
Comprehensive in‑silico molecular analysis of early‑onset gastric cancer identifies novel genes implicated in disease characterization and progression (Review)
- Authors:
- Fernán Gómez‑Valenzuela
- Ian Silva
- Ignacio N. Retamal
- Benjamín García‑Bloj
- Tomás De Mayo Glasser
- Matías Muñoz‑Medel
- Alex Gómez
- Cristopher San Martín
- Carolina Sánchez
- Felipe Pinto
- Paola Aravena
- Andrea C. Sabioncello
- Marcelo Garrido Villanueva
- Fernando Sigler Chávez
- Ignacio Corvalán
- Henry Barrios
- José M. Erpel
- Patricio A. Manque
- Juan A. Godoy
- Marcelo Garrido
-
Affiliations: Precision Oncology Center, Universidad Mayor, Las Condes, Santiago 7500000, Chile - Published online on: June 17, 2025 https://doi.org/10.3892/or.2025.8931
- Article Number: 98
-
Copyright: © Gómez‑Valenzuela et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Zhang C, Tang R, Zhu H, Ge X, Wang Y, Wang X and Miao L: Comparison of treatment strategies and survival of early-onset gastric cancer: A population-based study. Sci Rep. 12:62882022. View Article : Google Scholar : PubMed/NCBI | |
Bergquist JR, Leiting JL, Habermann EB, Cleary SP, Kendrick ML, Smoot RL, Nagorney DM, Truty MJ and Grotz TE: Early-onset gastric cancer is a distinct disease with worrisome trends and oncogenic features. Surgery. 166:547–555. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vishwanath A, Krishna S, Manudhane AP, Hart PA and Krishna SG: Early-onset gastrointestinal malignancies: An investigation into a rising concern. Cancers (Basel). 16:15532024. View Article : Google Scholar : PubMed/NCBI | |
Han X, Jia X, Sheng C, Li M, Han J, Duan F and Wang K: A comparison analysis of the somatic mutations in early-onset gastric cancer and traditional gastric cancer. Clin Res Hepatol Gastroenterol. 48:1022872024. View Article : Google Scholar : PubMed/NCBI | |
Petrillo A, Federico P, Marte G, Liguori C, Seeber A, Ottaviano M, Tufo A and Daniele B: Non-hereditary early onset gastric cancer: An unmet medical need. Curr Opin Pharmacol. 68:1023442023. View Article : Google Scholar : PubMed/NCBI | |
Ben-Aharon I, van Laarhoven HWM, Fontana E, Obermannova R, Nilsson M and Lordick F: Early-onset cancer in the gastrointestinal tract is on the rise-evidence and implications. Cancer Discov. 13:538–551. 2023. View Article : Google Scholar : PubMed/NCBI | |
Milne AN and Offerhaus GJ: Early-onset gastric cancer: Learning lessons from the young. World J Gastrointest Oncol. 2:59–64. 2010. View Article : Google Scholar : PubMed/NCBI | |
Triantafillidis JK, Georgiou K, Konstadoulakis MM and Papalois AE: Early-onset gastrointestinal cancer: An epidemiological reality with great significance and implications. World J Gastrointest Oncol. 16:583–597. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Tao F, Qiu L, Chen H, Bao H, Wu X, Shao Y, Chi L and Song H: Somatic alteration characteristics of early-onset gastric cancer. J Oncol. 2022:14980532022. View Article : Google Scholar : PubMed/NCBI | |
Machlowska J, Baj J, Sitarz M, Maciejewski R and Sitarz R: Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 21:40122020. View Article : Google Scholar : PubMed/NCBI | |
Ugai T, Sasamoto N, Lee HY, Ando M, Song M, Tamimi RM, Kawachi I, Campbell PT, Giovannucci EL, Weiderpass E, et al: Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat Rev Clin Oncol. 19:656–673. 2022. View Article : Google Scholar : PubMed/NCBI | |
Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, et al: TCGAbiolinks: An R/bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44:e712016. View Article : Google Scholar : PubMed/NCBI | |
Lê S, Josse J and Husson F: FactoMineR: An R package for multivariate analysis. J Stat Softw. 25:1–18. 2008. View Article : Google Scholar | |
Love MI, Huber W and Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI | |
Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne U, et al: UALCAN: An update to the integrated cancer data analysis platform. Neoplasia. 25:18–27. 2022. View Article : Google Scholar : PubMed/NCBI | |
Heagerty PJ and Saha P: SurvivalROC: Time-dependent ROC curve estimation from censored survival data. Biometrics. 2000.https://doi.org/10.32614/CRAN.package.survivalROC View Article : Google Scholar | |
