Open Access

Effects of neuritin on the differentiation of bone marrow‑derived mesenchymal stem cells into neuron‑like cells

  • Authors:
    • Jingling Zhu
    • Pingping Meng
    • Qian Wang
    • Haiyan Wang
    • Jinli Zhang
    • Yuanyuan Li
    • Dongzheng Li
    • Xiaohua Tan
    • Lei Yang
    • Jin Huang
  • View Affiliations

  • Published online on: July 14, 2017     https://doi.org/10.3892/mmr.2017.6987
  • Pages: 3201-3207
  • Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

While the neurotrophic factor neuritin is known to be involved in neurodevelopment, the effects of this compound on cell differentiation remain unclear. The present study demonstrated that neuritin treatment induced the differentiation of rat bone marrow‑derived mesenchymal stem cells (rBM‑MSCs) into neuron‑like (NL) cells. For these analyses, rBM‑MSCs were incubated with 0.5 µg/ml neuritin for 24 h. Following induction, 27% of the rBM‑MSCs exhibited typical NL cell morphologies. Subsequently, NL cells were characterized by examining the expression of neuronal markers and by analysis of cell functions. The findings demonstrated that the NL cells produced by neuritin treatment expressed the neuronal markers neuron‑specific enolase and microtubule associate protein 2, and secreted the neurotransmitter 5‑hydroxytryptamine. Furthermore, the NL cells exhibited certain partial neural‑electrophysiological functions. In conclusion, neuritin treatment may be an effective method for inducing the differentiation of BM‑MSCs towards NL cells. This may provide an alternative, potentially complementary tool for disease modeling and the development of cell‑based therapies.

Introduction

The directional differentiation of stem cells provides an important approach to cell therapy for the treatment of neurological diseases (1,2). However, two primary issues remain to be resolved: The determination of appropriate seed cells and the identification of efficient inducers. The multi-directional differentiation potential of mesenchymal stem cells (MSCs), which has been well characterized by in vitro culture and auto-transplantation approaches, has resulted in these cells being widely used as seed cells for cell therapy. Meanwhile, the potential usage of neurotrophins as inducers of stem cell differentiation has received considerable attention (3,4). Neuritin (Nrn1 or CPG15), a neurotrophic factor that was identified in a study of plasticity-related genes, has been demonstrated to promote neurite growth and the survival of cortical neurons (5,6). While the effects of neuritin on cell differentiation have yet to be reported, results obtained in a previous study suggest that neuritin is involved in this process (7).

In the present study, the effects of neuritin on the directional differentiation of MSCs toward neuron-like (NL) cells were evaluated by analyzing cell morphology, expression levels of neuronal markers, and neuronal functions of rat bone marrow-derived MSCs (rBM-MSCs) treated with recombinant neuritin protein purified from Pichia pastoris (8).

Materials and methods

Ethics statement

Animal experiments were performed in accordance with the National Institute of Health Guidelines for the Care and Use of Laboratory Animals. Formal approval to conduct the experiments described was obtained from the Animal Subjects Review board of The First Affiliated Hospital of Shihezi University School of Medicine (Shihezi, China; permit no.: 2011LL02). All efforts were made to minimize suffering.

Isolation and culturing of rat MSCs

In the present study, male and female Sprague-Dawley rats (n=25; age, 4–6 weeks; weight, 80–100 g) (provided by the Institute of Epidemiology, Xinjiang Uygur Autonomous Region, Shihezi, China) were housed under standardized laboratory conditions in an air-conditioned room at constant temperature (23±2°C) and relative humidity of 45±5% on a 12 h light/dark cycle, with free access to food and water. Rats were sacrificed by cervical dislocation, and the tibias and femurs were isolated under sterile conditions, as previously described (9,10). Both ends of the bone were cut to expose the bone marrow cavity, and bone marrow cells were collected by rinsing with 5 ml L-Dulbecco's Modified Eagle's medium (DMEM; cat. no. SH30022.01; Hyclone; GE Healthcare Life Sciences, Logan, UT, USA) followed by centrifugation at 156 × g for 10 min at room temperature. The harvested cells were then seeded in culture dishes at a density of 1×106 cells/ml in L-DMEM/Nutrient Mixture F12 (cat. no. 12400024; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS; cat. no. 12478020; Gibco; Thermo Fisher Scientific, Inc.), 100 U/ml penicillin and 100 µg/ml streptomycin, and cultivated at 37°C in a 5% CO2 incubator for 24 h, following which non-adherent cells were removed. The culture medium was replaced every 3 days until the cells reached 90% confluency. Cells were then digested by treatment with 1 ml 0.125% trypsin (cat. no. 25200072; Gibco; Thermo Fisher Scientific, Inc.) for 5–8 min at 37°C, mixed with 1 ml L-DMEM, and centrifuged at 156 × g for 10 min at room temperature. Collected cells were then subcultured at a 1:2 ratio. The third passage of MSCs were used for in vitro experiments.

