
Thermal cycling‑hyperthermia sensitizes non‑small cell lung cancer A549 cells to EGFR tyrosine kinase inhibitor erlotinib
- Authors:
- Guan-Bo Lin
- Wei-Ting Chen
- Yu-Yi Kuo
- Hsu-Hsiang Liu
- You-Ming Chen
- Shr-Jeng Leu
- Chih-Yu Chao
-
Affiliations: Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 106319, Taiwan, R.O.C., Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 100233, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C. - Published online on: March 31, 2025 https://doi.org/10.3892/or.2025.8891
- Article Number: 58
-
Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
World Health Organization, . WHO report on cancer: Setting priorities, investing wisely and providing care for all. World Health Organization; 2020 | |
Balani C, Goss G and Blumenschein G Jr: Recent clinical developments and rationale for combining targeted agents in non-small cell lung cancer (NSCLC). Cancer Treat Rev. 38:174–184. 2012. | |
Imyanitov EN, Iyevleva AG and Levchenko EV: Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit Rev Oncol Hemat. 157:1031942021. View Article : Google Scholar : PubMed/NCBI | |
Wieduwilt MJ and Moasser MM: The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cell Mol Life Sci. 65:1566–1584. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yewale C, Baradia D, Vhora I, Patil S and Misra A: Epidermal growth factor receptor targeting in cancer: A review of trends and strategies. Biomaterials. 34:8690–8707. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wee P and Wang Z: Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 29:522017. View Article : Google Scholar | |
Ciardiello F, De Vita F, Orditura M and Tortora G: The role of EGFR inhibitors in nonsmall cell lung cancer. Curr Opin Oncol. 16:130–135. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gridelli C, Maione P, Bareschino MA, Schettino C, Sacco PC, Ambrosio R, Barbato V, Falanga M and Rossi A: Erlotinib in the treatment of non-small cell lung cancer: Current status and future developments. Anticancer Res. 30:1301–1310. 2010.PubMed/NCBI | |
Lin Y, Wang X and Jin H: EGFR-TKI resistance in NSCLC patients: Mechanisms and strategies. Am J Cancer Res. 4:411–435. 2014.PubMed/NCBI | |
Melosky B: Supportive care treatments for toxicities of anti-EGFR and other targeted agents. Curr Oncol. 19:59–63. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu CQ, da Cunha Santos G, Ding K, Sakurada A, Cutz JC, Liu N, Zhang T, Marrano P, Whitehead M, Squire JA, et al: Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J Clin Oncol. 26:4268–4275. 2008. View Article : Google Scholar : PubMed/NCBI | |
Calvo E and Baselga J: Ethnic differences in response to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol. 24:2158–2163. 2006. View Article : Google Scholar : PubMed/NCBI | |
Garassino MC, Martelli O, Broggini M, Farina G, Veronese S, Rulli E, Bianchi F, Bettini A, Longo F, Moscetti L, et al: Erlotinib versus docetaxel as second-line treatment of patients with advanced non-small-cell lung cancer and wild-type EGFR tumours (TAILOR): A randomised controlled trial. Lancet Oncol. 14:981–988. 2013. View Article : Google Scholar : PubMed/NCBI | |
Raimbourg J, Joalland MP, Cabart M, de Plater L, Bouquet F, Savina A, Decaudin D, Bennouna J, Vallette FM and Lalier L: Sensitization of EGFR wild-type non-small cell lung cancer cells to EGFR-tyrosine kinase inhibitor erlotinib. Mol Cancer Ther. 16:1634–1644. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li T, Ling YH, Goldman ID and Perez-Soler R: Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in human non-small cell lung cancer cells. Clin Cancer Res. 13:3413–3422. 2007. View Article : Google Scholar : PubMed/NCBI | |