Wang X, Dong Y, Zhang H, Zhao Y, Miao T, Mohseni G, Du L and Wang C: DNA methylation drives a new path in gastric cancer early detection: Current impact and prospects. Genes Dis. 11:847–860. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Liu H, Yu J and Nie Y: DNA methylation biomarkers for early detection of gastric and colorectal cancers. Cancer Biol Med. 20:955–962. 2024. View Article : Google Scholar : PubMed/NCBI | |
Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC and Chivu-Economescu M: Recent advances in gastric cancer early diagnosis. World J Gastroenterol. 25:2029–2044. 2019. View Article : Google Scholar : PubMed/NCBI | |
Choi SH, Cho SY, Song J and Hur MW: KLHL4, a novel p53 target gene, inhibits cell proliferation by activating p21WAF/CDKN1A. Biochem Biophys Res Commun. 530:588–596. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gimeno RE, Ortegon AM, Patel S, Punreddy S, Ge P, Sun Y, Lodish HF and Stahl A: Characterization of a heart-specific fatty acid transport protein. J Biol Chem. 278:16039–16044. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hirokawa N, Noda Y, Tanaka Y and Niwa S: Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 10:682–696. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bellezza I, Giambanco I, Minelli A and Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Shi Y, Han R, Liu C, Qin X, Li P and Gu R: Signaling pathways of oxidative stress response: The potential therapeutic targets in gastric cancer. Front Immunol. 14:11395892023. View Article : Google Scholar : PubMed/NCBI | |
Baird L and Yamamoto M: The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol. 40:e00099–20. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, Uchida K and Yamamoto M: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol. 26:221–229. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ulasov AV, Rosenkranz AA, Georgiev GP and Sobolev AS: Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 291:1201112022. View Article : Google Scholar : PubMed/NCBI | |
Freigang S, Ampenberger F, Spohn G, Heer S, Shamshiev AT, Kisielow J, Hersberger M, Yamamoto M, Bachmann MF and Kopf M: Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur J Immunol. 41:2040–1051. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kuhn AM, Tzieply N, Schmidt MV, von Knethen A, Namgaladze D, Yamamoto M and Brüne B: Antioxidant signaling via Nrf2 counteracts lipopolysaccharide-mediated inflammatory responses in foam cell macrophages. Free Radic Biol Med. 50:1382–1391. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I and Liu ZG: ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 23:898–914. 2013. View Article : Google Scholar : PubMed/NCBI | |
Robledinos-Antón N, Fernández-Ginés R, Manda G and Cuadrado A: Activators and inhibitors of NRF2: A review of their potential for clinical development. Oxid Med Cell Longev. 2019:93721822019. View Article : Google Scholar : PubMed/NCBI | |
Tooze SA: Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta. 1404:231–244. 1998. View Article : Google Scholar : PubMed/NCBI | |
Štepihar D, Florke Gee RR, Hoyos Sanchez MC and Fon Tacer K: Cell-specific secretory granule sorting mechanisms: The role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol. 11:12430382023. View Article : Google Scholar : PubMed/NCBI | |
Chomez P, De Backer O, Bertrand M, De Plaen E, Boon T and Lucas S: An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 61:5544–5551. 2001.PubMed/NCBI | |
Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK and Potts PR: Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell. 152:1051–1064. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hoencamp C and Rowland BD: Genome control by SMC complexes. Nat Rev Mol Cell Biol. 24:633–650. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sanderson MR, Fahlman RP and Wevrick R: The N-terminal domain of the Schaaf-Yang syndrome protein MAGEL2 likely has a role in RNA metabolism. J Biol Chem. 297:1009592021. View Article : Google Scholar : PubMed/NCBI | |
