Open Access

Early mortality in acute promyelocytic leukemia: Potential predictors (Review)

  • Authors:
    • Can Chen
    • Xilian Huang
    • Kaile Wang
    • Kuang Chen
    • Danquan Gao
    • Shenxian Qian
  • View Affiliations

  • Published online on: January 24, 2018     https://doi.org/10.3892/ol.2018.7854
  • Pages: 4061-4069
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Acute promyelocytic leukemia (APL) is a rare leukemia characterized by the balanced reciprocal translocation between the promyelocytic leukemia gene on chromosome 15 and the retinoic acid receptor α (RARα) gene on chromosome 17, and accounts for 10‑15% of newly diagnosed acute myeloid leukemia each year. The combined use of all‑trans retinoic acid and arsenic trioxide (ATO) as primary therapy has markedly improved the survival rate of patients with APL. Mortality in the first 30 days following therapy remains a major contribution to treatment failure. In the present study, published data was reviewed with a focus on the factors associated with early mortality. When treated with ATO as a primary treatment, the fms‑like tyrosine kinase‑internal tandem deletion has no impact on early mortality. Low lymphoid enhancer binding factor‑1 expression may be a reliable marker for early mortality and the target of therapy if it could be proven by further studies. Cluster of differentiation (CD)56+ and CD34+/CD2+ may be candidates to select high‑risk patients. The risk of early mortality in APL still cannot be predicted via the cell surface makers, despite multiple studies on their prognostic significance. Typically, a complex translocation did not alter the survival rate in patients with APL; however, if an abnormal karyotype [e.g., Ide(17), ZBTB16/ RARα and STAT5B/RARα] appeared singularly or as part of a complex mutation, there is a high possibility of early mortality if clinicians are unable to identify or monitor it.

References

1 

Tallman MS and Altman JK: How I treat acute promyelocytic leukemia. Blood. 114:5126–5135. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR and Sultan C: A variant form of hypergranular promyelocytic leukaemia (M3). Br J Haematol. 44:169–170. 1980. View Article : Google Scholar : PubMed/NCBI

3 

Cooperberg AA and Neiman GM: Fibrinogenopenia and fibrinolysis in acute myelogenous leukemia. Ann Intern Med. 42:706–711. 1955. View Article : Google Scholar : PubMed/NCBI

4 

Van Creveld S and Mochtar IA: Fibrinolysis in acute leukemia. Maandschr Kindergeneeskd. 27:133–44. 1959.(In Dutch). PubMed/NCBI

5 

Ghitis J: Acute promyelocytic leukemia? Blood. 21:237–240. 1963.PubMed/NCBI

6 

Larson RA, Kondo K, Vardiman JW, Butler AE, Golomb HM and Rowley JD: Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am J Med. 76:827–841. 1984. View Article : Google Scholar : PubMed/NCBI

7 

Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Woods WG, Ogden A, Weinstein H, Shepherd L, Willman C, et al: All-trans retinoic acid in acute promyelocytic leukemia: Long-term outcome and prognostic factor analysis from the North American Intergroup protocol. Blood. 100:4298–4302. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Park JH, Qiao B, Panageas KS, Schymura MJ, Jurcic JG, Rosenblat TL, Altman JK, Douer D, Rowe JM and Tallman MS: Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood. 118:1248–1254. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Watts JM and Tallman MS: Acute promyelocytic leukemia: What is the new standard of care? Blood Rev. 28:205–212. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Iland HJ, Bradstock K, Supple SG, Catalano A, Collins M, Hertzberg M, Browett P, Grigg A, Firkin F, Hugman A, et al: All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood. 120:1570–1580. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Matthews W, Jordan CT, Wiegand GW, Pardoll D and Lemischka IR: A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations. Cell. 65:1143–1152. 1991. View Article : Google Scholar : PubMed/NCBI

12 

Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, Kaspers GJ, Heerema NA, Gerbing R, Lange BJ and Radich JP: Clinical implications of FLT3 mutations in pediatric AML. Blood. 108:3654–3661. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U, Wermke M, Bornhäuser M, Ritter M, Neubauer A, et al: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 99:4326–4335. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, et al: The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: Analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 98:1752–1759. 2001. View Article : Google Scholar : PubMed/NCBI