Neuronal induction

rBM-MSCs (4×103 cells/ml) were initially maintained in DMEM containing 10% FBS. The medium was replaced with pre-induction medium consisting of DMEM supplemented with 10% FBS 24 h prior to induction, and 20 ng/ml basic fibroblast growth factor (bFGF; cat. no. 13256029; Invitrogen; Thermo Fisher Scientific, Inc.). To initiate neuronal differentiation, the pre-induction medium was removed, and cells were washed with PBS and incubated in neuronal induction medium, which consisted of DMEM supplemented with 20 ng/ml bFGF, 2% B-27 supplement (cat. no. 0050129SA; Invitrogen; Thermo Fisher Scientific, Inc.), and 0.5–2.0 µg/ml neuritin (derived from Pichia pastoris) (8). Cells were incubated in media containing His-tagged protein (cat. no. bs-0287P; Bioss, Beijing, China) and 2% B-27 supplement wasused as a negative control.

Optimization of the induction conditions for MSC differentiation

The number of cells exhibiting NL morphology was counted in five randomly selected fields (minimum of 100 cells/field) at 0, 6, 24, 48 and 72 h post-induction. The percentage of positive NL cells was calculated as follows: positive NL cells (%) = (number of NL cells/total number of cells) ×100%.

To enumerate viable cells, trypan blue (0.4%) was added to cell suspensions (4×103 cells/ml) at a ratio of 1:9 (v/v). Cells that absorbed trypan blue were considered non-viable, and viable cells were counted using a hemocytometer (cat. no. 02270113; QiuJing, Shanghai, China) at a magnification of ×400 under a light microscope within 3 min of dying. The total cell numbers of 4 large fields of the hemocytometer were counted according to the principle that cells above or to the left of the boundary line were recorded. The percentage of viable cells was calculated as follows: viable cells (%)=[1.00-(number of blue cells/total cell numbers)] ×100%.

Analysis of MSC phenotypes by immunofluorescence microscopy

Slides with MSCs (2.5×104 cells/ml) from the third passage were rinsed three times with PBS and fixed with PBS containing 4% paraformaldehyde for 30 min at room temperature. The following operations were performed using a wet box: 5 min washing with PBS, repeated 3 times, and slides containing MSCs were incubated in blocking solution containing 10% goat serum (cat. no. ZLI-9022; OriGene Technologies, Inc., Beijing, China) for 30 min at room temperature. Cells were subsequently incubated overnight at 4°C with the following primary antibodies: CD29 (1:100; cat. no. bs-20630R; Bioss), CD90 (1:100; cat. no. bs-0778R; Bioss), CD34 (1:100; cat. no. bs-0646R; Bioss), CD44 (1:100; cat. no. bs-0521R; Bioss), or CD45 (1:100; cat. no. bs-0522R; Bioss). PBS was utilized as a negative control. Subsequently, cells were incubated with fluorescein isothiocyanate (FITC) -labeled goat anti-rabbit IgG (1:100; cat. no. ab6717; Abcam, Cambridge, UK) for 2 h at 25°C in the dark, washed with PBS, and observed in five randomly selected fields (minimum 100 cells/field) by fluorescence microscopy (Carl Zeiss AG, Oberkochen, Germany).

