
molecular and cellular microenvironment of ovarian cancer. Front
Oncol. 7:242017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jena BC, Das CK, Bharadwaj D and Mandal M:
Cancer associated fibroblast mediated chemoresistance: A paradigm
shift in understanding the mechanism of tumor progression. Biochim
Biophys Acta Rev Cancer. 1874:1884162020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kalluri R: The biology and function of
fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yasuda K, Torigoe T, Mariya T, Asano T,
Kuroda T, Matsuzaki J, Ikeda K, Yamauchi M, Emori M, Asanuma H, et
al: Fibroblasts induce expression of FGF4 in ovarian cancer
stem-like cells/cancer-initiating cells and upregulate their tumor
initiation capacity. Lab Invest. 94:1355–1369. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ayen A, Jimenez Martinez Y, Marchal JA and
Boulaiz H: Recent progress in gene therapy for ovarian cancer. Int
J Mol Sci. 19:19302018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Deng J, Wang L, Chen H, Hao J, Ni J, Chang
L, Duan W, Graham P and Li Y: Targeting epithelial-mesenchymal
transition and cancer stem cells for chemoresistant ovarian cancer.
Oncotarget. 7:55771–55788. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
McGinity CL, Palmieri EM, Somasundaram V,
Bhattacharyya DD, Ridnour LA, Cheng RYS, Ryan AE, Glynn SA, Thomas
DD, Miranda KM, et al: Nitric oxide modulates metabolic processes
in the tumor immune microenvironment. Int J Mol Sci. 22:70682021.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ishii G, Ochiai A and Neri S: Phenotypic
and functional heterogeneity of cancer-associated fibroblast within
the tumor microenvironment. Adv Drug Deliv Rev. 99((Pt B)):
186–196. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Leask A: A centralized communication
network: Recent insights into the role of the cancer associated
fibroblast in the development of drug resistance in tumors. Semin
Cell Dev Biol. 101:111–114. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen RR, Yung MMH, Xuan Y, Zhan S, Leung
LL, Liang RR, Leung THY, Yang H, Xu D, Sharma R, et al: Targeting
of lipid metabolism with a metabolic inhibitor cocktail eradicates
peritoneal metastases in ovarian cancer cells. Commun Biol.
2:2812019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Naffar-Abu Amara S, Kuiken HJ, Selfors LM,
Butler T, Leung ML, Leung CT, Kuhn EP, Kolarova T, Hage C, Ganesh
K, et al: Transient commensal clonal interactions can drive tumor
metastasis. Nat Commun. 11:57992020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
He C, Wang L, Li L and Zhu G:
Extracellular vesicle-orchestrated crosstalk between
cancer-associated fibroblasts and tumors. Transl Oncol.
14:1012312021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sahai E, Astsaturov I, Cukierman E,
DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR,
Hunter T, et al: A framework for advancing our understanding of
cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang W, Kryczek I, Dostal L, Lin H, Tan L,
Zhao L, Lu F, Wei S, Maj T, Peng D, et al: Effector T cells
abrogate stroma-mediated chemoresistance in ovarian cancer. Cell.
165:1092–1105. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dasari S, Fang Y and Mitra AK: Cancer
associated fibroblasts: Naughty neighbors that drive ovarian cancer
progression. Cancers (Basel). 10:4062018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu T, Zhou L, Li D, Andl T and Zhang Y:
Cancer-associated fibroblasts build and secure the tumor
microenvironment. Front Cell Dev Biol. 7:602019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rynne-Vidal A, Au-Yeung CL,
Jimenez-Heffernan JA, Perez-Lozano ML, Cremades-Jimeno L, Barcena
C, Cristobal-Garcia I, Fernandez-Chacon C, Yeung TL, Mok SC, et al:
Mesothelial-to-mesenchymal transition as a possible therapeutic
target in peritoneal metastasis of ovarian cancer. J Pathol.