15 

Shih LY, Kuo MC, Liang DC, Huang CF, Lin TL, Wu JH, Wang PN, Dunn P and Lai CL: Internal tandem duplication and Asp835 mutations of the FMS-like tyrosine kinase 3 (FLT3) gene in acute promyelocytic leukemia. Cancer. 98:1206–1216. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Stock W, Najib K, Moser BK, Powell BL, Holowka N, Gulati K, Bloomfield CD, Larson RA and Sher D: High incidence of FLT3 mutations in adults with acute promyelocytic leukemia (APL): Correlation with diagnostic features and treatment outcome (CALGB 9710). J Clin Oncol. 26 15 Suppl:S70022008. View Article : Google Scholar

17 

Souza Melo CP, Campos CB, Dutra ÁP, Neto JC, Fenelon AJ, Neto AH, Carbone EK, Pianovski MA, Ferreira AC and Assumpcão JG: Correlation between FLT3-ITD status and clinical, cellular and molecular profiles in promyelocytic acute leukemias. Leuk Res. 39:131–137. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Au WY, Fung A, Chim CS, Lie AK, Liang R, Ma ES, Chan CH, Wong KF and Kwong YL: FLT-3, aberrations in acute promyelocytic leukaemia: Clinicopathological associations and prognostic impact. Br J Haematol. 125:463–469. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Callens C, Chevret S, Cayuela JM, Cassinat B, Raffoux E, de Botton S, Thomas X, Guerci A, Fegueux N, Pigneux A, et al: Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): A retrospective study from the European APL Group. Leukemia. 19:1153–1160. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, Nugent E, Mills KI, Wheatley K, Solomon E, et al: Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 106:3768–3776. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Chillón MC, Santamaría C, García-Sanz R, Balanzategui A, Sarasquete ME, Alcoceba M, Marín L, Caballero MD, Vidriales MB, Ramos F, et al: Long FLT3 internal tandem duplications and reduced PML-RARα expression at diagnosis characterize a high-risk subgroup of acute promyelocytic leukemia patients. Haematologica. 95:745–751. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K, Takeshita A, Saito K, Hasegawa S, Shimodaira S, et al: Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia study group of the ministry of health and welfare (Kohseisho). Leukemia. 11:1447–1452. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S, Avvisati G, Pinazzi MB, Petti MC, Mandelli F and Lo Coco F: Alterations of the FLT3 gene in acute promyelocytic leukemia: Association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 16:2185–2189. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Mathews V, Thomas M, Srivastava VM, George B, Srivastava A and Chandy M: Impact of FLT3 mutations and secondary cytogenetic changes on the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with a single agent arsenic trioxide regimen. Haematologica. 92:994–995. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Schnittger S, Bacher U, Haferlach C, Kern W, Alpermann T and Haferlach T: Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA. Haematologica. 96:1799–1807. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Lucena-Araujo AR, Kim HT, Jacomo RH, Melo RA, Bittencourt R, Pasquini R, Pagnano K, Fagundes EM, Chauffaille Mde L, Chiattone CS, et al: Internal tandem duplication of the FLT3 gene confers poor overall survival in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: An international consortium on acute promyelocytic leukemia study. Ann Hematol. 93:2001–2010. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Poiré X, Moser BK, Gallagher RE, Laumann K, Bloomfield CD, Powell BL, Koval G, Gulati K, Holowka N, Larson RA, et al: Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): Prognostic significance of FLT3 mutations and complex karyotype. Leuk Lymphoma. 55:1523–1532. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Daver N, Kantarjian H, Marcucci G, Pierce S, Brandt M, Dinardo C, Pemmaraju N, Garcia-Manero G, O'Brien S, Ferrajoli A, et al: Clinical characteristics and outcomes in patients with acute promyelocytic leukaemia and hyperleucocytosis. Br J Haematol. 168:646–653. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Kainz B, Heintel D, Marculescu R, Schwarzinger I, Sperr W, Le T, Weltermann A, Fonatsch C, Haas OA, Mannhalter C, et al: Variable prognostic value of FLT3 internal tandem duplications in patients with de novo AML and a normal karyotype, t(15;17), t(8;21) or inv(16). Hematol J. 3:283–289. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Barragán E, Montesinos P, Camos M, González M, Calasanz MJ, Román-Gómez J, Gómez-Casares MT, Ayala R, López J, Fuster Ó, et al: Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy. Haematologica. 96:1470–1477. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Breccia M, Loglisci G, Loglisci MG, Ricci R, Diverio D, Latagliata R, Foà R and Lo-Coco F: FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: Long-term follow-up analysis. Haematologica. 98:e161–e163. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Beitinjaneh A, Jang S, Roukoz H and Majhail NS: Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: A systematic review. Leuk Res. 34:831–836. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Hu J, Liu YF, Wu CF, Xu F, Shen ZX, Zhu YM, Li JM, Tang W, Zhao WL, Wu W, et al: Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA. 106:pp. 3342–3347. 2009; View Article : Google Scholar : PubMed/NCBI