Beaupre BA, Hoag MR, Roman J, Försterling FH and Moran GR: Metabolic function for human renalase: Oxidation of isomeric forms of β-NAD(P)H that are inhibitory to primary metabolism. Biochemistry. 54:795–806. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beaupre BA, Carmichael BR, Hoag MR, Shah DD and Moran GR: Renalase is an α-NAD(P)H oxidase/anomerase. J Am Chem Soc. 135:13980–13987. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pointer TC, Gorelick FS and Desir GV: Renalase: A multi-functional signaling molecule with roles in gastrointestinal disease. Cells. 10:20062021. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Jessel S, Qu R, Kluger Y, Chen TM, Hollander L, Safirstein R, Nelson B, Cha C, Bosenberg M, et al: Inhibition of renalase drives tumour rejection by promoting T cell activation. Eur J Cancer. 165:81–96. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Hollander L, MacPherson D, Wang L, Velazquez H, Chang J, Safirstein R, Cha C, Gorelick F and Desir GV: Inhibition of renalase expression and signaling has antitumor activity in pancreatic cancer. Sci Rep. 6:229962016. View Article : Google Scholar : PubMed/NCBI | |
Hollander L, Guo X, Velazquez H, Chang J, Safirstein R, Kluger H, Cha C and Desir GV: Renalase expression by melanoma and tumor-associated macrophages promotes tumor growth through a STAT3-mediated mechanism. Cancer Res. 76:3884–3894. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Wang X, He Y, Lin S, Zhu M, Li Y, Wang J, Wang J, Ma X, Xu J, et al: Tumor suppressor ATP4B serve as a promising biomarker for worsening of gastric atrophy and poor differentiation. Gastric Cancer. 24:314–326. 2021. View Article : Google Scholar : PubMed/NCBI | |
Borghaei RC, Gorski G, Seutter S, Chun J, Khaselov N and Scianni S: Zinc-binding protein-89 (ZBP-89) cooperates with NF-κB to regulate expression of matrix metalloproteinases (MMPs) in response to inflammatory cytokines. Biochem Biophys Res Commun. 471:503–509. 2016. View Article : Google Scholar : PubMed/NCBI | |
Borghaei RC, Gorski G and Javadi M; Mariah Chambers, : NF-kappaB and ZBP-89 regulate MMP-3 expression via a polymorphic site in the promoter. Biochem Biophys Res Commun. 382:269–273. 2009. View Article : Google Scholar : PubMed/NCBI | |
Borghaei RC, Rawlings PL Jr, Javadi M and Woloshin J: NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter. Biochem Biophys Res Commun. 316:182–188. 2004. View Article : Google Scholar : PubMed/NCBI | |
Morán A, Iniesta P, de Juan C, García-Aranda C, Díaz-López A and Benito M: Impairment of stromelysin-1 transcriptional activity by promoter mutations in high microsatellite instability colorectal tumors. Cancer Res. 65:3811–3814. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Hwang JA, Ro JY, Lee YS and Chun KH: Galectin-7 is epigenetically-regulated tumor suppressor in gastric cancer. Oncotarget. 4:1461–1471. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hou W, Pan M, Xiao Y and Ge W: Serum extracellular vesicle stratifin is a biomarker of perineural invasion in patients with colorectal cancer and predicts worse prognosis. Front Oncol. 12:9125842022. View Article : Google Scholar : PubMed/NCBI | |
Jung JY, Koh SA, Lee KH and Kim JR: 14-3-3 Sigma protein contributes to hepatocyte growth factor-mediated cell proliferation and invasion via matrix metalloproteinase-1 regulation in human gastric cancer. Anticancer Res. 42:519–530. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chang WC, Huang SF, Lee YM, Lai HC, Cheng BH, Cheng WC, Ho JY, Jeng LB and Ma WL: Cholesterol import and steroidogenesis are biosignatures for gastric cancer patient survival. Oncotarget. 8:692–704. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cho LY, Yang JJ, Ko KP, Ma SH, Shin A, Choi BY, Han DS, Song KS, Kim YS, Chang SH, et al: Genetic susceptibility factors on genes involved in the steroid hormone biosynthesis pathway and progesterone receptor for gastric cancer risk. PLoS One. 7:e476032012. View Article : Google Scholar : PubMed/NCBI | |
