|
1
|
Hendrikse JL, Parsons TE and Hallgrímsson
B: Evolvability as the proper focus of evolutionary developmental
biology. Evol Dev. 9:393–401. 2007.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Pavlicev M and Wagner GP: Coming to Grips
with evolvability. Evolution: Educ Outreach. 5:231–244. 2012.
|
|
3
|
Tian T, Olson S, Whitacre JM and Harding
A: The origins of cancer robustness and evolvability. Integr Biol
(Camb). 3:17–30. 2011.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Aktipis CA, Boddy AM, Jansen G, Hibner U,
Hochberg ME, Maley CC and Wilkinson GS: Cancer across the tree of
life: Cooperation and cheating in multicellularity. Philos Trans R
Soc Lond B Biol Sci. 370(pii: 20140219)2015.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Bussey KJ, Cisneros LH, Lineweaver CH and
Davies PCW: Ancestral gene regulatory networks drive cancer. Proc
Natl Acad Sci USA. 114:6160–6162. 2017.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Chu XY, Jiang LH, Zhou XH, Cui ZJ and
Zhang HY: Evolutionary origins of cancer driver genes and
implications for cancer prognosis. Genes (Basel). 8(pii:
E182)2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Chen H, Lin F, Xing K and He X: The
reverse evolution from multicellularity to unicellularity during
carcinogenesis. Nat Comm. 6(6367)2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Trigos AS, Pearson RB, Papenfuss AT and
Goode DL: Somatic mutations in early metazoan genes disrupt
regulatory links between unicellular and multicellular genes in
cancer. Elife. 8(pii: e40947)2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Casás-Selves M and Degregori J: How cancer
shapes evolution, and how evolution shapes cancer. Evolution (N Y).
4:624–634. 2011.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Pruitt KD, Tatusova T and Maglott DR: NCBI
reference sequence (RefSeq): A curated nonredundant sequence
database of genomes, transcripts and proteins. Nucleic Acids Res.
33 (Database Issue):D501–D504. 2005.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Sever R and Brugge JS: Signal transduction
in cancer. Cold Spring Harb Perspect Med. 5(a006098)2015.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Lodish H, Berk A, Zipursky SL, Matsudaira
P, Baltimore D and Darnell J: Oncogenic mutations affecting cell
proliferation. In: Molecular Cell Biology. 4th edition. W. H.
Freeman, New York, NY, 2000.
|
|
14
|
Vogelstein B, Papadopoulos N, Velculescu
VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes.
Science. 339:1546–1558. 2013.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Miller MA: Driver mutations take the wheel
in invasive yet nonmalignant disease. Sci Transl Med. 9(pii:
eaan8194)2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
McFarland CD, Yaglom JA, Wojtkowiak JW,
Scott JG, Morse DL, Sherman MY and Mirny LA: The damaging effect of
passenger mutations on cancer progression. Cancer Res.
77:4763–4772. 2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
McFarland CD, Korolev KS, Kryukov GV,
Sunyaev SR and Mirny LA: Impact of deleterious passenger mutations
on cancer progression. Proc Natl Acad Sci USA. 110:2910–2915.
2013.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Chen J, Sun M and Shen B: Deciphering
oncogenic drivers: From single genes to integrated pathways. Brief
Bioinform. 16:413–1428. 2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Zhang J and Zhang S: Discovery of cancer
common and specific driver gene sets. Nucleic Acids Res.
45(e86)2017.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Vogelstein B and Kinzler KW: Cancer genes
and the pathways they control. Nat Med. 10:789–799. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
21
|
Levine AJ: p53, the cellular gatekeeper
for growth and division. Cell. 88:323–331. 1997.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Lu WJ, Amatruda JF and Abrams JM: p53
ancestry: Gazing through an evolutionary lens. Nat Rev Cancer.
9:758–762. 2009.PubMed/NCBI View
Article : Google Scholar
|
|
23
|
Jegga AG, Inga A, Menendez D, Aronow BJ
and Resnick MA: Functional evolution of the p53 regulatory network
through its target response elements. Proc Natl Acad Sci USA.
105:944–949. 2008.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Belyi VA, Ak P, Markert E, Wang H, Hu W,
Puzio-Kuter A and Levine AJ: The origins and evolution of the p53
family of genes. Cold Spring Harb Perspect Biol.
2(a001198)2010.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Levine AJ and Oren M: The first 30 years
of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758.
2009.PubMed/NCBI View
Article : Google Scholar
|
|
26
|
Joerger AC and Fersht AR: The p53 pathway:
Origins, inactivation in cancer, and emerging therapeutic
approaches. Annu Rev Biochem. 85:375–404. 2016.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Fresno Vara JA, Casado E, de Castro J,
Cejas P, Belda-Iniesta C and González-Barón M: PI3K/Akt signalling
pathway and cancer. Cancer Treat Rev. 30:193–204. 2004.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Philippon H, Brochier-Armanet C and
Perrière G: Evolutionary history of phosphatidylinositol-3-kinases:
Ancestral origin in eukaryotes and complex duplication patterns.