Almanric K, Marceau N, Cantin A and Bertin É: Risk factors for nephrotoxicity associated with cisplatin. Can J Hosp Pharm. 70:99–106. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oei AL, Vriend LE, Crezee J, Franken NA and Krawczyk PM: Effects of hyperthermia on DNA repair pathways: One treatment to inhibit them all. Radiat Oncol. 10:1652015. View Article : Google Scholar : PubMed/NCBI | |
Kaur P, Hurwitz MD, Krishnan S and Asea A: Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers (Basel). 3:3799–3823. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kwon S, Jung S and Baek SH: Combination therapy of radiation and hyperthermia, focusing on the synergistic Anti-cancer effects and research trends. Antioxidants. 12:9242023. View Article : Google Scholar : PubMed/NCBI | |
Yang WH, Xie J, Lai ZY, Yang MD, Zhang GH, Li Y, Mu JB and Xu J: Radiofrequency deep hyperthermia combined with chemotherapy in the treatment of advanced Non-small cell lung cancer. Chin Med J. 132:922–927. 2019. View Article : Google Scholar : PubMed/NCBI | |
Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A and Kamrava SK: Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release. 235:205–221. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen WT, Sun YK, Lu CH and Chao CY: Thermal cycling as a novel thermal therapy to synergistically enhance the anticancer effect of propolis on PANC-1 cells. Int J Oncol. 55:617–628. 2019.PubMed/NCBI | |
Lu CH, Chen WT, Hsieh CH, Kuo YY and Chao CY: Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLoS One. 14:e02176762019. View Article : Google Scholar : PubMed/NCBI | |
Kuo YY, Chen WT, Lin GB, Lu CH and Chao CY: Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells. Aging. 15:7496–7512. 2023.PubMed/NCBI | |
Lu CH, Kuo YY, Lin GB, Chen WT and Chao CY: Application of non-invasive low-intensity pulsed electric field with thermal cycling-hyperthermia for synergistically enhanced anticancer effect of chlorogenic acid on PANC-1 cells. PLoS One. 15:e02221262020. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CH, Lu CH, Chen WT, Ma BL and Chao CY: Application of non-invasive low strength pulsed electric field to EGCG treatment synergistically enhanced the inhibition effect on PANC-1 cells. PLoS One. 12:e01888852017. View Article : Google Scholar : PubMed/NCBI | |
Ruttanapattanakul J, Wikan N, Potikanond S and Nimlamool W: Combination of pinocembrin and epidermal growth factor enhances the proliferation and survival of human keratinocytes. Int J Mol Sci. 24:124502023. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Ling YH, Sironi J, Schwartz EL, Perez-Soler R and Piperdi B: The autophagy inhibitor chloroquine overcomes the innate resistance of Wild-type EGFR Non-small-cell lung cancer cells to erlotinib. J Thorac Oncol. 8:693–702. 2013. View Article : Google Scholar : PubMed/NCBI | |
Otahal A, Aydemir D, Tomasich E and Minichsdorfer C: Delineation of cell death mechanisms induced by synergistic effects of statins and erlotinib in non-small cell lung cancer cell (NSCLC) lines. Sci Rep. 10:9592020. View Article : Google Scholar : PubMed/NCBI | |
Li YL, Hu X, Li QY, Wang F, Zhang B, Ding K, Tan BQ, Lin NM and Zhang C: Shikonin sensitizes wild type EGFR NSCLC cells to erlotinib and gefitinib therapy. Mol Med Rep. 18:3882–3890. 2018.PubMed/NCBI | |
Howe GA, Xiao B, Zhao H, Al-Zahrani KN, Hasim MS, Villeneuve J, Sekhon HS, Goss GD, Sabourin LA, Dimitroulakos J and Addison CL: Focal adhesion kinase inhibitors in combination with erlotinib demonstrate enhanced Anti-tumor activity in Non-small cell lung cancer. PLoS One. 11:e01505672016. View Article : Google Scholar : PubMed/NCBI | |
Greve G, Schiffmann I, Pfeifer D, Pantic M, Schüler J and Lübbert M: The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer. 15:9472015. View Article : Google Scholar : PubMed/NCBI | |