242:140–151. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bu L, Baba H, Yasuda T, Uchihara T and
Ishimoto T: Functional diversity of cancer-associated fibroblasts
in modulating drug resistance. Cancer Sci. 111:3468–3477. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sun Q, Zhang B, Hu Q, Qin Y, Xu W, Liu W,
Yu X and Xu J: The impact of cancer-associated fibroblasts on major
hallmarks of pancreatic cancer. Theranostics. 8:5072–5087. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Huang L, Xu AM, Liu S, Liu W and Li TJ:
Cancer-associated fibroblasts in digestive tumors. World J
Gastroenterol. 20:17804–17818. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Su S, Chen J, Yao H, Liu J, Yu S, Lao L,
Wang M, Luo M, Xing Y, Chen F, et al: CD10(+)GPR77(+)
cancer-associated fibroblasts promote cancer formation and
chemoresistance by sustaining cancer stemness. Cell.
172:841–856.e16. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cummings M, Freer C and Orsi NM: Targeting
the tumour microenvironment in platinum-resistant ovarian cancer.
Semin Cancer Biol. 77:3–28. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen X and Song E: Turning foes to
friends: Targeting cancer-associated fibroblasts. Nat Rev Drug
Discov. 18:99–115. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ozdemir BC, Pentcheva-Hoang T, Carstens
JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C,
Novitskiy SV, et al: Depletion of carcinoma-associated fibroblasts
and fibrosis induces immunosuppression and accelerates pancreas
cancer with reduced survival. Cancer Cell. 25:719–734. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Dominguez CX, Muller S, Keerthivasan S,
Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW,
Castiglioni A, et al: Single-Cell RNA sequencing reveals stromal
evolution into LRRC15+ myofibroblasts as a determinant
of patient response to cancer immunotherapy. Cancer Discov.
10:232–253. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kieffer Y, Hocine HR, Gentric G, Pelon F,
Bernard C, Bourachot B, Lameiras S, Albergante L, Bonneau C, Guyard
A, et al: Single-Cell analysis reveals fibroblast clusters linked
to immunotherapy resistance in cancer. Cancer Discov. 10:1330–1351.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sherman MH, Yu RT, Engle DD, Ding N,
Atkins AR, Tiriac H, Collisson EA, Connor F, Van Dyke T, Kozlov S,
et al: Vitamin D receptor-mediated stromal reprogramming suppresses
pancreatitis and enhances pancreatic cancer therapy. Cell.
159:80–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Duluc C, Moatassim-Billah S, Chalabi-Dchar
M, Perraud A, Samain R, Breibach F, Gayral M, Cordelier P, Delisle
MB, Bousquet-Dubouch MP, et al: Pharmacological targeting of the
protein synthesis mTOR/4E-BP1 pathway in cancer-associated
fibroblasts abrogates pancreatic tumour chemoresistance. EMBO Mol
Med. 7:735–753. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bustos-Cruz RH, Martinez LR, Garcia JC,
Barreto GE and Suarez F: New ABCC2 rs3740066 and rs2273697
polymorphisms identified in a healthy colombian cohort.
Pharmaceutics. 10:932018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gottesman MM and Pastan IH: The role of
multidrug resistance efflux pumps in cancer: Revisiting a JNCI
publication exploring expression of the MDR1 (P-glycoprotein) gene.
J Natl Cancer Inst. 107:djv2222015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Baglo Y, Sorrin AJ, Pu X, Liu C, Reader J,
Roque DM and Huang HC: Evolutionary dynamics of cancer multidrug
resistance in response to olaparib and photodynamic therapy. Transl
Oncol. 14:1011982021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Vaidyanathan A, Sawers L, Gannon AL,
Chakravarty P, Scott AL, Bray SE, Ferguson MJ and Smith G: ABCB1
(MDR1) induction defines a common resistance mechanism in
paclitaxel- and olaparib-resistant ovarian cancer cells. Br J
Cancer. 115:431–441. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Mo L, Pospichalova V, Huang Z, Murphy SK,
Payne S, Wang F, Kennedy M, Cianciolo GJ, Bryja V, Pizzo SV and
Bachelder RE: Ascites increases expression/function of multidrug
resistance proteins in ovarian cancer cells. PLoS One.
10:e01315792015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bagnoli M, Beretta GL, Gatti L, Pilotti S,
Alberti P, Tarantino E, Barbareschi M, Canevari S, Mezzanzanica D
and Perego P: Clinicopathological impact of ABCC1/MRP1 and
ABCC4/MRP4 in epithelial ovarian carcinoma. Biomed Res Int.