34 

Shaft D, Shtalrid M, Berebi A, Catovsky D and Resnitzky P: Ultrastructural characteristics and lysozyme content in hypergranular and variant type of acute promyelocytic leukaemia. Br J Haematol. 103:729–739. 1998. View Article : Google Scholar : PubMed/NCBI

35 

Mandelli F, Diverio D, Avvisati G, Luciano A, Barbui T, Bernasconi C, Broccia G, Cerri R, Falda M, Fioritoni G, et al: Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood. 90:1014–1021. 1997.PubMed/NCBI

36 

McKenna RW, Parkin J, Bloomfield CD, Sundberg RD and Brunning RD: Acute promyelocytic leukaemia: A study of 39 cases with identification of a hyperbasophilic microgranular variant. Br J Haematol. 50:201–214. 1982. View Article : Google Scholar : PubMed/NCBI

37 

Tallman MS, Kim HT, Montesinos P, Appelbaum FR, de la Serna J, Bennett JM, Deben G, Bloomfield CD, Gonzalez J, Feusner JH, et al: Does microgranular variant morphology of acute promyelocytic leukemia independently predict a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood. 116:5650–5659. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Kutny MA, Moser BK, Laumann K, Feusner JH, Gamis A, Gregory J, Larson RA, Powell BL, Stock W, Willman CL, et al: FLT3 mutation status is a predictor of early death in pediatric acute promyelocytic leukemia: A report from the Children's Oncology Group. Pediatr Blood Cancer. 59:662–667. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Biondi A, Luciano A, Bassan R, Mininni D, Specchia G, Lanzi E, Castagna S, Cantù-Rajnoldi A, Liso V, Masera G, et al: CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia. 9:1461–1466. 1995.PubMed/NCBI

40 

Foley R, Soamboonsrup P, Carter RF, Benger A, Meyer R, Walker I, Wan Y, Patterson W, Orzel A, Sunisloe L, et al: CD34-positive acute promyelocytic leukemia is associated with leukocytosis, microgranular/hypogranular morphology, expression of CD2 and bcr3 isoform. Am J Hematol. 67:34–41. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Paietta E, Goloubeva O, Neuberg D, Bennett JM, Gallagher R, Racevskis J, Dewald G, Wiernik PH and Tallman MS; Eastern Cooperative Oncology Group, : A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry B Clin Cytom. 59:1–9. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Maslak P, Miller WH Jr, Heller G, Scheinberg DA, Dmitrovsky E and Warrell RP Jr: CD2 expression and PML/RAR-alpha transcripts in acute promyelocytic leukemia. Blood. 81:16661993.PubMed/NCBI

43 

Reading CL, Estey EH, Huh YO, Claxton DF, Sanchez G, Terstappen LW, O'Brien MC, Baron S and Deisseroth AB: Expression of unusual immunophenotype combinations in acute myelogenous leukemia. Blood. 81:3083–3090. 1993.PubMed/NCBI

44 

Claxton DF, Reading CL, Nagarajan L, Tsujimoto Y, Andersson BS, Estey E, Cork A, Huh YO, Trujillo J and Deisseroth AB: Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood. 80:582–586. 1992.PubMed/NCBI

45 

Albano F, Mestice A, Pannunzio A, Lanza F, Martino B, Pastore D, Ferrara F, Carluccio P, Nobile F, Castoldi G, et al: The biological characteristics of CD34+ CD2+ adult acute promyelocytic leukemia and the CD34 CD2 hypergranular (M3) and microgranular (M3v) phenotypes. Haematologica. 91:311–316. 2006.PubMed/NCBI

