Molecular mechanisms of chemoresistance in osteosarcoma (Review)

  • Authors:
    • Hongtao He
    • Jiangdong Ni
    • Jun Huang
  • View Affiliations

  • Published online on: March 4, 2014     https://doi.org/10.3892/ol.2014.1935
  • Pages: 1352-1362
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Due to the emergence of adjuvant and neoadjuvant chemotherapy, the survival rate has been greatly improved in osteosarcoma (OS) patients with localized disease. However, this survival rate has remained unchanged over the past 30 years, and the long‑term survival rate for OS patients with metastatic or recurrent disease remains poor. To a certain extent, the reason behind this may be ascribed to the chemoresistance to anti‑OS therapy. Chemoresistance in OS appears to be mediated by numerous mechanisms, which include decreased intracellular drug accumulation, drug inactivation, enhanced DNA repair, perturbations in signal transduction pathways, apoptosis‑ and autophagy‑related chemoresistance, microRNA (miRNA) dysregulation and cancer stem cell (CSC)‑mediated drug resistance. In addition, methods employed to circumvent these resistance mechanism have been shown to be effective in the treatment of OS. However, almost all the current studies on the mechanisms of chemoresistance in OS are in their infancy. Further studies are required to focus on the following aspects: i) Improving the delivery of efficacy through novel delivery patterns; ii) improving the understanding of the signal transduction pathways that regulate the proliferation and growth of OS cells; iii) elucidating the signaling pathways of autophagy and its association with apoptosis in OS cells; iv) utilizing high‑throughput miRNA expression analysis to identify miRNAs associated with chemoresistance in OS; and v) identifying the role that CSCs play in tumor metastasis and in‑depth study of the mechanism of chemoresistance in the CSCs of OS.

References

1 

Chou AJ and Gorlick R: Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer There. 6:1075–1085. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Longhi A, Errani C, De Paolis M, Mercuri M and Bacci G: Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 32:423–436. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Chou AJ, Geller DS and Gorlick R: Therapy for osteosarcoma: where do we go from here? Paediatr Drugs. 10:315–327. 2008. View Article : Google Scholar

4 

Eilber FR and Rosen G: Adjuvant chemotherapy for osteosarcoma. Semin Oncol. 16:312–322. 1989.PubMed/NCBI

5 

Sakamoto A and Iwamoto Y: Current status and perspectives regarding the treatment of osteo-sarcoma: chemotherapy. Rev Recent Clin Trials. 3:228–231. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Bertino JR: Karnofsky memorial lecture. Ode to methotrexate. J Clin Oncol. 11:5–14. 1993.PubMed/NCBI

7 

Hattinger CM, Reverter-Branchat G, Remondini D, et al: Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques. Eur J Cell Biol. 82:483–493. 2003. View Article : Google Scholar

8 

Guo W, Healey JH, Meyers PA, Ladanyi M, Huvos AG, Bertino JR and Gorlick R: Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res. 5:621–627. 1999.

9 

Patiño-García A, Zalacaín M, Marrodán L, San-Julián M and Sierrasesúmaga L: Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr. 154:688–693. 2009.

10 

Ifergan I, Meller I, Issakov J and Assaraf YG: Reduced folate carrier protein expression in osteosarcoma: implications for the prediction of tumor chemosensitivity. Cancer. 98:1958–1966. 2003. View Article : Google Scholar

11 

Flintoff WF, Sadlish H, Gorlick R, Yang R and Williams FM: Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcomas. Biochim Biophys Acta. 1690:110–117. 2004. View Article : Google Scholar

12 

Serra M, Reverter-Branchat G, Maurici D, et al: Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol. 15:151–160. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Yang R, Sowers R, Mazza BA, et al: Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clin Cancer Res. 9:837–844. 2003.

14 

Trippett T, Meyers P, Gorlick R, et al: High dose trimetrexate with leucovorin protection in recurrent childhood malignancies: a phase II trial. J Clin Oncol (ASCO Annual Meeting Abstracts). 9:8891999.