Xu CY, Guo JL, Jiang ZN, Xie SD, Shen JG, Shen JY and Wang LB: Prognostic role of estrogen receptor alpha and estrogen receptor beta in gastric cancer. Ann Surg Oncol. 17:2503–2509. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chandanos E, Rubio CA, Lindblad M, Jia C, Tsolakis AV, Warner M, Gustafsson JA and Lagergren J: Endogenous estrogen exposure in relation to distribution of histological type and estrogen receptors in gastric adenocarcinoma. Gastric Cancer. 11:168–174. 2008. View Article : Google Scholar : PubMed/NCBI | |
Frycz BA, Murawa D, Borejsza-Wysocki M, Wichtowski M, Spychała A, Marciniak R, Murawa P, Drews M and Jagodziński PP: mRNA expression of steroidogenic enzymes, steroid hormone receptors and their coregulators in gastric cancer. Oncol Lett. 13:3369–3378. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kameda C, Nakamura M, Tanaka H, Yamasaki A, Kubo M, Tanaka M, Onishi H and Katano M: Oestrogen receptor-alpha contributes to the regulation of the hedgehog signalling pathway in ERalpha-positive gastric cancer. Br J Cancer. 102:738–747. 2010. View Article : Google Scholar : PubMed/NCBI | |
Correa P and Piazuelo MB: The gastric precancerous cascade. J Dig Dis. 13:2–9. 2012. View Article : Google Scholar : PubMed/NCBI | |
He Q, Liu L, Wei J, Jiang J, Rong Z, Chen X, Zhao J and Jiang K: Roles and action mechanisms of bile acid-induced gastric intestinal metaplasia: A review. Cell Death Discov. 8:1582022. View Article : Google Scholar : PubMed/NCBI | |
Tatsugami M, Ito M, Tanaka S, Yoshihara M, Matsui H, Haruma K and Chayama K: Bile acid promotes intestinal metaplasia and gastric carcinogenesis. Cancer Epidemiol Biomarkers Prev. 21:2101–2107. 2012. View Article : Google Scholar : PubMed/NCBI | |
Inoue Y, Yu AM, Yim SH, Ma X, Krausz KW, Inoue J, Xiang CC, Brownstein MJ, Eggertsen G, Björkhem I and Gonzalez FJ: Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res. 47:215–227. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tsukita S, Tanaka H and Tamura A: The claudins: From tight junctions to biological systems. Trends Biochem Sci. 44:141–152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Singh AB, Uppada SB and Dhawan P: Claudin proteins, outside-in signaling, and carcinogenesis. Pflugers Arch. 469:69–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Li W, Wang H and Wang G: The distinct expression patterns of claudin-10, −14, −17 and E-cadherin between adjacent non-neoplastic tissues and gastric cancer tissues. Diagn Pathol. 8:2052013. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Yang X: The expression patterns of tight junction protein claudin-1, −3, and −4 in human gastric neoplasms and adjacent non-neoplastic tissues. Int J Clin Exp Pathol. 8:881–887. 2015.PubMed/NCBI | |
Zhu J and Wang R, Cao H, Zhang H, Xu S, Wang A, Liu B, Wang Y and Wang R: Expression of claudin-5, −7, −8 and −9 in cervical carcinoma tissues and adjacent non-neoplastic tissues. Int J Clin Exp Pathol. 8:9479–9486. 2015.PubMed/NCBI | |
Lu YZ, Li Y, Zhang T and Han ST: Claudin-6 is down-regulated in gastric cancer and its potential pathway. Cancer Biomark. 28:329–340. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kohmoto T, Masuda K, Shoda K, Takahashi R, Ujiro S, Tange S, Ichikawa D, Otsuji E and Imoto I: Claudin-6 is a single prognostic marker and functions as a tumor-promoting gene in a subgroup of intestinal type gastric cancer. Gastric Cancer. 23:403–417. 2020. View Article : Google Scholar : PubMed/NCBI | |
Łukaszewicz-Zając M and Mroczko B: Claudins-promising biomarkers for selected gastrointestinal (GI) malignancies? Cancers (Basel). 16:1522023. View Article : Google Scholar : PubMed/NCBI | |
Simon AG, Lyu SI, Laible M, Wöll S, Türeci Ö, Şahin U, Alakus H, Fahrig L, Zander T, Buettner R, et al: The tight junction protein claudin 6 is a potential target for patient-individualized treatment in esophageal and gastric adenocarcinoma and is associated with poor prognosis. J Transl Med. 21:5522023. View Article : Google Scholar : PubMed/NCBI | |