46 

Guglielmi C, Martelli MP, Diverio D, Fenu S, Vegna ML, Cantù-Rajnoldi A, Biondi A, Cocito MG, Del Vecchio L, Tabilio A, et al: Immunophenotype of adult and childhood acute promyelocytic leukaemia: Correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br J Haematol. 102:1035–1041. 1998. View Article : Google Scholar : PubMed/NCBI

47 

Gallagher RE, Willman CL, Slack JL, Andersen JW, Li YP, Viswanatha D, Bloomfield CD, Appelbaum FR, Schiffer CA, Tallman MS and Wiernik PH: Association of PML-RAR alpha fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: An intergroup molecular study. Blood. 90:1656–1663. 1997.PubMed/NCBI

48 

Davey FR, Davis RB, MacCallum JM, Nelson DA, Mayer RJ, Ball ED, Griffin JD, Schiffer CA and Bloomfield CD: Morphologic and cytochemical characteristics of acute promyelocytic leukemia. Am J Hematol. 30:221–227. 1989. View Article : Google Scholar : PubMed/NCBI

49 

Bassan R, Battista R, Viero P, d'Emilio A, Buelli M, Montaldi A, Rambaldi A, Tremul L, Dini E and Barbui T: Short-term treatment for adult hypergranular and microgranular acute promyelocytic leukemia. Leukemia. 9:238–243. 1995.PubMed/NCBI

50 

Cunningham I, Gee TS, Reich LM, Kempin SJ, Naval AN and Clarkson BD: Acute promyelocytic leukemia: Treatment results during a decade at Memorial Hospital. Blood. 73:1116–1122. 1989.PubMed/NCBI

51 

Kuchenbauer F, Schoch C, Kern W, Hiddemann W, Haferlach T and Schnittger S: Impact of FLT3, mutations and promyelocytic leukaemia-breakpoint on clinical characteristics and prognosis in acute promyelocytic leukaemia. Br J Haematol. 130:196–202. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Sohal J, Phan VT, Chan PV, Davis EM, Patel B, Kelly LM, Abrams TJ, O'Farrell AM, Gilliland DG, Le Beau MM and Kogan SC: A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood. 101:3188–3197. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Haferlach T, Kohlmann A, Schnittger S, Dugas M, Hiddemann W, Kern W and Schoch C: AML M3 and AML M3 variant each have a distinct gene expression signature but also share patterns different from other genetically defined AML subtypes. Genes Chromosomes Cancer. 43:113–127. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Marasca R, Maffei RP, Zucchini P, Castelli I, Saviola A, Martinelli S, Ferrari A, Fontana M, Ravanetti S and Torelli G: Gene expression profiling of acute promyelocytic leukaemia identifies two subtypes mainly associated with flt3 mutational status. Leukemia. 20:103–114. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, et al: Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 97:2434–2439. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Baer MR, Stewart CC, Lawrence D, Arthur DC, Byrd JC, Davey FR, Schiffer CA and Bloomfield CD: Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood. 90:1643–1648. 1997.PubMed/NCBI

57 

Montesinos P, Rayón C, Vellenga E, Brunet S, González J, González M, Holowiecka A, Esteve J, Bergua J, González JD, et al: Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood. 117:1799–1805. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Ferrara F, Morabito F, Martino B, Specchia G, Liso V, Nobile F, Boccuni P, Di Noto R, Pane F, Annunziata M, et al: CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J Clin Oncol. 18:1295–1300. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Ito S, Ishida Y, Oyake T, Satoh M, Aoki Y, Kowata S, Uchiyama T, Enomoto S, Sugawara T, Numaoka H, et al: Clinical and biological significance of CD56 antigen expression in acute promyelocytic leukemia. Leuk Lymphoma. 45:1783–1789. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Murray CK, Estey E, Paietta E, Howard RS, Edenfield WJ, Pierce S, Mann KP, Bolan C and Byrd JC: CD56 expression in acute promyelocytic leukemia: A possible indicator of poor treatment outcome? J Clin Oncol. 17:293–297. 1999. View Article : Google Scholar : PubMed/NCBI