2013:1432022013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jia Y, Sung S, Gao X and Cui XM:
Expression levels of TUBB3, ERCC1 and P-gp in ovarian cancer
tissues and adjacent normal tissues and their clinical
significance. J BUON. 23:1390–1395. 2018.PubMed/NCBI
|
|
50
|
Ween MP, Armstrong MA, Oehler MK and
Ricciardelli C: The role of ABC transporters in ovarian cancer
progression and chemoresistance. Crit Rev Oncol Hematol.
96:220–256. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Robey RW, Pluchino KM, Hall MD, Fojo AT,
Bates SE and Gottesman MM: Revisiting the role of ABC transporters
in multidrug-resistant cancer. Nat Rev Cancer. 18:452–464. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Teng YN, Wang CCN, Liao WC, Lan YH and
Hung CC: Caffeic acid attenuates multi-drug resistance in cancer
cells by inhibiting efflux function of human P-glycoprotein.
Molecules. 25:2472020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Guo X, To KKW, Chen Z, Wang X, Zhang J,
Luo M, Wang F, Yan S and Fu L: Dacomitinib potentiates the efficacy
of conventional chemotherapeutic agents via inhibiting the drug
efflux function of ABCG2 in vitro and in vivo. J Exp Clin Cancer
Res. 37:312018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shaffer BC, Gillet JP, Patel C, Baer MR,
Bates SE and Gottesman MM: Drug resistance: Still a daunting
challenge to the successful treatment of AML. Drug Resist Updat.
15:62–69. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tachibana M, Papadopoulos KP, Strickler
JH, Puzanov I, Gajee R, Wang Y and Zahir H: Evaluation of the
pharmacokinetic drug interaction potential of tivantinib (ARQ 197)
using cocktail probes in patients with advanced solid tumours. Br J
Clin Pharmacol. 84:112–121. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhu T, Howieson C, Wojtkowski T, Garg JP,
Han D, Fisniku O and Keirns J: The effect of verapamil, a
P-glycoprotein inhibitor, on the pharmacokinetics of peficitinib,
an orally administered, once-daily JAK inhibitor. Clin Pharmacol
Drug Dev. 6:548–555. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fox E, Widemann BC, Pastakia D, Chen CC,
Yang SX, Cole D and Balis FM: Pharmacokinetic and pharmacodynamic
study of tariquidar (XR9576), a P-glycoprotein inhibitor, in
combination with doxorubicin, vinorelbine, or docetaxel in children
and adolescents with refractory solid tumors. Cancer Chemother
Pharmacol. 76:1273–1283. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Patel A, Li TW, Anreddy N, Wang DS, Sodani
K, Gadhia S, Kathawala R, Yang DH, Cheng C and Chen ZS: Suppression
of ABCG2 mediated MDR in vitro and in vivo by a novel inhibitor of
ABCG2 drug transport. Pharmacol Res. 121:184–193. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gupta P, Zhang YK, Zhang XY, Wang YJ, Lu
KW, Hall T, Peng R, Yang DH, Xie N and Chen ZS: Voruciclib, a
Potent CDK4/6 inhibitor, antagonizes ABCB1 and ABCG2-mediated
multi-drug resistance in cancer cells. Cell Physiol Biochem.
45:1515–1528. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Grande E, Giovannini M, Marriere E, Pultar
P, Quinlan M, Chen X, Rahmanzadeh G, Curigliano G and Cui X: Effect
of capmatinib on the pharmacokinetics of digoxin and rosuvastatin
administered as a 2-drug cocktail in patients with MET-dysregulated
advanced solid tumours: A phase I, multicentre, open-label,
single-sequence drug-drug interaction study. Br J Clin Pharmacol.
87:2867–2878. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen R, Herrera AF, Hou J, Chen L, Wu J,
Guo Y, Synold TW, Ngo VN, Puverel S, Mei M, et al: Inhibition of
MDR1 overcomes resistance to brentuximab vedotin in hodgkin
lymphoma. Clin Cancer Res. 26:1034–1044. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Comsa E, Nguyen KA, Loghin F, Boumendjel
A, Peuchmaur M, Andrieu T and Falson P: Ovarian cancer cells
cisplatin sensitization agents selected by mass cytometry target
ABCC2 inhibition. Future Med Chem. 10:1349–1360. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Goebel J, Chmielewski J and Hrycyna CA:
The roles of the human ATP-binding cassette transporters
P-glycoprotein and ABCG2 in multidrug resistance in cancer and at
endogenous sites: Future opportunities for structure-based drug
design of inhibitors. Cancer Drug Resist. 4:784–804.