Atalay G, Cardoso F, Awada A and Piccart MJ: Novel therapeutic strategies targeting the epidermal growth factor receptor (EGFR) family and its downstream effectors in breast cancer. Ann Oncol. 14:1346–1363. 2003. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi K and Ito F: EGF receptor in relation to tumor development: Molecular basis of responsiveness of cancer cells to EGFR-targeting tyrosine kinase inhibitors. FEBS J. 277:316–326. 2010. View Article : Google Scholar : PubMed/NCBI | |
Akca H, Tani M, Hishida T, Matsumoto S and Yokota J: Activation of the AKT and STAT3 pathways and prolonged survival by a mutant EGFR in human lung cancer cells. Lung Cancer. 54:25–33. 2006. View Article : Google Scholar : PubMed/NCBI | |
Matsuyama S and Reed JC: Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ. 7:1155–1165. 2000. View Article : Google Scholar : PubMed/NCBI | |
Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E and Boise LH: Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14:322013. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Dong B, Qin S, Chu Q, Wu K and Luo S: Advances and perspectives of PARP inhibitors. Exp Hematol Oncol. 8:445732019. View Article : Google Scholar : PubMed/NCBI | |
Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA, Ström CE, Svensson LM, Schultz N, Lundbäck T, Einarsdottir BO, et al: MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature. 508:215–221. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li DN, Yang CC, Li J, Ou Yang QG, Zeng LT, Fan GQ, Liu TH, Tian XY, Wang JJ, Zhang H, et al: The high expression of MTH1 and NUDT5 promotes tumor metastasis and indicates a poor prognosis in patients with non-small-cell lung cancer. Biochim Biophys Acta Mol Cell Res. 1868:1188952021. View Article : Google Scholar : PubMed/NCBI | |
Dorée M and Hunt T: From Cdc2 to Cdk1: When did the cell cycle kinase join its cyclin partner? J Cell Sci. 115:2461–2464. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lim S and Kaldis P: Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development. 140:3079–3093. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang CC, Heller JD, Kuo J and Huang RC: Tetra-O-methyl nordihydroguaiaretic acid induces growth arrest and cellular apoptosis by inhibiting Cdc2 and survivin expression. Proc Natl Acad USA Sci. 101:13239–13244. 2004. View Article : Google Scholar : PubMed/NCBI | |
Senju M, Sueoka N, Sato A, Iwanaga K, Sakao Y, Tomimitsu S, Tominaga M, Irie K, Hayashi S and Sueoka E: Hsp90 inhibitors cause G2/M arrest associated with the reduction of Cdc25C and Cdc2 in lung cancer cell lines. J Cancer Res Clin Oncol. 132:150–158. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yoshida M, Matsui Y, Iizuka A and Ikarashi Y: G2-phase arrest through p21(WAF1/Cip1) induction and cdc2 repression by gnidimacrin in human hepatoma HLE cells. Anticancer Res. 29:1349–1354. 2009.PubMed/NCBI | |
Su JC, Lin KL, Chien CM, Lu CM, Chen YL, Chang LS and Lin SR: Novel indoloquinoline derivative, IQDMA, induces G(2)/M phase arrest and apoptosis in A549 cells through JNK/p38 MAPK signaling activation. Life Sci. 85:505–516. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pai JT, Hsu MW, Leu YL, Chang KT and Weng MS: Induction of G2/M cell cycle arrest via p38/p21Waf1/Cip1-dependent signaling pathway activation by bavachinin in non-small-cell lung cancer cells. Molecules. 26:51612021. View Article : Google Scholar : PubMed/NCBI | |
Luo YH, Wang C, Xu WT, Zhang Y, Zhang T, Xue H, Li YN, Fu ZR, Wang Y and Jin CH: 18β-Glycyrrhetinic acid has Anti-cancer effects via inducing apoptosis and G2/M cell cycle arrest, and inhibiting migration of A549 lung cancer cells. Onco Targets Ther. 14:5131–5144. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tamura T, Kurishima K, Nakazawa K, Kagohashi K, Ishikawa H, Satoh H and Hizawa N: Specific organ metastases and survival in metastatic non-small-cell lung cancer. Mol Clin Oncol. 3:217–221. 2015. View Article : Google Scholar : PubMed/NCBI | |