61 

Breccia M, De Propris MS, Minotti C, Stefanizzi C, Raponi S, Colafigli G, Latagliata R, Guarini A and Foà R: Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients. Leuk Res. 38:194–197. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, Estey EH, Dombret H, Chevret S, Ifrah N, et al: Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 15:986–996. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Breccia M, De Propris MS, Stefanizzi C, Raponi S, Molica M, Colafigli G, Minotti C, Latagliata R, Diverio D, Guarini A and Foà R: Negative prognostic value of CD34 antigen also if expressed on a small population of acute promyelocitic leukemia cells. Ann Hematol. 93:1819–1823. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Paietta E: Expression of cell-surface antigens in acute promyelocytic leukaemia. Best Pract Res Clin Haematol. 16:369–385. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Xu F, Yin CX, Wang CL, Jiang XJ, Jiang L, Wang ZX, Yi ZS, Huang KK and Meng FY: Immunophenotypes and immune markers associated with acute promyelocytic leukemia prognosis. Dis Markers. 2014:4219062014. View Article : Google Scholar : PubMed/NCBI

66 

Ahmad EI, Akl HK, Hashem ME and Elgohary TA: The biological characteristics of adult CD34+ acute promyelocytic leukemia. Med Oncol. 29:1119–1126. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Grimwade D, Outram SV, Flora R, Ings SJ, Pizzey AR, Morilla R, Craddock CF, Linch DC and Solomon E: The T-lineage-affiliated CD2 gene lies within an open chromatin environment in acute promyelocytic leukemia cells. Cancer Res. 62:4730–4735. 2002.PubMed/NCBI

68 

Sunter NJ, Scott K, Hills R, Grimwade D, Taylor S, Worrillow LJ, Fordham SE, Forster VJ, Jackson G, Bomken S, et al: A functional variant in the core promoter of the CD95 cell death receptor gene predicts prognosis in acute promyelocytic leukemia. Blood. 119:196–205. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Rowley JD, Golomb HM and Dougherty C: 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet. 1:549–550. 1977. View Article : Google Scholar : PubMed/NCBI

70 

Grimwade D, Biondi A, Mozziconacci MJ, et al: Characterisation of acute promyelocytic leukaemia (APL) cases lacking the classical t(15;17). Results of the European working party. 92:677A. 1998.

71 

Schoch C, Haferlach T, Haase D, Fonatsch C, Löffler H, Schlegelberger B, Staib P, Sauerland MC, Heinecke A, Büchner T, et al: Patients with de novo, acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: A study of 90 patients. Br J Haematol. 112:118–126. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Grimwade D, Howe K, Langabeer S, Davies L, Oliver F, Walker H, Swirsky D, Wheatley K, Goldstone A, Burnett A and Solomon E: Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: Cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. M.R.C. Adult Leukaemia Working Party. ATRA trial. Br J Haematol. 94:557–573. 1996.PubMed/NCBI

73 

De Botton S, Chevret S, Sanz M, Dombret H, Thomas X, Guerci A, Fey M, Rayon C, Huguet F, Sotto JJ, et al: Additional chromosomal abnormalities in patients with acute promyelocytic leukaemia (APL) do not confer poor prognosis: Results of APL 93 trial. Br J Haematol. 111:801–806. 2000. View Article : Google Scholar : PubMed/NCBI

74 

Slack JL, Arthur DC, Lawrence D, Mrózek K, Mayer RJ, Davey FR, Tantravahi R, Pettenati MJ, Bigner S, Carroll AJ, et al: Secondary cytogenetic changes in acute promyelocytic leukemia-Prognostic importance in patients treated with chemotherapy alone and association with the intron 3 breakpoint of the PML gene: A cancer and leukemia group B study. J Clin Oncol. 15:1786–1795. 1997. View Article : Google Scholar : PubMed/NCBI

75 

Mi Y, Xue Y, Yu W, Liu S, Zhao Y, Meng Q, Bian S and Wang J: Therapeutic experience of adult acute myeloid leukemia in a single institution of China and its relationship with chromosome karyotype. Leuk Lymphoma. 49:524–530. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Pantic M, Novak A, Marisavljevic D, Djordjevic V, Elezovic I, Vidovic A and Colovic M: Additional chromosome aberrations in acute promyelocytic leukemia: Characteristics and prognostic influence. Med Oncol. 17:307–313. 2000. View Article : Google Scholar : PubMed/NCBI

