High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways

  • Authors:
    • Yaling Qi
    • Wenjie Zhao
    • Mengsen Li
    • Mingliang Shao
    • Jingtao Wang
    • Hongyu Sui
    • Haibo Yu
    • Wenwu Shao
    • Shiliang Gui
    • Jing Li
    • Xiuyue Jia
    • Dali Jiang
    • Yue Li
    • Pengxia Zhang
    • Shuqiu Wang
    • Weiqun Wang
  • View Affiliations

  • Published online on: April 30, 2018     https://doi.org/10.3892/ijo.2018.4388
  • Pages: 358-370
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

The present study aimed to examine the effects and mechanisms of exogenous C-X-C motif chemokine 5 (CXCL5) and lentiviral CXCL5 overexpression on the regulation of malignant behaviors of prostate cancer cells in vitro and in a nude mouse xenograft model. The expression levels of CXCL5 and a number of tumor-related genes were assessed by using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), western blotting, ELISA, or immunohistochemistry in normal and cancerous prostate cells and tissues. Cell proliferation, colony formation, and Transwell assays were performed to determine the effects of exogenous, autocrine, and paracrine CXCL5 on prostate cancer cell proliferative and migratory capacity. The results indicated that CXCL5 expression was upregulated in PC‑3 and DU145 prostate cancer cells, in WPMY‑1 normal prostate stromal cells, and in RWPE‑1 prostate epithelial cells, as well as in prostate cancer tissue specimens. Exogenous CXCL5 exposure resulted in increase in prostate cancer cell proliferation, colony formation, and migration. In cells transfected with a CXCL5 overexpression vector, in cells cultured in conditioned medium from CXCL5-overexpressing WPMY cells, and in cells co-cultured with CXCL5‑OE WPMY cells prostate cancer cell malignant phenotypes were induced in an autocrine/paracrine fashion in vitro; similar results were observed in nude mouse xenografts. CXCL5 overexpression also regulated expression of tumor-related genes, including BAX, N-Myc downstream-regulated gene 3, extracellular signal-regulated kinase 1/2, C-X-C chemokine receptor type 2, interleukin 18, Bcl‑2, and caspase‑3. These data demonstrated that CXCL5 expression was upregulated in prostate cancer tissues and that exogenous CXCL5 protein exposure or CXCL5 overexpression promoted malignant phenotypes of prostate cancer cells in vitro and in vivo.

References

1 

Catalona WJ: Prostate Cancer Screening. Med Clin North Am. 102:199–214. 2018. View Article : Google Scholar : PubMed/NCBI

2 

International Agency for Research on Cancer: World Cancer Report. 2014, http://www.who.int/cancer/publications/WRC_2014/en/urisimplehttp://www.who.int/cancer/publications/WRC_2014/en/. Accessed April 17, 2017.

3 

Wang W, Li Y, Li Y, Hong A, Wang J, Lin B and Li R: NDRG3 is an androgen regulated and prostate enriched gene that promotes in vitro and in vivo prostate cancer cell growth. Int J Cancer. 124:521–530. 2009. View Article : Google Scholar

4 

Begley LA, Kasina S, Mehra R, Adsule S, Admon AJ, Lonigro RJ, Chinnaiyan AM and Macoska JA: CXCL5 promotes prostate cancer progression. Neoplasia. 10:244–254. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Kawamura M, Toiyama Y, Tanaka K, Saigusa S, Okugawa Y, Hiro J, Uchida K, Mohri Y, Inoue Y and Kusunoki M: CXCL5, a promoter of cell proliferation, migration and invasion, is a novel serum prognostic marker in patients with colorectal cancer. Eur J Cancer. 48:2244–2251. 2012. View Article : Google Scholar

6 

Chang MS, McNinch J, Basu R and Simonet S: Cloning and characterization of the human neutrophil-activating peptide (ENA-78) gene. J Biol Chem. 269:25277–25282. 1994.PubMed/NCBI