BMC Evol Biol. 15(226)2015.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Kriplani N, Hermida MA, Brown ER and
Leslie NR: Class I PI 3-kinases: Function and evolution. Adv Biol
Regul. 59:53–64. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Bertucci MC and Mitchell CA:
Phosphoinositide 3-kinase and INPP4B in human breast cancer. Ann N
Y Acad Sci. 1280:1–5. 2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
LoPiccolo J, Blumenthal GM, Bernstein WB
and Dennis PA: Targeting the PI3K/Akt/mTOR pathway: Effective
combinations and clinical considerations. Drug Resist Updat.
11:32–50. 2008.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Park S, Chapuis N, Tamburini J, Bardet V,
Cornillet-Lefebvre P, Willems L, Green A, Mayeux P, Lacombe C and
Bouscary D: Role of the PI3K/AKT and mTOR signaling pathways in
acute myeloid leukemia. Haematologica. 95:819–828. 2010.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Polychronidou E, Vlachakis D, Vlamos P,
Baumann M and Kossida S: Notch signaling and ageing. Adv Exp Med
Biol. 822:25–36. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Li L, Tang P, Li S, Qin X, Yang H, Wu C
and Liu Y: Notch signaling pathway networks in cancer metastasis: A
new target for cancer therapy. Med Oncol. 34(180)2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Kwon OJ, Zhang L, Wang J, Su Q, Feng Q,
Zhang XH, Mani SA, Paulter R, Creighton CJ, Ittmann MM and Xin L:
Notch promotes tumor metastasis in a prostate-specific Pten-null
mouse model. J Clin Invest. 126:2626–2641. 2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Weng AP, Ferrando AA, Lee W, Morris JP IV,
Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT and Aster
JC: Activating mutations of NOTCH1 in human T cell acute
lymphoblastic leukemia. Science. 306:269–271. 2004.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Lobry C, Oh P, Mansour MR, Look AT and
Aifantis I: Notch signaling: Switching an oncogene to a tumor
suppressor. Blood. 123:2451–2459. 2014.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Mosedale G, Niedzwiedz W, Alpi A, Perrina
F, Pereira-Leal JB, Johnson M, Langevin F, Pace P and Patel KJ: The
vertebrate Hef ortholog is a component of the Fanconi anemia
tumor-suppressor pathway. Nat Struct Mol Biol. 12:763–771.
2005.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Murphy ME: The HSP70 family and cancer.
Carcinogenesis. 34:1181–1188. 2013.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Rosenzweig R, Nillegoda NB, Mayer MP and
Bukau B: The Hsp70 chaperone network. Nat Rev Mol Cell Biol.
20:665–680. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Calderwood SK and Gong J: Molecular
chaperones in mammary cancer growth and breast tumor therapy. J
Cell Biochem. 113:1096–1103. 2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Lunt SY and Vander Heiden MG: Aerobic
glycolysis: Meeting the metabolic requirements of cell
proliferation. Annu Rev Cell Dev Biol. 27:441–464. 2011.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Alfarouk KO, Verduzco D, Rauch C,
Muddathir AK, Bashir Adil HH, Elhassan GO, Ibrahim ME, David Polo
Orozco J, Cardone RA, Reshkin SJ and Harguindey S: Glycolysis,
tumor metabolism, cancer growth and dissemination. A new pH-based
etiopathogenic perspective and therapeutic approach to an old
cancer question. Oncoscience. 1:777–802. 2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
DeBerardinis RJ and Chandel NS:
Fundamentals of cancer metabolism. Sci Adv.
2(e1600200)2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Dang CV: Links between metabolism and
cancer. Genes Dev. 26:877–890. 2012.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Phan LM, Yeung SC and Lee MH: Cancer
metabolic reprogramming: Importance, main features, and potentials
for precise targeted anti-cancer therapies. Cancer Biol Med.
11:1–19. 2014.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Stine ZE, Walton ZE, Altman BJ, Hsieh AL
and Dang CV: MYC, metabolism, and cancer. Cancer Discov.
5:1024–1039. 2015.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Halestrap AP: The monocarboxylate
transporter family-Structure and functional characterization. IUBMB
Life. 64:1–9. 2012.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Baltazar F, Pinheiro C, Morais-Santos F,
Azevedo-Silva J, Queirós O, Preto A and Casal M: Monocarboxylate
transporters as targets and mediators in cancer therapy response.
Histol Histopathol. 29:1511–1524. 2014.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Perez-Escuredo J, Van Hée VF, Sboarina M,
Falces J, Payen VL, Pellerin L and Sonveaux P: Monocarboxylate
transporters in the brain and in cancer. Biochim Biophys Acta.