2021.PubMed/NCBI
|
|
64
|
Butera G, Pacchiana R and Donadelli M:
Autocrine mechanisms of cancer chemoresistance. Semin Cell Dev
Biol. 78:3–12. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Luo R, Liu M, Yang Q, Cheng H, Yang H, Li
M, Bai X, Wang Y, Zhang H, Wang S, et al: Emerging diagnostic
potential of tumor-derived exosomes. J Cancer. 12:5035–5045. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Law ZJ, Khoo XH, Lim PT, Goh BH, Ming LC,
Lee WL and Goh HP: Extracellular vesicle-mediated chemoresistance
in oral squamous cell carcinoma. Front Mol Biosci. 8:6298882021.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tang Z, Li D, Hou S and Zhu X: The cancer
exosomes: Clinical implications, applications and challenges. Int J
Cancer. 146:2946–2959. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Au Yeung CL, Co NN, Tsuruga T, Yeung TL,
Kwan SY, Leung CS, Li Y, Lu ES, Kwan K, Wong KK, et al: Exosomal
transfer of stroma-derived miR21 confers paclitaxel resistance in
ovarian cancer cells through targeting APAF1. Nat Commun.
7:111502016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Milman N, Ginini L and Gil Z: Exosomes and
their role in tumorigenesis and anticancer drug resistance. Drug
Resist Updat. 45:1–12. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Santos P and Almeida F: Role of exosomal
miRNAs and the tumor microenvironment in drug resistance. Cells.
9:14502020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Eguchi T, Taha EA, Calderwood SK and Ono
K: A novel model of cancer drug resistance: Oncosomal release of
cytotoxic and antibody-based drugs. Biology (Basel).
9:472020.PubMed/NCBI
|
|
72
|
Han X, Zhen S, Ye Z, Lu J, Wang L, Li P,
Li J, Zheng X, Li H, Chen W, et al: A Feedback loop between
miR-30a/c-5p and DNMT1 mediates cisplatin resistance in ovarian
cancer cells. Cell Physiol Biochem. 41:973–986. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yu S, Cao H, Shen B and Feng J:
Tumor-derived exosomes in cancer progression and treatment failure.
Oncotarget. 6:37151–37168. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cao Y, Shen T, Zhang C, Zhang QH and Zhang
ZQ: MiR-125a-5p inhibits EMT of ovarian cancer cells by regulating
TAZ/EGFR signaling pathway. Eur Rev Med Pharmacol Sci.
23:8249–8256. 2019.PubMed/NCBI
|
|
75
|
Zhang FF, Zhu YF, Zhao QN, Yang DT, Dong
YP, Jiang L, Xing WX, Li XY, Xing H, Shi M, et al: Microvesicles
mediate transfer of P-glycoprotein to paclitaxel-sensitive A2780
human ovarian cancer cells, conferring paclitaxel-resistance. Eur J
Pharmacol. 738:83–90. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wan Z, Gao X, Dong Y, Zhao Y, Chen X, Yang
G and Liu L: Exosome-mediated cell-cell communication in tumor
progression. Am J Cancer Res. 8:1661–1673. 2018.PubMed/NCBI
|
|
77
|
Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, Ma
TF, Zhang J, Chen L, Tang JH and Zhao JH: Exosomes mediate drug
resistance transfer in MCF-7 breast cancer cells and a probable
mechanism is delivery of P-glycoprotein. Tumour Biol.
35:10773–10779. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mashouri L, Yousefi H, Aref AR, Ahadi AM,
Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and
mechanisms in cancer metastasis and drug resistance. Mol Cancer.
18:752019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen
I, Klyachko NL, Kabanov AV and Batrakova EV: Engineering
macrophage-derived exosomes for targeted paclitaxel delivery to
pulmonary metastases: In vitro and in vivo evaluations.
Nanomedicine. 14:195–204. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Saari H, Lazaro-Ibanez E, Viitala T,
Vuorimaa-Laukkanen E, Siljander P and Yliperttula M: Microvesicle-
and exosome-mediated drug delivery enhances the cytotoxicity of
Paclitaxel in autologous prostate cancer cells. J Control Release.