7 

Persson T, Monsef N, Andersson P, Bjartell A, Malm J, Calafat J and Egesten A: Expression of the neutrophil-activating CXC chemokine ENA-78/CXCL5 by human eosinophils. Clin Exp Allergy. 33:531–537. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Long X, Ye Y, Zhang L, Liu P, Yu W, Wei F, Ren X and Yu J: IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol. 48:5–12. 2016. View Article : Google Scholar

9 

Xu X, Huang P, Yang B, Wang X and Xia J: Roles of CXCL5 on migration and invasion of liver cancer cells. J Transl Med. 12:1932014. View Article : Google Scholar : PubMed/NCBI

10 

Li A, King J, Moro A, Sugi MD, Dawson DW, Kaplan J, Li G, Lu X, Strieter RM, Burdick M, et al: Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer. Am J Pathol. 178:1340–1349. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Park JY, Park KH, Bang S, Kim MH, Lee J-E, Gang J, Koh SS and Song SY: CXCL5 overexpression is associated with late stage gastric cancer. J Cancer Res Clin Oncol. 133:835–840. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J and Zhou J: Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 56:2242–2254. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Kuo PL, Huang MS, Hung JY, Chou SH, Chiang SY, Huang YF, Yang C-J, Tsai M-J, Chang W-A and Hsu Y-L: Synergistic effect of lung tumor-associated dendritic cell-derived HB-EGF and CXCL5 on cancer progression. Int J Cancer. 135:96–108. 2014. View Article : Google Scholar

14 

Speetjens FM, Kuppen PJK, Sandel MH, Menon AG, Burg D, van de Velde CJH, Tollenaar RAEM, de Bont HJGM and Nagelkerke JF: Disrupted expression of CXCL5 in colorectal cancer is associated with rapid tumor formation in rats and poor prognosis in patients. Clin Cancer Res. 14:2276–2284. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Zhu X, Qiao Y, Liu W, Wang W, Shen H, Lu Y, Hao G, Zheng J and Tian Y: CXCL5 is a potential diagnostic and prognostic marker for bladder cancer patients. Tumour Biol. 37:4569–4577. 2016. View Article : Google Scholar

16 

Gui SL, Teng LC, Wang SQ, Liu S, Lin YL, Zhao XL, Liu L, Sui H-Y, Yang Y, Liang L-C, et al: Overexpression of CXCL3 can enhance the oncogenic potential of prostate cancer. Int Urol Nephrol. 48:701–709. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Mantovani A: Cancer: Inflaming metastasis. Nature. 457:36–37. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Mantovani A, Savino B, Locati M, Zammataro L, Allavena P and Bonecchi R: The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev. 21:27–39. 2010. View Article : Google Scholar

20 

Vindrieux D, Escobar P and Lazennec G: Emerging roles of chemokines in prostate cancer. Endocr Relat Cancer. 16:663–673. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Verbeke H, Geboes K, Van Damme J and Struyf S: The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochim Biophys Acta. 1825:117–129. 2012.

22 

Balkwill F: Cancer and the chemokine network. Nat Rev Cancer. 4:540–550. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Douglas MR, Morrison KE, Salmon M and Buckley CD: Why does inflammation persist: A dominant role for the stromal microenvironment? Expert Rev Mol Med. 4:1–18. 2002. View Article : Google Scholar

24 

Hembruff SL and Cheng N: Chemokine signaling in cancer: Implications on the tumor microenvironment and therapeutic targeting. Cancer Ther. 7A:254–267. 2009.

25 

Amagai Y, Tanaka A, Matsuda A, Jung K, Ohmori K and Matsuda H: Stem cell factor contributes to tumorigenesis of mast cells via an autocrine/paracrine mechanism. J Leukoc Biol. 93:245–250. 2013. View Article : Google Scholar

26 

Huang CK, Yang CY, Jeng YM, Chen CL, Wu HH, Chang YC, Ma C, Kuo WH, Chang KJ, Shew JY, et al: Autocrine/paracrine mechanism of interleukin-17B receptor promotes breast tumorigenesis through NF-κB-mediated antiapoptotic pathway. Oncogene. 33:2968–2977. 2014. View Article : Google Scholar