15 

Weinstein RS, Kuszak JR, Kluskens LF and Coon JS: P-glycoproteins in pathology: the multidrug resistance gene family in humans. Hum Pathol. 21:34–48. 1990. View Article : Google Scholar

16 

Safa AR, Stern RK, Choi K, et al: Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185→Val-185 substitution in P-glycoprotein. Proc Natl Acad Sci USA. 87:7225–7229. 1990.PubMed/NCBI

17 

Bramwell VH: osteosarcomas and other cancers of bone. Curr Opin Oncol. 12:330–336. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Park YB, Kim HS, Oh JH and Lee SH: The co-expression of p53 protein and P-glycoprotein is correlated to a poor prognosis in osteosarcoma. Int Orthop. 24:307–310. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Gomes CM, van Paassen H, Romeo S, et al: Multidrug resistance mediated by ABC transporters in osteosarcoma cell lines: mRNA analysis and functional radiotracer studies. Nucl Med Biol. 33:831–840. 2006. View Article : Google Scholar

20 

Serra M, Pasello M, Manara MC, et al: May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol. 29:1459–1468. 2006.

21 

Baldini N, Scotlandi K, Serra M, Picci P, Bacci G, Sottili S and Campanacci M: P-glycoprotein expression in osteosarcoma: a basis for risk-adapted adjuvant chemotherapy. J Orthop Res. 17:629–632. 1999. View Article : Google Scholar : PubMed/NCBI

22 

Kusuzaki K, Hirata M, Takeshita H, Murata H, Hashiguchi S, Ashihara T and Hirasawa Y: Relationship between P-glycoprotein positivity, doxorubicin binding ability and histologic response to chemotherapy in osteosarcomas. Cancer Lett. 138:203–208. 1999. View Article : Google Scholar

23 

Trammell RA, Johnson CB, Barker JR, Bell RS and Allan DG: Multidrug resistance-1 gene expression does not increase during tumor progression in the MGH-OGS murine osteosarcoma tumor model. J Orthop Res. 18:449–455. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Wunder JS, Bull SB, Aneliunas V, et al: MDR1 gene expression and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 18:2685–2694. 2000.PubMed/NCBI

25 

Pakos EE and Ioannidis JP: The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer. 98:581–589. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Sorensen FB, Jensen K, Vaeth M, et al: Immunohistochemical estimates of angiogenesis, proliferative activity, p53 expression, and multiple drug resistance have no prognostic impact in osteosarcoma: A comparative clinicopathological investigation. Sarcoma. 2008:8740752008. View Article : Google Scholar

27 

Takeshita H, Kusuzaki K, Murata H, et al: Osteoblastic differentiation and P-glycoprotein multidrug resistance in a murine osteosarcoma model. Br J Cancer. 82:1327–1331. 2000. View Article : Google Scholar : PubMed/NCBI

28 

Susa M, Iyer AK, Ryu K, Choy E, Hornicek FJ, Mankin H, Milane L, Amiji MM and Duan Z: Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLoS One. 5:e107642010. View Article : Google Scholar : PubMed/NCBI

29 

Susa M, Iyer AK, Ryu K, Hornicek FJ, Mankin H, Amiji MM and Duan Z: Doxorubicin loaded polymeric nanoparticulate delivery system to overcome drug resistance in osteosarcoma. BMC Cancer. 9:3992009. View Article : Google Scholar : PubMed/NCBI

30 

Kobayashi E, Iyer AK, Hornicek FJ, Amiji MM and Duan Z: Lipid-functionalized dextran nanosystems to overcome multidrug resistance in cancer: a pilot study. Clin Orthop Relat Res. 471:915–925. 2013. View Article : Google Scholar

31 

Townsend DM and Tew KD: The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 22:7369–7375. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Tew KD: Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 54:4313–4320. 1994.PubMed/NCBI

33 

Shoieb A and Hahn K: Detection and significance of glutathione-S-transferase pi in osteogenic tumors of dogs. Int J Oncol. 10:635–639. 1997.