Detection of neural markers by immunofluorescence microscopy

rBM-MSCs (2.5×104 cells/ml) were grown on coverslips, as described, and treated with different concentrations (0.5, 1, 1.5 and 2.0 µg/ml) of recombinant neuritin for 24 h. Slides with MSCs were rinsed with 37°C PBS (pH=7.2) three times, each time for 3 min, fixed by incubating in cold (−20°C) acetone for 15 min, and then washed with PBS and blocked as described above. Cells were incubated overnight at 4°C with the following primary antibodies: Anti-neuron-specific enolase (NSE; 1:500; cat. no. ab217778; Abcam), anti-microtubule associate protein 2 (MAP2; 1:500; cat. no. ab32454; Abcam), or anti-glial fibrillary acidic protein (GFAP; 1:750; cat. no. ab7260; Abcam). PBS was utilized as a negative control. Cells were subsequently treated with a FITC-labeled goat anti-rabbit secondary antibody (1:100; cat. no. ab6717; Abcam) for 1 h at 25°C in the dark, washed with PBS, and observed in five randomly selected fields (minimum 100 cells/field) under a fluorescence microscope (Carl Zeiss AG).

Western blot analysis

rBM-MSCs (8×106 cells/ml) were treated with 0.5 µg/ml neuritin for 24 h. The cells were rinsed twice in ice-cold PBS (pH 7.5) and lysed with radioimmunoprecipitation assay buffer (cat. no. R0010; Solarbio, China) containing 1 mM PMSF (cat. no. P0100; Beijing Solarbio Science and Technology Co., Ltd, Beijing, China), and placed on ice for 30 min. The cell lysates were centrifuged at 5,000 × g for 10 min at 4°C. The extractive proteins were then separated by 10% SDS-PAGE and transferred to nitrocellulose membranes. Membranes were blocked by incubating in Tris-buffered saline containing 0.05% Tween-20 and 5% nonfat dry milk for 1 h at room temperature, and then probed with MAP2 (1:1,000), NSE (1:1,000), and GFAP-specific (1:500) primary antibodies diluted in blocking buffer overnight at 4°C. Subsequently, the membranes were incubated with a horseradish peroxidase-conjugated secondary antibody (goat anti-mouse; 1:50,000; cat. no. ZB-2301; OriGene Technologies, Inc.) for 1 h at room temperature, and proteins were visualized by enhanced chemiluminescence (cat. no. WBKLS0500; EMD Millipore, Billerica, MA, USA). Detection of β-actin (mouse anti-β-actin; cat. no. sc-47778; 1:1,500; Santa Cruz Biotechnology, Inc., Dallas, TX, USA) was performed as an internal loading control.

Thin-layer chromatography (TLC)

The induced cell culture (4×103 cells/ml) was blast chilled and ground into powder (Freeze Dryer Series; SIM International Group Co., Ltd., Beijing, China). The powder was dissolved with 1 ml carbinol and uninduced cell culture powder was used as control. The dissolved powder samples, as well as serotonin (used as a standard), were spotted on a thin-layer chromatogram plate and treated with an n-butyl alcohol-acetic acid-ddH2O solution (4:1:5). The chromatograph was then sprayed with the color developing agent O-phthaldialdehyde (1 g in 100 mlethanol) and incubated at 110°C for 20 min.

Electrophysiological recordings

Conventional whole-cell recordings were performed as previously described (11). Briefly, cells exhibiting neuron-like morphologies were selected for analysis, while uninduced MSCs were used as a control. Recording pipettes were pulled from borosilicate glass capillaries with a filament using a Sutter Instruments P-97 puller (Sutter Instrument Company, Novato, CA, USA). The pipette had a resistance of ~5 MΩ uponbeing filled with an internal solution comprised as follows: 150 mM NaCl, 5.0 mM KCl, 2.5 mM CaCl2, 1.0 mM MgCl2, 5.0 mM glucose and 10 mM 3-[4-(2-hydroxyethyl)-1-piperazinyl] propanesulfonic acid. The passive membrane properties and ion channel of the cell samples were determined by stimulating the cells with 20 mV hyperpolarizing steps in a voltage clamp. The holding membrane potential was −60 mV. The membrane currents or voltage signals were low-pass filtered at 10 kHz (−3 dB) using an Axon 700B amplifier (Axon Instruments; Molecular Devices LLC, Sunnyvale, CA, USA), and were digitized (Axon Digidata 1440; Axon Instruments; Molecular Devices LLC) and analyzed using a pCLAMP (pClamp 10.2; Axon Instruments; Molecular Devices LLC). All experiments were performed at room temperature.

Statistical analysis

The results are presented as the mean ± standard deviation. Repeated measures analysis of variance and the least significant difference (LSD) post hoc test, and independent sample Student's t-tests, were utilized to detect differences between results. SPSS 20.0 software (IBM SPSS, Inc., Armonk, NY, USA) was utilized for all statistical analyses. P<0.05 was considered to indicate a statistically significant difference.