Uramoto H and Tanaka F: Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res. 4:2422014.PubMed/NCBI | |
Passaro A, Jänne PA, Mok T and Peters S: Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Cancer. 2:377–391. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tong CW, Wu WK, Loong HH, Cho WC and To KK: Drug combination approach to overcome resistance to EGFR tyrosine kinase inhibitors in lung cancer. Cancer Lett. 405:100–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cavazzoni A, Alfieri RR, Cretella D, Saccani F, Ampollini L, Galetti M, Quaini F, Graiani G, Madeddu D, Mozzoni P, et al: Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibody-dependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines. Mol Cancer. 11:912012. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Wu LW, Weng X, Lin NM and Zhang C: Synergistic antitumor activity of aspirin and erlotinib: Inhibition of p38 enhanced aspirin plus Erlotinib-induced suppression of metastasis and promoted cancer cell apoptosis. Oncol Lett. 16:2715–2724. 2018.PubMed/NCBI | |
Chen JC, Ko JC, Yen TC, Chen TY, Lin YC, Ma PF and Lin YW: Capsaicin enhances erlotinib-induced cytotoxicity via AKT inactivation and excision repair cross-complementary 1 (ERCC1) down-regulation in human lung cancer cells. Toxicol Res. 8:459–470. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bing C, Cheng B, Staruch RM, Nofiele J, Wodzak Staruch M, Szczepanski D, Farrow-Gillespie A, Yang A, Laetsch TW and Chopra R: Breath-hold MR-HIFU hyperthermia: Phantom and in vivo feasibility. Int J Hyperthermia. 36:1084–1097. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sadhukha T, Wiedmann TS and Panyam J: Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials. 34:5163–5171. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park J and Baek SH: Combination therapy with cinnamaldehyde and hyperthermia induces apoptosis of A549 Non-small cell lung carcinoma cells via regulation of reactive oxygen species and mitogen-Activated protein kinase family. Int J Mol Sci. 21:62292020. View Article : Google Scholar : PubMed/NCBI | |
Heo J, Jo Y and Yoon M: Synergistic effects of combined hyperthermia and electric fields treatment in non-small cell lung-cancer (NSCLC) cell lines. Clin Transl Oncol. Oct 22–2024.(Epub ahead of print). doi: 10.1007/s12094-024-03760-6. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, An SJ, Dong S, Zhang YF, Zhang XC, Chen ZH, Jian-Su and Wu YL: Molecular mechanism of the schedule-dependent synergistic interaction in EGFR-mutant non-small cell lung cancer cell lines treated with paclitaxel and gefitinib. J Hematol Oncol. 4:52011. View Article : Google Scholar : PubMed/NCBI | |
Volman Y, Hefetz R, Galun E and Rachmilewitz J: DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Sci Rep. 12:57602022. View Article : Google Scholar : PubMed/NCBI | |
Feng YB, Chen L, Chen FX, Yang Y, Chen GH, Zhou ZH and Xu CF: Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int J Immunopathol Pharmacol. 37:39463202311611742023. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Jiao W, Wu DB, Yu JH, Liu LJ, Zhang MY and Chen GX: Yishen Tongbi decoction attenuates inflammation and bone destruction in rheumatoid arthritis by regulating JAK/STAT3/SOCS3 pathway. Front Immunol. 15:13818022024. View Article : Google Scholar : PubMed/NCBI | |
Steen NV, Potze L, Giovannetti E, Cavazzoni A, Ruijtenbeek R, Rolfo C, Pauwels P and Peters GJ: Molecular mechanism underlying the pharmacological interactions of the protein kinase C-β inhibitor enzastaurin and erlotinib in non-small cell lung cancer cells. Am J Cancer Res. 7:816–830. 2017.PubMed/NCBI | |