Torres-Martínez AC, Gallardo-Vera JF, Lara-Holguin AN, Montaño LF and Rendón-Huerta EP: Claudin-6 enhances cell invasiveness through claudin-1 in AGS human adenocarcinoma gastric cancer cells. Exp Cell Res. 350:226–235. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thaler R, Rumpler M, Spitzer S, Klaushofer K and Varga F: Mospd1, a new player in mesenchymal versus epidermal cell differentiation. J Cell Physiol. 226:2505–2515. 2011. View Article : Google Scholar : PubMed/NCBI | |
Imoto Y, Raychaudhuri S, Ma Y, Fenske P, Sandoval E, Itoh K, Blumrich EM, Matsubayashi HT, Mamer L, Zarebidaki F, et al: Dynamin is primed at endocytic sites for ultrafast endocytosis. Neuron. 110:2815–2835.e13. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meng J: Distinct functions of dynamin isoforms in tumorigenesis and their potential as therapeutic targets in cancer. Oncotarget. 8:41701–41716. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thorsell AG, Persson C, Voevodskaya N, Busam RD, Hammarström M, Gräslund S, Gräslund A and Hallberg BM: Structural and biophysical characterization of human myo-inositol oxygenase. J Biol Chem. 283:15209–15216. 2008. View Article : Google Scholar : PubMed/NCBI | |
Meng L, Gao J, Mo W, Wang B, Shen H, Cao W, Ding M, Diao W, Chen W, Zhang Q, et al: MIOX inhibits autophagy to regulate the ROS-driven inhibition of STAT3/c-Myc-mediated epithelial-mesenchymal transition in clear cell renal cell carcinoma. Redox Biol. 68:1029562023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Li C, Qin Y, Zhang G, Zhao B, Wang Z, Huang Y and Yang Y: A Novel Prognostic model based on ferroptosis-related gene signature for bladder cancer. Front Oncol. 11:6860442021. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Xiang J, Wu X, Wei S, Huang H, Xiao Y, Zhai B and Wang T: Transcriptome profiles reveal a 12-signature metabolic prediction model and a novel role of myo-inositol oxygenase in the progression of prostate cancer. Front Oncol. 12:8998612022. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Zhang S, Nian F and Xu S: Identification of a glycolysis-related gene signature associated with clinical outcome for patients with lung squamous cell carcinoma. Cancer Med. 10:4017–4029. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cengiz B, Yumrutas O, Bozgeyik E, Borazan E, Igci YZ, Bozgeyik I and Oztuzcu S: Differential expression of the UGT1A family of genes in stomach cancer tissues. Tumor Biol. 36:5831–5837. 2015. View Article : Google Scholar | |
Pang SW, Lahiri C, Poh CL and Tan KO: PNMA family: Protein interaction network and cell signalling pathways implicated in cancer and apoptosis. Cell Signal. 45:54–62. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee YH, Pang SW, Poh CL and Tan KO: Distinct functional domains of PNMA5 mediate protein-protein interaction, nuclear localization, and apoptosis signaling in human cancer cells. J Cancer Res Clin Oncol. 142:1967–1977. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Zhang X, Meng F, Zeng F, Liu W and He X: PNMA5 accelerated cellular proliferation, invasion and migration in colorectal cancer. Am J Transl Res. 4:2231–2243. 2022.PubMed/NCBI | |
Cabarcas S and Schramm L: RNA polymerase III trans-cription in cancer: The BRF2 connection. Mol Cancer. 10:472011. View Article : Google Scholar : PubMed/NCBI | |
Kang M, Lu S, Chong PK, Yeoh KG and Lim YP: Comparative proteomic profiling of extracellular proteins between normal and gastric cancer cells. Curr Cancer Drug Targets. 16:442–454. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wu H, Yang F, Ning J, Li M, Zhao C, Zhong S, Gu K and Wang H: Prognostic value of the expression of DNA repair-related biomarkers mediated by alcohol in gastric cancer patients. Am J Pathol. 188:367–377. 2018. View Article : Google Scholar : PubMed/NCBI | |
Welch MD, DePace AH, Verma S, Iwamatsu A and Mitchison TJ: The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J Cell Biol. 138:375–384. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yoo Y, Wu X and Guan JL: A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J Biol Chem. 282:7616–7623. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lee GE, Kim JH, Taylor M and Muller MT: DNA methyltransferase 1-associated protein (DMAP1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair. J Biol Chem. 285:37630–37640. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li B, Zhu J and Meng L: High expression of ACTL8 is poor prognosis and accelerates cell progression in head and neck squamous cell carcinoma. Mol Med Rep. 19:877–884. 2019.PubMed/NCBI | |