Results

Characterization of cultured MSCs

Isolated rBM-MSCs were cultured and subjected to the whole-cell adherence screening method as described previously (12). Cell colonies were observed 96 h following primary culture, and the cells were spindled or polygonal in shape (Fig. 1A). Following three passages, the morphology of the cells was fibroblast-like, and was consistent with that of MSCs (Fig. 1B). Indirect immunofluorescence analysis detected the expression of the MSC-specific surface antigens CD29, CD44, and CD90 in P3 cells (Fig. 1C-E, respectively), but not the hematopoietic stem cell-specific surface antigens CD34 and CD45 (Fig. 1F and G, respectively), which appeared the same as the blank control (Fig. 1H). These findings indicated that the P3 cultures were comprised of MSCs.

Optimization of cell differentiation conditions

No significant change in the number of positive NL cells in the control group was detected at any time point tested (Fig. 2A). By contrast, the number of positive NL cells in each of the neuritin groups increased steadily with time, and were significantly increased at 6 h onwards compared with present at the 0 h time point (P<0.05; Fig. 2A). Notably, the number of positive cells in each neuritin treatment group was significantly higher at 24 h than at any other time point (P<0.05; Fig. 2A).

There was a dose-dependent increase in the number of NL cells at neuritin concentrations between 0 and 0.5 µg/ml (Fig. 2B). However, following 24 h induction, the number of positive cells was significantly higher in the 0.5 µg/ml neuritin group than in the other treatment groups (P<0.05; Fig. 2B). Therefore, 0.5 µg/ml neuritin was utilized as the induction concentration for further experiments.

To exclude the possibility that treatment with the inducer resultedin cytotoxic effects on the rBM-MSCs, the viability of treated cells was examined by trypan blue staining. The viability of the cells induced with 0.5 µg/ml neuritin was significantly higher than that of the control group at 24, 48 and 72 h (P<0.05; Fig. 2C), but not at the 6 h time point (Fig. 2C).

Together, these results indicated that optimal production of NL cells was achieved by treatment of rBM-MSCs with 0.5 µg/ml neuritin for 24 h.

Characterization of the morphology and the expression patterns of neuron-specific proteins in MSCs treated with neuritin

Cells in the control group exhibited a fibroblast-like morphology (Fig. 3A). Following treatment with 0.5 µg/ml neuritin for 24 h, however, 27% of the rBM-MSCs exhibited typical NL cell morphologies (13) with long processes (Fig. 3B). The cell body condensed and became refractile, and the cells formed a network with bipolar or multipolar neurites.

To confirm that the NL cells were of a neuronal lineage, indirect immunofluorescence was utilized to examine the expression of neuron-specific proteins. The mature neural marker NSE (Fig. 3C and D) and the dendritic marker MAP2 (Fig. 3E and F) were expressed in the NL cells but not in the control cells. Meanwhile, neither the neuritin-treated nor the control cells exhibited positive expression of the astrocyte marker GFAP (Fig. 3G and H). Similar findings were obtained by western blot analysis (Fig. 3I). These results indicated that rBM-MSCs acquired the cellular characteristics of cells in the neuronal lineage, but not of astrocytes, following neuritin treatment.

Characterization of the neuronal functions of NL cells

To establish whether the NL cells produced by neuritin treatment exhibited neuronal functions, the electrophysiological properties of these cells were analyzed by whole-cell patch clamp recording. The membrane capacitance (CM) and resting membrane potential (RP) of the NL and control cells were 31.56±4.53 pF (n=8) and 15.55±2.40 pF (n=6), and −49.01±4.76 mV (n=8) and −22.00±2.95 mV (n=6), respectively; and these differences were statistically significant (P<0.01; Table I). The ionic current of the neuritin-treated and control cells were then measured using the voltage clamp method. No apparent channel opening was observed in the control cells (Fig. 4A), but an outward delayed rectifying current was detected in the treatment group with increasing voltage (Fig. 4B and C), which may indicate the presence of a voltage-dependent K+ current. These results suggested that the K+ channel maybe observed concomitantly with morphological changes and the expression of certain neuron-specific protein markers. Lastly, TLC was utilized to examine whether the neurotransmitter 5-hydroxytryptamine (5-HT) was secreted from neuritin-induced MSCs. A 5-HT-specific signal was detected in the neuritin but not the control sample (Fig. 4D).