Cheng F, Peng X, Meng G, Pu Y, Luo K and He B: Poly(ester-thioether) microspheres co-loaded with erlotinib and α-tocopheryl succinate for combinational therapy of non-small cell lung cancer. J Mater Chem B. 8:1728–1738. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R and Schlag PM: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3:487–497. 2002. View Article : Google Scholar : PubMed/NCBI | |
Belhadj Slimen I, Najar T, Ghram A, Dabbebi H, Ben Mrad M and Abdrabbah M: Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia. 30:513–523. 2014. View Article : Google Scholar : PubMed/NCBI | |
Panieri E and Santoro M: ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 7:e22532016. View Article : Google Scholar : PubMed/NCBI | |
Van der Zee J: Heating the patient: A promising approach? Ann Oncol. 13:1173–1184. 2002. View Article : Google Scholar : PubMed/NCBI | |
Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, West CML, O'Connor JPB and Faivre-Finn C: Targeting hypoxia to improve non-Small cell lung cancer outcome. J Natl Cancer Inst. 110:14–30. 2018. View Article : Google Scholar | |
Gerweck LE, Nygaard TG and Burlett M: Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res. 39:966–972. 1979.PubMed/NCBI | |
Bicher HI, Hetzel FW, Sandhu TS, Frinak S, Vaupel P, O'Hara MD and O'Brien T: Effects of hyperthermia on normal and tumor microenvironment. Radiology. 137:523–530. 1980. View Article : Google Scholar : PubMed/NCBI | |
Overgaard J: Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinoma in vivo. Br J Radiol. 54:245–249. 1981. View Article : Google Scholar : PubMed/NCBI | |
Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, Overgaard J and Horsman MR: Hyperthermia: The optimal treatment to overcome radiation resistant hypoxia. Cancers. 11:602019. View Article : Google Scholar : PubMed/NCBI | |
Kabakov AE and Yakimova AO: Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: Approaches to targeting and radiosensitizing. Cancers. 13:11022021. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W and Liu Q: Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm. 3:e1612022. View Article : Google Scholar : PubMed/NCBI | |
Ahmed K, Zaidi SF, Mati-Ur-Rehman Rehman R and Kondo T: Hyperthermia and protein homeostasis: Cytoprotection and cell death. J Therm Biol. 91:1026152020. View Article : Google Scholar : PubMed/NCBI | |
Scutigliani EM, Liang Y, Crezee H, Kanaar R and Krawczyk PM: Modulating the heat stress response to improve Hyperthermia-Based anticancer treatments. Cancers. 13:12432021. View Article : Google Scholar : PubMed/NCBI | |
Karar J and Maity A: Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther. 8:1994–2001. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nijkamp MM, Span PN, Bussink J and Kaanders JH: Interaction of EGFR with the tumour microenvironment: Implications for radiation treatment. Radiother Oncol. 108:17–23. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Chen L, Zhang S, Xu Y, Fan Y and Zhang L: Effects of high-intensity focused ultrasound on Cisplatin-resistant human lung adenocarcinoma in vitro and in vivo. Acta Biochim Biophys Sin. 49:1092–1098. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Sun Y, Liu Y, Luo Y and Zhu J: Pilot study of radiofrequency hyperthermia in combination with gefitinib in gefitinib-effective patients with advanced NSCLC. Thorac Cancer. 7:422–427. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sekins KM, Leeper DB, Hoffman JK, Keilman GW, Ziskin MC, Wolfson MR and Shaffer TH: Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part II: Ultrasound hyperthermia. Int J Hyperthermia. 20:278–299. 2004. View Article : Google Scholar : PubMed/NCBI |