77 

Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, Ferrara F, Fazi P, Cicconi L, Di Bona E, et al: Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 369:112–21. 2013. View Article : Google Scholar

78 

Samir MD, Pedro H and Ling Z: Tetraploidy acute promyelocytic leuemia with double t(15;17)/PML-RARA, a case report with review of literature. Genes Chromosomes Cancer. 46:635–643. 2007.PubMed/NCBI

79 

Neto WK, Serpa M, Sanabani SS, Bueno PT, Velloso ED, Dorlhiac-Llacer PE and Bendit I: Early detection of t(8;21) chromosomal translocations during treatment of PML-RARA positive acute promyelocytic leukemia: A case study. Clin Med Insights Oncol. 4:163–170. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Charrin C, Ritouet D, Campos L, Devaux Y, Archimbaud E, Fraisse J, Fiere D and Germain D: Association of t(15;17) and t(8;21) in the initial phase of an acute promyelocytic leukemia. Cancer Genet Cytogenet. 58:177–180. 1992. View Article : Google Scholar : PubMed/NCBI

81 

Bonomi R, Giordano H, del Pilar Moreno M, Bodega E, Landoni AI, Gallagher R and del Rosario Uriarte M: Simultaneous PML/RARalpha and AML1/ETO expression with t(15;17) at onset and relapse with only t(8;21) in an acute promyelocytic leukemia patient. Cancer Genet Cytogenet. 123:41–43. 2000. View Article : Google Scholar : PubMed/NCBI

82 

Varella-Garcia M, Brizard F, Roche J, Flandrin G, Drabkin H and Brizard A: Aml1/ETO and Pml/RARA rearrangements in a case of AML-M2 acute myeloblastic leukemia with t(15;17). Leuk Lymphoma. 33:403–406. 2009. View Article : Google Scholar

83 

Xu L, Zhao WL, Xiong SM, Su XY, Zhao M, Wang C, Gao YR, Niu C, Cao Q, Gu BW, et al: Molecular cytogenetic characterization and clinical relevance of additional, complex and/or variant chromosome abnormalities in acute promyelocytic leukemia. Leukemia. 15:1359–1368. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Uz B, Eliaçık E, Işık A, Aksu S, Büyükaşık Y, Haznedaroğlu IC, Göker H, Sayınalp N and Ozcebe Oİ: Co-expression of t(15;17) and t(8;21) in a case of acute Promyelocytic leukemia: Review of the literature. Turk J Haematol. 30:400–404. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Hu X, Ai G, Meng X, Hou J, Wei R, Tao Y, Zhang Q, Han Y and Shi J: An ider(17)(q10)t(15;17) with spliced long-type PML-RARA fusion transcripts in a case of acute promyelocytic leukemia. Cancer Genet. 207:253–257. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Lee GY, Christina S, Tien SL, Ghafar AB, Hwang W, Lim LC and Lim TH: Acute promyelocytic leukemia with PML-RARA fusion on i(17q) and therapy-related acute myeloid leukemia. Cancer Genet Cytogenet. 159:129–136. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Im SA, Kim SH, Lee MA, Ahn JY, Yoo ES, Choi DY, Lee JY, Lee S, Huh JW, Chung WS, et al: Identification of ider[17q] in addition to t[15;17] in acute promyelocytic leukemia using whole chromosome painting probes made by interspecies hybrid using inter-Alu PCR. Cancer Genet Cytogenet. 118:169–170. 2000. View Article : Google Scholar : PubMed/NCBI