Table I.

Comparison of membrane properties between the control group and NL cells following induction.

Table I.

Comparison of membrane properties between the control group and NL cells following induction.

GroupCM, pFRP, mV
Control (n=6)15.55±2.40−22.00±2.95
NL cells (n=8) 31.56±4.53a −49.01±4.76a

{ label (or @symbol) needed for fn[@id='tfn1-mmr-16-03-3201'] } CM, membrane capacitance; RP, resting membrane potential; NL cells, neuron-like cells; pF, picofarads; mV, millivolts.

a P<0.01 vs. control.

Discussion

The incidence of neurodegenerative diseases hasincreased with aging in the population, but effective methods are still lacking for treating these diseases. While nerve cell therapy is currently considered one of the most promising solutions to these diseases, there are several barriers including cell source deficiency, immunological rejection, safety and ethical conflicts, which continue to limit the application of this treatment. However, previous studies have reported that stem cells exhibit the potential to differentiate into nerve cells, which maybe advantageous for nerve cell transplantation therapy (14,15).

MSCs are progenitor cells with multilineage differentiation potential. These cells are capable of differentiating into osteoblasts, chondrocytes and adipocytes from the mesoderm (16) and into neurons from the ectoderm (17). Furthermore, due to several unique advantages including good self-renewal capability, proliferating well in in vitro culture, adequate resources, convenient access and the capacity to be auto-transplanted, the rarity of immunological rejection and the lack of ethical complications, MSCs are becoming an important option for use as seed cells for cell replacement therapy.

While the bone marrow MSC content is limited (18), the present studyovercame this obstacle by adherent culturing of rBM-MSCs in vitro. Following the third passage, the cells exhibited a typical MSC morphology (19) and expressed the MSC-specific surface antigens CD29, CD44 and CD90 (20), but not the hematopoietic stem cell-specific surface antigens CD34 and CD45 (21). These results therefore excluded the possibility that the cells were of hematopoietic origin.

Differentiation is a complex process involving the activity of multiple factors. Combination induction is currently the most extensively applied approach for inducing the differentiation of MSCs into neurons (22). In accordance with the Woodbury method (23), in the present study MSCs were induced with neuritin following pre-induction with bFGF. The optimal induction condition was established through detection of the number of NL cells combined with the cell viability by which cytotoxicity caused by the inducer was excluded (24,25), and it was determined that exposure to 0.5 µg/ml neuritin for 24 h comprised the optimal conditions for stimulating the differentiation of MSCs into NL cells. Indeed, under these conditions, MSCs effectively differentiated into typical NL cells that contained neurites. The NL cells were then characterized by examining the expression levels of specific neuronal markers and by observing certain physiological functions. Immunofluorescence and western blot analyses indicated that the NL cells expressed the mature neural marker NSE (26) and the dendritic cell marker MAP2 (3,27), but not the astrocyte marker GFAP (28). These findings demonstrated that the rBM-MSCs treated with neuritin differentiated into the neuronal lineage and not into astrocytes. However, while the cell morphology and the expression of neural-specific markers partially reflected the level of cell differentiation, the functional characterization of the NL cells was the key indicator for evaluating cell differentiation (29). By patch clamp analysis, differences in the CM and RP values were detected in the NL cells compared with those of the control. An increased CM indicates increased surface area of the cell membrane, and is evidence supporting cellular vesicle secretion (30). Notably, the detection of 5-HT secretion by NL cells in the present study is consistent with an increased CM. Furthermore, secretion of this neurotransmitter is an important indicator of neuron function. Meanwhile, the observed decrease in RP denotes that the NL cells exhibited a membrane potential similar to that of mature neurons, thereby confirming that the cells were indeed differentiating into the neuronal lineage (31). Finally, the delayed rectifier K+-current recorded by the whole-cell voltage clamp method indicated that the NL cells exhibited the K+ properties of neurons. This finding was consistent with the results obtained by physiological analysis of differentiated embryo-derived neural stem cells (32,33).

In conclusion, the present study demonstrated that neuritin-induced MSCs differentiated into NL cells. These cells exhibited typical neuronal morphological features, expression of neuronal markers and secretion of the neurotransmitter 5-HT. Furthermore, these NL cells exhibited partial neural-electrophysiological functions. The results of the present study therefore demonstrated that neuritin is involved in the directional differentiation potential of MSCs into NL cells. Although still in a nascent stage, this novel methodology may provide an alternative, potentially complementary tool for disease modeling and the development of cell-based therapies.