220((Pt B)): 727–737. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Binenbaum Y, Fridman E, Yaari Z, Milman N,
Schroeder A, Ben David G, Shlomi T and Gil Z: Transfer of miRNA in
macrophage-derived exosomes induces drug resistance in pancreatic
adenocarcinoma. Cancer Res. 78:5287–5299. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rashid MH, Borin TF, Ara R, Alptekin A,
Liu Y and Arbab AS: Generation of novel diagnostic and therapeutic
exosomes to detect and deplete protumorigenic M2 macrophages. Adv
Ther (Weinh). 3:19002092020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sinha D, Roy S, Saha P, Chatterjee N and
Bishayee A: Trends in research on exosomes in cancer progression
and anticancer therapy. Cancers (Basel). 13:3262021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Majidpoor J and Mortezaee K: The efficacy
of PD-1/PD-L1 blockade in cold cancers and future perspectives.
Clin Immunol. 226:1087072021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Nowak M and Klink M: The role of
tumor-associated macrophages in the progression and chemoresistance
of ovarian cancer. Cells. 9:12992020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu
J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between
cancer-associated fibroblasts and immune cells in the tumor
microenvironment: New findings and future perspectives. Mol Cancer.
20:1312021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhu X, Shen H, Yin X, Yang M, Wei H, Chen
Q, Feng F, Liu Y, Xu W and Li Y: Macrophages derived exosomes
deliver miR-223 to epithelial ovarian cancer cells to elicit a
chemoresistant phenotype. J Exp Clin Cancer Res. 38:812019.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu T, Han C, Wang S, Fang P, Ma Z, Xu L
and Yin R: Cancer-associated fibroblasts: An emerging target of
anti-cancer immunotherapy. J Hematol Oncol. 12:862019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
An Y, Liu F, Chen Y and Yang Q: Crosstalk
between cancer-associated fibroblasts and immune cells in cancer. J
Cell Mol Med. 24:13–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gok Yavuz B, Gunaydin G, Gedik ME,
Kosemehmetoglu K, Karakoc D, Ozgur F and Guc D: Cancer associated
fibroblasts sculpt tumour microenvironment by recruiting monocytes
and inducing immunosuppressive PD-1+ TAMs. Sci Rep.
9:31722019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Whiteside TL: Tumor-derived exosomes and
their role in tumor-induced immune suppression. Vaccines (Basel).
4:352016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cai X, Caballero-Benitez A, Gewe MM,
Jenkins IC, Drescher CW, Strong RK, Spies T and Groh V: Control of
tumor initiation by NKG2D naturally expressed on ovarian cancer
cells. Neoplasia. 19:471–482. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shenoy GN, Loyall J, Berenson CS, Kelleher
RJ Jr, Iyer V, Balu-Iyer SV, Odunsi K and Bankert RB: Sialic
acid-dependent inhibition of T cells by exosomal ganglioside GD3 in
ovarian tumor microenvironments. J Immunol. 201:3750–3758. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tian W, Lei N, Zhou J, Chen M, Guo R, Qin
B, Li Y and Chang L: Extracellular vesicles in ovarian cancer
chemoresistance, metastasis, and immune evasion. Cell Death Dis.
13:642022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ireland LV and Mielgo A: Macrophages and
fibroblasts, key players in cancer chemoresistance. Front Cell Dev
Biol. 6:1312018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Balta E, Wabnitz GH and Samstag Y:
Hijacked immune cells in the tumor microenvironment: Molecular
mechanisms of immunosuppression and cues to improve T cell-based
immunotherapy of solid tumors. Int J Mol Sci. 22:57362021.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Mitchem JB, Brennan DJ, Knolhoff BL, Belt
BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L,
Piwnica-Worms D, et al: Targeting tumor-infiltrating macrophages
decreases tumor-initiating cells, relieves immunosuppression, and
improves chemotherapeutic responses. Cancer Res. 73:1128–1141.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cannarile MA, Weisser M, Jacob W, Jegg AM,
Ries CH and Ruttinger D: Colony-stimulating factor 1 receptor
(CSF1R) inhibitors in cancer therapy. J Immunother Cancer.
5:532017. View Article : Google Scholar : PubMed/NCBI
|