88 

Kim MJ, Cho SY, Lim G, Yoon HS, Lee HJ, Suh JT, Lee J, Lee WI, Cho KS and Park TS: A rare case of Microgranular acute Promyelocytic leukemia associated with ider(17)(q10)t(15;17) in an old-age patient. Korean J Lab Med. 31:86–90. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Kim M, Lee SA, Park HI, Oh EJ, Park CW, Lim J, Han K and Kim Y: Two distinct clonal populations in acute promyelocytic leukemia, one involving chromosome 17 and the other involving an isochromosome 17. Cancer Genet Cytogenet. 197:185–188. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Kim MJ, Yoon HS, Cho SY, Lee HJ, Suh JT, Lee J, Yoon HJ, Lee WI and Park TS: ider(17)(q10)t(15;17) associated with relapse and poor prognosis in a pediatric patient with acute promyelocytic leukemia. Cancer Genet Cytogenet. 201:116–121. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Manola KN, Karakosta M, Sambani C, Terzoudi G, Pagoni M, Gatsa E and Papaioannou M: Isochromosome der(17)(q10)t(15;17) in acute promyelocytic leukemia resulting in an additional copy of the RARA-PML fusion gene: Report of 4 cases and review of the literature. Acta Haematol. 123:162–170. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Okoshi Y, Akiyama H, Kono N, Matsumura T, Mizuchi D, Mori S, Ohashi K and Sakamaki H: Effect of additional chromosomal abnormalities in acute promyelocytic leukemia treated with all-trans-retinoic acid: A report of 17 patients. Int J Hematol. 73:496–501. 2001. View Article : Google Scholar : PubMed/NCBI

93 

Qiu HR, Li JY, Miao KR, Wang R and Xu W: Clinical and laboratory studies of an acute promyelocytic leukemia patient with double ider(17q) chromosome aberration. Cancer Genet Cytogenet. 184:74–75. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Schoch C, Haase D, Haferlach T, Freund M, Link H, Lengfelder E, Löffler H, Büchner T and Fonatsch C: Incidence and implication of additional chromosome aberrations in acute promyelocytic leukaemia with translocation t(15;17)(q22;q21): A report on 50 patients. Br J Haematol. 94:493–500. 2015. View Article : Google Scholar

95 

Tong H, Li K, Mei C, Wang H, Chen Z and Jin J: Arsenic trioxide may improve the prognosis of APL with ider(17)(q10): Report of a rare adult case of acute promyelocytic leukemia with ider(17)(q10)t(15;17) showing poor response to all-trans retinoic acid. Ann Hematol. 90:1493–1494. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Wan TS, So CC, Hui KC, Yip SF, Ma ES and Chan LC: Diagnostic utility of dual fusion PML/RARalpha translocation DNA probe (D-FISH) in acute promyelocytic leukemia. Oncol Rep. 17:799–805. 2007.PubMed/NCBI

97 

Sainty D, Liso V, Cantù-Rajnoldi A, Head D, Mozziconacci MJ, Arnoulet C, Benattar L, Fenu S, Mancini M, Duchayne E, et al: A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood. 96:1287–1296. 2000.PubMed/NCBI

98 

Tan Y, Bian S, Xu Z, Chen X, Qi X, Ren F, Li L, Guo H, Xu A, Zhang L and Wang H: The short isoform of the long-type PML-RARA, fusion gene in acute promyelocytic leukaemia lacks sensitivity to all-trans-retinoic acid. Br J Haematol. 162:93–97. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Rosati R, La Starza R, Veronese A, Aventin A, Schwienbacher C, Vallespi T, Negrini M, Martelli MF and Mecucci C: NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood. 99:3857–3860. 2002. View Article : Google Scholar : PubMed/NCBI

100 

Ågerstam H, Lilljebjörn H, Lassen C, Swedin A, Richter J, Vandenberghe P, Johansson B and Fioretos T: Fusion gene-mediated truncation of RUNX1, as a potential mechanism underlying disease progression in the 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer. 46:635–643. 2007. View Article : Google Scholar : PubMed/NCBI

101 

Otero L, Terra B, Diniz C, Abdelhay E and Fernandez Tde S: Dicentric t(8;13)(q10;q10) as an additional chromosomal abnormality in a case of acute promyelocytic leukemia with very poor outcome. Leuk Lymphoma. 50:287–289. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Adams J and Nassiri M: Acute promyelocytic Leukemia: A review and discussion of variant translocations. Arch Pathol Lab Med. 139:1308–1313. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Corey SJ, Locker J, Oliveri DR, Shekhter-Levin S, Redner RL, Penchansky L and Gollin SM: A non-classical translocation involving 17q12 (retinoic acid receptor alpha) in acute promyelocytic leukemia (APML) with atypical features. Leukemia. 8:1350–1353. 1994.PubMed/NCBI