Acknowledgements

The authors would like to thank Professor Ketao Ma (Shihezi University, Shihezi, China) for the technical assistance with the patch clamp. The present study was supported by the Key Project of Xinjiang Province (grant. no. 2014AB048), the Major Scientific and Technological Innovation Project of Hangzhou (grant. no. 20152013A01) and the Key Project of Shihezi University (grant no. ZRKX2010ZD03).

Glossary

Abbreviations

Abbreviations:

bFGF

basic fibroblast growth factor

CM

membrane capacitance

GFAP

glial fibrillary acidic protein

5-HT

5-hydroxytryptamine

MAP2

microtubule associated protein-2

NSE

neuron-specific enolase

RP

resting membrane potential

rBM-MSCs

rat bone marrow-mesenchymal stem cells

TLC

thin layer chromatography

References

1 

Bjorklund A and Kordower JH: Cell therapy for Parkinson's disease: What next? Mov Disord. 28:110–115. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Freed CR: Will embryonic stem cells be a useful source of dopamine neurons for transplant into patients with Parkinson's disease? Proc Natl Acad Sci USA. 99:1755–1757. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Sanchez C, Díaz-Nido J and Avila J: Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol. 61:133–168. 2000. View Article : Google Scholar : PubMed/NCBI

4 

Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK and Jeun SS: Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res. 86:2168–2178. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Naeve GS, Ramakrishnan M, Kramer R, Hevroni D, Citri Y and Theill LE: Neuritin: A gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc Natl Acad Sci USA. 94:2648–2653. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Putz U, Harwell C and Nedivi E: Soluble CPG15 expressed during early development rescues cortical progenitors from apoptosis. Nat Neurosci. 8:322–331. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Wang X, Liu C, Xu F, Cui L, Tan S, Chen R, Yang L and Huang J: Effects of neuritin on the migration, senescence and proliferation of human bone marrow mesenchymal stem cells. Cell Mol Biol Lett. 20:466–474. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Zhang Y, Zhang S, Xian L, Tang J, Zhu J, Cui L, Li S, Yang L and Huang J: Expression and purification of recombinant human neuritin from Pichia pastoris and a partial analysis of its neurobiological activity in vitro. Appl Microbiol Biotechnol. 99:8035–8043. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Zohar R, Sodek J and McCulloch CA: Characterization of stromal progenitor cells enriched by flow cytometry. Blood. 90:3471–3481. 1997.PubMed/NCBI

10 

Sung JH, Yang HM, Park JB, Choi GS, Joh JW, Kwon CH, Chun JM, Lee SK and Kim SJ: Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc. 40:2649–2654. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Ma KT, Li XZ, Li L, Jiang XW, Chen XY, Liu WD, Zhao L, Zhang ZS and Si JQ: Role of gap junctions in the contractile response to agonists in the mesenteric artery of spontaneously hypertensive rats. Hypertens Res. 37:110–115. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Qin ZH, Qu JM, Xu JF, Zhang J, Summah H, Sai-Yin HX, Chen CM and Yu L: Intrapleural delivery of mesenchymal stem cells: A novel potential treatment for pleural diseases. Acta pharmacol Sin. 32:581–590. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Yang N, Ng YH, Pang ZP, Südhof TC and Wernig M: Induced neuronal cells: How to make and define a neuron. Cell Stem Cell. 9:517–525. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Potter ED, Ling ZD and Carvey PM: Cytokine-induced conversion of mesencephalic-derived progenitor cells into dopamine neurons. Cell Tissue Res. 296:235–246. 1999. View Article : Google Scholar : PubMed/NCBI

15 

Watmuff B, Pouton CW and Haynes JM: In vitro maturation of dopaminergic neurons derived from mouse embryonic stem cells: Implications for transplantation. PLoS One. 7:e319992012. View Article : Google Scholar : PubMed/NCBI

16 

Ye L, Fan Z, Yu B, Chang J, Al Hezaimi K, Zhou X, Park NH and Wang CY: Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell. 11:50–61. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Yang S, Sun HM, Yan JH, Xue H, Wu B, Dong F, Li WS, Ji FQ and Zhou DS: Conditioned medium from human amniotic epithelial cells may induce the differentiation of human umbilical cord blood mesenchymal stem cells into dopaminergic neuron-like cells. J Neurosci Res. 91:978–986. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Smith RK, Werling NJ, Dakin SG, Alam R, Goodship AE and Dudhia J: Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy. PLoS One. 8:e756972013. View Article : Google Scholar : PubMed/NCBI