27 

Lee JL, Lin CT, Chueh LL and Chang CJ: Autocrine/paracrine secreted Frizzled-related protein 2 induces cellular resistance to apoptosis: A possible mechanism of mammary tumorigenesis. J Biol Chem. 279:14602–14609. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Rollins BJ: Inflammatory chemokines in cancer growth and progression. Eur J Cancer. 42:760–767. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Strieter RM: Chemokines: Not just leukocyte chemoattractants in the promotion of cancer. Nat Immunol. 2:285–286. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Tough DF, Borrow P and Sprent J: Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science. 272:1947–1950. 1996. View Article : Google Scholar : PubMed/NCBI

31 

Tsutsui H, Nakanishi K, Matsui K, Higashino K, Okamura H, Miyazawa Y and Kaneda K: IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol. 157:3967–3973. 1996.PubMed/NCBI

32 

Hashimoto W, Osaki T, Okamura H, Robbins PD, Kurimoto M, Nagata S, Lotze MT and Tahara H: Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas-Fas ligand- and perforin-induced tumor apoptosis, respectively. J Immunol. 163:583–589. 1999.

33 

Micallef MJ, Tanimoto T, Kohno K, Ikeda M and Kurimoto M: Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res. 57:4557–4563. 1997.PubMed/NCBI

34 

Li K, Wei L, Huang Y, Wu Y, Su M, Pang X, Wang N, Ji F, Zhong C and Chen T: Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int J Oncol. 48:2479–2487. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Bian Y, Yu Y, Wang S and Li L: Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer. Biochem Biophys Res Commun. 463:612–617. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Hamaoka Y, Negishi M and Katoh H: EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation. Cell Signal. 28:937–945. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Uekita T, Fujii S, Miyazawa Y, Iwakawa R, Narisawa-Saito M, Nakashima K, Tsuta K, Tsuda H, Kiyono T, Yokota J, et al: Oncogenic Ras/ERK signaling activates CDCP1 to promote tumor invasion and metastasis. Mol Cancer Res. 12:1449–1459. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Floros KV, Thomadaki H, Florou D, Talieri M and Scorilas A: Alterations in mRNA expression of apoptosis-related genes BCL2, BAX, FAS, caspase-3, and the novel member BCL2L12 after treatment of human leukemic cell line HL60 with the anti-neoplastic agent etoposide. Ann N Y Acad Sci. 1090:89–97. 2006. View Article : Google Scholar

40 

Hajiahmadi S, Panjehpour M, Aghaei M and Shabani M: Activation of A2b adenosine receptor regulates ovarian cancer cell growth: Involvement of Bax/Bcl-2 and caspase-3. Biochem Cell Biol. 93:321–329. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Sharifi AM, Hoda FE and Noor AM: Studying the effect of LPS on cytotoxicity and apoptosis in PC12 neuronal cells: Role of Bax, Bcl-2, and caspase-3 protein expression. Toxicol Mech Methods. 20:316–320. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Zeng J, Chen S, Li N, Chen L, Su J, Niu G, Zhu S and Liang Y: Sasanquasaponin from Camellia oleifera Abel. induces apoptosis via Bcl-2, Bax and caspase-3 activation in HepG2 cells. Mol Med Rep. 12:1997–2002. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2018
Volume 53 Issue 1

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Qi, Y., Zhao, W., Li, M., Shao, M., Wang, J., Sui, H. ... Wang, W. (2018). High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways. International Journal of Oncology, 53, 358-370. https://doi.org/10.3892/ijo.2018.4388
MLA
Qi, Y., Zhao, W., Li, M., Shao, M., Wang, J., Sui, H., Yu, H., Shao, W., Gui, S., Li, J., Jia, X., Jiang, D., Li, Y., Zhang, P., Wang, S., Wang, W."High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways". International Journal of Oncology 53.1 (2018): 358-370.
Chicago
Qi, Y., Zhao, W., Li, M., Shao, M., Wang, J., Sui, H., Yu, H., Shao, W., Gui, S., Li, J., Jia, X., Jiang, D., Li, Y., Zhang, P., Wang, S., Wang, W."High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways". International Journal of Oncology 53, no. 1 (2018): 358-370. https://doi.org/10.3892/ijo.2018.4388