104 

Yamanouchi J, Hato T, Niiya T, Miyoshi K, Azuma T, Sakai I and Yasukawa M: A new four-way variant t(5;17;15;20)(q33;q12;q22;q11.2) in acute promyelocytic leukemia. Int J Hematol. 94:395–398. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Qiu HR, Li JY, Miao KR, Wang R, Zhang JF and Xu W: A case of acute promyelocytic leukemia with variant t(5;17) and trisomy 22. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 25:430–433. 2008.(In Chinese). PubMed/NCBI

106 

Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, Murphy EJ, Koduru P, Ferrarini M, Zupo S, et al: In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest. 115:755–764. 2005. View Article : Google Scholar : PubMed/NCBI

107 

Ross DA and Kadesch T: The notch intracellular domain can function as a coactivator for LEF-1. Mol Cell Biol. 21:7537–7544. 2001. View Article : Google Scholar : PubMed/NCBI

108 

Holland JD, Klaus A, Garratt AN and Birchmeier W: Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 25:254–264. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Petropoulos K, Arseni N, Schessl C, Stadler CR, Rawat VP, Deshpande AJ, Heilmeier B, Hiddemann W, Quintanilla-Martinez L, Bohlander SK, et al: A novel role for Lef-1, a central transcription mediator of Wnt signaling, in leukemogenesis. J Exp Med. 205:515–522. 2008. View Article : Google Scholar : PubMed/NCBI

110 

Skokowa J, Cario G, Uenalan M, Schambach A, Germeshausen M, Battmer K, Zeidler C, Lehmann U, Eder M, Baum C, et al: LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med. 12:1191–1197. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Albano F, Zagaria A, Anelli L, Orsini P, Minervini CF, Impera L, Casieri P, Coccaro N, Tota G, Brunetti C, et al: Lymphoid enhancer binding factor-1 (LEF1) expression as a prognostic factor in adult acute promyelocytic leukemia. Oncotarget. 5:649–658. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, Sargin B, Köhler G, Stelljes M, Puccetti E, et al: Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol. 24:2890–2904. 2004. View Article : Google Scholar : PubMed/NCBI

113 

Zhang Y, Yu J, Shi C, Huang Y, Wang Y, Yang T and Yang J: Lef1 contributes to the differentiation of bulge stem cells by nuclear translocation and cross-talk with the Notch signaling pathway. Int J Med Sci. 10:738–746. 2013. View Article : Google Scholar : PubMed/NCBI

114 

Payton JE, Grieselhuber NR, Chang LW, Murakami M, Geiss GK, Link DC, Nagarajan R, Watson MA and Ley TJ: High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest. 119:1714–1726. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, Riganelli D, Sebastiani C, Cappelli E, Casciari C, et al: Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest. 112:1751–1761. 2003. View Article : Google Scholar : PubMed/NCBI

116 

Avvisati G, Lo-Coco F, Paoloni FP, Petti MC, Diverio D, Vignetti M, Latagliata R, Specchia G, Baccarani M, Di Bona E, et al: AIDA 0493 protocol for newly diagnosed acute promyelocytic leukemia: Very long-term results and role of maintenance. Blood. 117:4716–4725. 2011. View Article : Google Scholar : PubMed/NCBI

117 

Lo-Coco F, Avvisati G, Vignetti M, Breccia M, Gallo E, Rambaldi A, Paoloni F, Fioritoni G, Ferrara F, Specchia G, et al: Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years: Results of the AIDA-2000 trial of the GIMEMA Group. Blood. 116:3171–3179. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 15 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, C., Huang, X., Wang, K., Chen, K., Gao, D., & Qian, S. (2018). Early mortality in acute promyelocytic leukemia: Potential predictors (Review). Oncology Letters, 15, 4061-4069. https://doi.org/10.3892/ol.2018.7854
MLA
Chen, C., Huang, X., Wang, K., Chen, K., Gao, D., Qian, S."Early mortality in acute promyelocytic leukemia: Potential predictors (Review)". Oncology Letters 15.4 (2018): 4061-4069.
Chicago
Chen, C., Huang, X., Wang, K., Chen, K., Gao, D., Qian, S."Early mortality in acute promyelocytic leukemia: Potential predictors (Review)". Oncology Letters 15, no. 4 (2018): 4061-4069. https://doi.org/10.3892/ol.2018.7854