Han Q, Sun ML, Liu WS, Zhao HS, Jiang LY, Yu ZJ and Wei MJ: Upregulated expression of ACTL8 contributes to invasion and metastasis and indicates poor prognosis in colorectal cancer. Onco Targets Ther. 12:1749–1763. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mantilla MJ, Chaves JJ, Ochoa-Vera M, Africano F, Parra-Medina R and Tovar-Fierro G: Clinical characteristics of early-onset gastric cancer. A study in a Colombian population. Rev Gastroenterol Peru. 43:236–241. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Li Z, Zhang Q, Li Q, Zhong H, Wang Y, Yang H, Li H, Wang X, Li K, et al: Multi-institutional development and validation of a nomogram to predict prognosis of early-onset gastric cancer patients. Front Immunol. 13:10071762022. View Article : Google Scholar : PubMed/NCBI | |
Umeyama K, Sowa M, Kamino K, Kato Y and Satake K: Gastric carcinoma in young adults in Japan. Anticancer Res. 2:283–286. 1982.PubMed/NCBI | |
LaPelusa M, Shen C, Gillaspie EA, Cann C, Lambright E, Chakravarthy AB, Gibson MK and Eng C: Variation in treatment patterns of patients with early-onset gastric cancer. Cancers (Basel). 14:36332022. View Article : Google Scholar : PubMed/NCBI | |
Setia N, Wang CX, Lager A, Maron S, Shroff S, Arndt N, Peterson B, Kupfer SS, Ma C, Misdraji J, et al: Morphologic and molecular analysis of early-onset gastric cancer. Cancer. 127:103–114. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mun DG, Bhin J, Kim S, Kim H, Jung JH, Jung Y, Jang YE, Park JM, Kim H, Jung Y, et al: Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell. 35:111–124.e10. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Liu X, Paul ME, Chen M, Zheng P and Chen H: Comparative investigation of early-onset gastric cancer. Oncol Lett. 21:3742021. View Article : Google Scholar : PubMed/NCBI | |
Skierucha M, Milne AN, Offerhaus GJ, Polkowski WP, Maciejewski R and Sitarz R: Molecular alterations in gastric cancer with special reference to the early-onset subtype. World J Gastroenterol. 22:2460–2474. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao F, Li M, Xiang R, Zhou X, Zhu L and Zhai Y: Expression of CLDN6 in tissues of gastric cancer patients: Association with clinical pathology and prognosis. Oncol Lett. 17:4621–4625. 2019.PubMed/NCBI | |
Wu LH, Wang XX, Wang Y, Wei J, Liang ZR, Yan X and Wang J: Construction and validation of a prognosis signature based on the immune microenvironment in gastric cancer. Front Surg. 10:10882922023. View Article : Google Scholar : PubMed/NCBI | |
Ajani JA, D'Amico TA, Bentrem DJ, Chao J, Cooke D, Corvera C, Das P, Enzinger PC, Enzler T, Fanta P, et al: Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 20:167–192. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lordick F, Carneiro F, Cascinu S, Fleitas T, Haustermans K, Piessen G, Vogel A and Smyth EC; ESMO Guidelines Committee. Electronic address, : simpleclinicalguidelines@esmo.org: Gastric cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 33:1005–1020. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Li J, Wang W, Wang Y, Shan Y and Tan H: Rabdosia rubescens (Hemsl.) H. Hara: A potent anti-tumor herbal remedy-Botany, phytochemistry, and clinical applications and insights. J Ethnopharmacol. 340:1192002025. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Shan Y, Wang Y, Wang W, Li J and Tan H: Polysaccharides from Lonicera japonica Thunb.: Extraction, purification, structural features and biological activities-A review. Int J Biol Macromol. 281:1364722024. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Gang J, Yu M, Xin G and Tan H: Computational analysis for identification of early diagnostic biomarkers and prognostic biomarkers of liver cancer based on GEO and TCGA databases and studies on pathways and biological functions affecting the survival time of liver cancer. BMC Cancer. 21:7912021. View Article : Google Scholar : PubMed/NCBI |