19 

Erices A, Conget P and Minguell JJ: Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 109:235–242. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Vogel W, Grünebach F, Messam CA, Kanz L, Brugger W and Bühring HJ: Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica. 88:126–133. 2003.PubMed/NCBI

21 

Pei X: Who is hematopoietic stem cell: CD34+ or CD34-? Int J Hematol. 70:213–215. 1999.PubMed/NCBI

22 

Tomita M, Mori T, Maruyama K, Zahir T, Ward M, Umezawa A and Young MJ: A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem Cells. 24:2270–2278. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Woodbury D, Schwarz EJ, Prockop DJ and Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 61:364–370. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A and Fischer I: Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: Disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res. 77:192–204. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Barnabé GF, Schwindt TT, Calcagnotto ME, Motta FL, Martinez G Jr, de Oliveira AC, Keim LM, D'Almeida V, Mendez-Otero R and Mello LE: Chemically-induced RAT mesenchymal stem cells adopt molecular properties of neuronal-like cells but do not have basic neuronal functional properties. PLoS One. 4:e52222009. View Article : Google Scholar : PubMed/NCBI

26 

Jin K, Mao XO, Batteur S, Sun Y and Greenberg DA: Induction of neuronal markers in bone marrow cells: Differential effects of growth factors and patterns of intracellular expression. Exp Neurol. 184:78–89. 2003. View Article : Google Scholar : PubMed/NCBI

27 

Ladrech S, Lenoir M, Ruel J and Puel JL: Microtubule-associated protein 2 (MAP2) expression during synaptic plasticity in the guinea pig cochlea. Hear Res. 186:85–90. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Messing A and Brenner M: GFAP: Functional implications gleaned from studies of genetically engineered mice. Glia. 43:87–90. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Reh TA: Neural stem cells: Form and function. Nat Neurosci. 5:392–394. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Angleson JK and Betz WJ: Monitoring secretion in real time: Capacitance, amperometry and fluorescence compared. Trends Neurosci. 20:281–287. 1997. View Article : Google Scholar : PubMed/NCBI

31 

Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, Taga T, Okano H, Hata J and Umezawa A: Brain from bone: Efficient ‘meta-differentiation’ of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation. 68:235–244. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Ma K, Fox L, Shi G, Shen J, Liu Q, Pappas JD, Cheng J and Qu T: Generation of neural stem cell-like cells from bone marrow-derived human mesenchymal stem cells. Neurol Res. 33:1083–1093. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Risner-Janiczek JR, Ungless MA and Li M: Electrophysiological properties of embryonic stem cell-derived neurons. PLoS One. 6:e241692011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September-2017
Volume 16 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhu J, Meng P, Wang Q, Wang H, Zhang J, Li Y, Li D, Tan X, Yang L, Huang J, Huang J, et al: Effects of neuritin on the differentiation of bone marrow‑derived mesenchymal stem cells into neuron‑like cells. Mol Med Rep 16: 3201-3207, 2017
APA
Zhu, J., Meng, P., Wang, Q., Wang, H., Zhang, J., Li, Y. ... Huang, J. (2017). Effects of neuritin on the differentiation of bone marrow‑derived mesenchymal stem cells into neuron‑like cells. Molecular Medicine Reports, 16, 3201-3207. https://doi.org/10.3892/mmr.2017.6987
MLA
Zhu, J., Meng, P., Wang, Q., Wang, H., Zhang, J., Li, Y., Li, D., Tan, X., Yang, L., Huang, J."Effects of neuritin on the differentiation of bone marrow‑derived mesenchymal stem cells into neuron‑like cells". Molecular Medicine Reports 16.3 (2017): 3201-3207.
Chicago
Zhu, J., Meng, P., Wang, Q., Wang, H., Zhang, J., Li, Y., Li, D., Tan, X., Yang, L., Huang, J."Effects of neuritin on the differentiation of bone marrow‑derived mesenchymal stem cells into neuron‑like cells". Molecular Medicine Reports 16, no. 3 (2017): 3201-3207. https://doi.org/10.3892/mmr.2017.6987