1863:2481–2497. 2016.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ullah MS, Davies AJ and Halestrap AP: The
plasma membrane lactate transporter MCT4, but not MCT1, is
up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J
Biol Chem. 281:9030–9037. 2006.PubMed/NCBI View Article : Google Scholar
|
|
54
|
San-Millan I and Brooks GA: Reexamining
cancer metabolism: Lactate production for carcinogenesis could be
the purpose and explanation of the Warburg Effect. Carcinogenesis.
38:119–133. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Payen VL, Mina E, Van Hée VF, Porporato PE
and Sonveaux P: Monocarboxylate transporters in cancer. Mol Metab.
33:48–66. 2020.
|
|
56
|
Martinez-Outschoorn UE, Curry JM, Ko YH,
Lin Z, Tuluc M, Cognetti D, Birbe RC, Pribitkin E, Bombonati A,
Pestell RG, et al: Oncogenes and inflammation rewire host energy
metabolism in the tumor microenvironment: RAS and NFκB target
stromal MCT4. Cell Cycle. 12:2580–2597. 2013.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Bovenzi CD, Hamilton J, Tassone P, Johnson
J, Cognetti DM, Luginbuhl A, Keane WM, Zhan T, Tuluc M, Bar-Ad V,
et al: Prognostic indications of elevated MCT4 and CD147 across
cancer types: A Meta-analysis. Biomed Res Int.
2015(242437)2015.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47.
2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Wahlstrom T and Henriksson MA: Impact of
MYC in regulation of tumor cell metabolism. Biochim Biophys Acta.
1849:563–569. 2015.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Bott JA, Peng IC, Fan Y, Faubert B, Zhao
L, Li J, Neidler S, Sun Y, Jaber N, Krokowski D, et al: Oncogenic
Myc induces expression of glutamine synthetase through promoter
demethylation. Cell Metab. 22:1068–1077. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Kumada Y, Benson DR, Hillemann D, Hosted
TJ, Rochefort DA, Thompson CJ, Wohlleben W and Tateno Y: Evolution
of the glutamine synthetase gene, one of the oldest existing and
functioning genes. Proc Natl Acad Sci USA. 90:3009–3013.
1993.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Hill RT, Parker JR, Goodman HJ, Jones DT
and Woods DR: Molecular analysis of a nove glutamine synthetase of
the anaerobe Bacteroides fragilis. J Gen Microb.
135:3271–3279. 1989.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Goodman HJ and Woods DR: Cloning and
nucleotide sequence of the Butyrivibrio fibrisolvens gene
encoding a type III glutamine synthetase. J Gen Micro.
139:1487–1493. 1993.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Pesole G, Gissi C, Lanave C and Saccone C:
Glutamine synthetase gene evolution in bacteria. Mol Biol Evol.
12:189–197. 1995.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Shatters RG and Kahn JL: Glutamine
synthetase II in Rhizobium: Reexamination of the proposed
horizontal transfer of DNA from eukaryotes to prokaryotes. J Mol
Evol. 2:422–428. 1989.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lee TI and Young RA: Transcriptional
regulation and its misregulation in disease. Cell. 152:1237–1251.
2013.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Werner F and Grohmann D: Evolution of
multi-subunit RNA polymerases in the three domains of life. Nat Rev
Microbiol. 9:85–98. 2011.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Shin DS, Pratt AJ and Tainer JA: Archaeal
genome guardians give insights into eukaryotic DNA replication and
damage response proteins. Archaea. 2014(206735)2014.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Warner JR: The economics of ribosome
biosynthesis in yeast. Trends Biochem Sci. 24:437–440.
1999.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Drygin D, Rice WG and Grummt I: The RNA
polymerase I transcription machinery: An emerging target for the
treatment of cancer. Annu Rev Pharmacol Toxicol. 50:131–156.
2010.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Arabi A, Wu S, Ridderstråle K, Bierhoff H,
Shiue C, Fatyol K, Fahlén S, Hydbring P, Söderberg O, Grummt I, et
al: c-Myc associates with ribosomal DNA and activates RNA
polymerase I transcription. Nat Cell Biol. 7:303–310.
2005.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Grandori C, Gomez-Roman N, Felton-Edkins
ZA, Ngouenet C, Galloway DA, Eisenman RN and White RJ: c-Myc binds
to human ribosomal DNA and stimulates transcription of rRNA genes
by RNA polymerase I. Nat Cell Biol. 7:311–318. 2005.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Mayer C and Grummt I: Ribosome biogenesis
and cell growth: mTOR coordinates transcription by all three
classes of nuclear RNA polymerases. Oncogene. 25:6384–6391.
2006.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Zhang C, Comai L and Johnson DL: PTEN
represses RNA Polymerase I transcription by disrupting the SL1
complex. Mol Cell Biol. 25:6899–6911. 2005.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Grummt I: Life on a planet of its own:
Regulation of RNA polymerase I transcription in the nucleolus.
Genes Dev. 17:1691–1702. 2003.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Luo Z, Lin C, Guest E, Garrett AS,
Mohaghegh N, Swanson S, Marshall S, Florens L, Washburn MP and
Shilatifard A: The super elongation complex family of RNA
polymerase II elongation factors: Gene target specificity and
transcriptional output. Mol Cell Biol. 32:2608–2617.
2012.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Rahl PB, Lin CY, Seila AC, Flynn RA,
McCuine S, Burge CB, Sharp PA and Young RA: c-Myc regulates
transcriptional pause release. Cell. 141:432–445. 2010.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Smith E, Lin C and Shilatifard A: The
super elongation complex (SEC) and MLL in development and disease.
Genes Dev. 25:661–672. 2011.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Aguilo F, Zhou MM and Walsh MJ: Long
noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a
expression. Cancer Res. 71:5365–5369. 2011.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Sliwoski G, Kothiwale S, Meiler J and Lowe
EW Jr: Computational methods in drug discovery. Pharmacol Rev.
66:334–395. 2014.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Park H, Bahn YJ and Ryu SE:
Structure-based de novo design and biochemical evaluation of novel
Cdc25 phosphatase inhibitors. Bioorg Med Chem Lett. 19:4330–4334.
2009.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Vangrevelinghe E, Zimmermann K, Schoepfer
J, Portmann R, Fabbro D and Furet P: Discovery of a potent and
selective protein kinase CK2 inhibitor by high-throughput docking.
J Med Chem. 46:2656–2662. 2003.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Kreeger PK and Lauffenburger DA: Cancer
systems biology: A network modeling perspective. Carcinogenesis.
31:2–8. 2010.PubMed/NCBI View Article : Google Scholar
|
|
84
|
San Lucas FA, Fowler J, Chang K, Kopetz S,
Vilar E and Scheet P: Cancer in silico drug discovery: A systems
biology tool for identifying candidate drugs to target specific
molecular tumor subtypes. Mol Cancer Ther. 13:3230–3240.
2014.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Carter H, Chen S, Isik L, Tyekucheva S,
Velculescu VE, Kinzler KW, Vogelstein B and Karchin R:
Cancer-specific high-throughput annotation of somatic mutations:
Computational prediction of driver missense mutations. Cancer Res.
69:6660–6667. 2009.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Chen W, Li Y and Wang Z: Evolution of
oncogenic signatures of mutation hotspots in tyrosine kinases
supports the atavistic hypothesis of cancer. Sci Rep.
8(8256)2018.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Trigos AS, Pearson RB, Papenfuss AT and
Goode DL: Altered interactions between unicellular and
multicellular genes drive hallmarks of transformation in a diverse
range of solid tumors. Proc Natl Acad Sci USA. 114:6406–6411.
2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Zhou XH, Chu XY, Xue G, Xiong JH and Zhang
HY: Identifying cancer prognostic modules by module network
analysis. BMC Bioinformatics. 20(85)2019.PubMed/NCBI View Article : Google Scholar
|
|
89
|
DeGregori J: Evolved tumor suppression:
Why are we so good at not getting cancer? Cancer Res. 71:3739–3744.
2011.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Dunning Hotopp JC: Horizontal gene
transfer between bacteria and animals. Trends Genet. 27:157–163.
2011.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Robinson KM, Sieber KB and Dunning Hotopp
JC: A review of bacteria-animal lateral gene transfer may inform
our understanding of diseases like cancer. PLoS Genet.
9(e1003877)2013.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Baba Y, Iwatsuki M, Yoshida N, Watanabe M
and Baba H: Review of the gut microbiome and esophageal cancer:
Pathogenesis and potential clinical implications. Ann Gastroenterol
Surg. 1:99–104. 2017.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Riley DR, Sieber KB, Robinson KM, White
JR, Ganesan A, Nourbakhsh S and Dunning Hotopp JC: Bacteria-human
somatic cell lateral gene transfer is enriched in cancer samples.
PLoS Comput Biol. 9(e1003107)2013.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Cao Y: Tumorigenesis as a process of
gradual loss of original cell identity and gain of properties of
neural precursor/progenitor cells. Cell Biosci.
7(61)2017.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Trigos AS, Pearson RB, Papenfuss AT and
Goode DL: How the evolution of multicellularity set the stage for
cancer. Br J Cancer. 118:145–152. 2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Merlo LM, Pepper JW, Reid BJ and Maley CC:
Cancer as an evolutionary and ecological process. Nat Rev Cancer.
6:924–935. 2006.PubMed/NCBI View Article : Google Scholar
|