34 

Uozaki H, Horiuchi H, Ishida T, Iijima T, Imamura T and Machinami R: Overexpression of resistance-related proteins (metallothioneins, glutathione-S-transferase pi, heat shock protein 27, and lung resistance-related protein) in osteosarcoma. Relationship with poor prognosis. Cancer. 79:2336–2344. 1997. View Article : Google Scholar

35 

Wei L, Song XR, Wang XW, Li M and Zuo WS: Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghua Zhong Liu Za Zhi. 28:445–448. 2006.(In Chinese).

36 

Bruheim S, Bruland OS, Breistol K, Maelandsmo GM and Fodstad O: Human osteosarcoma xenografts and their sensitivity to chemotherapy. Pathol Oncol Res. 10:133–141. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Huang G, Mills L and Worth LL: Expression of human glutathione S-transferase P1 mediates the chemosensitivity of osteosarcoma cells. Mol Cancer Ther. 6:1610–1619. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Windsor RE, Strauss SJ, Kallis C, Wood NE and Whelan JS: Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer. 118:1856–1867. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Zhang SL, Mao NF, Sun JY, Shi ZC, Wang B and Sun YJ: Predictive potential of glutathione S-transferase polymorphisms for prognosis of osteosarcoma patients on chemotherapy. Asian Pac J Cancer Prev. 13:2705–2709. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Yang LM, Li XH and Bao CF: Glutathione S-transferase P1 and DNA polymorphisms influence response to chemotherapy and prognosis of bone tumors. Asian Pac J Cancer Prev. 13:5883–5886. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Pasello M, Michelacci F, Scionti I, Hattinger CM, Zuntini M, Caccuri AM, Scotlandi K, Picci P and Serra M: Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Res. 68:6661–6668. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Pasello M, Manara MC, Michelacci F, et al: Targeting glutathione-S transferase enzymes in musculoskeletal sarcomas: a promising therapeutic strategy. Anal Cell Pathol (Amst). 34:131–145. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Sau A, Filomeni G, Pezzola S, et al: Targeting GSTP1-1 induces JNK activation and leads to apoptosis in cisplatin-sensitive and -resistant human osteosarcoma cell lines. Mol Biosyst. 8:994–1006. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Sak SC, Harnden P, Johnston CF, Paul AB and Kiltie AE: APE1 and XRCC1 protein expression levels predict cancer-specific survival following radical radiotherapy in bladder cancer. Clin Cancer Res. 11:6205–6211. 2005. View Article : Google Scholar

45 

Evans AR, Limp-Foster M and Kelley MR: Going APE over ref-1. Mutat Res. 461:83–108. 2000. View Article : Google Scholar

46 

Silber JR, Bobola MS, Blank A, Schoeler KD, Haroldson PD, Huynh MB and Kolstoe DD: The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin Cancer Res. 8:3008–3018. 2002.

47 

Yang S, Irani K, Heffron SE, Jurnak F and Meyskens FL Jr: Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (Ape/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an Ape1/Ref-1 inhibitor. Mol Cancer Ther. 4:1923–1935. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Wang D, Luo M and Kelley MR: Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther. 3:679–686. 2004.

49 

Wang D, Zhong ZY, Li MX, Xiang DB and Li ZP: Vector-based Ape1 small interfering RNA enhances the sensitivity of human osteosarcoma cells to endostatin in vivo. Cancer Sci. 98:1993–2001. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Yang JL, Yang D, Cogdell D, et al: APEX1 gene amplification and its protein overexpression in osteosarcoma: correlation with recurrence, metastasis, and survival. Technol Cancer Res Treat. 9:161–169. 2010. View Article : Google Scholar

51 

Luo M and Kelley MR: Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res. 24:2127–2134. 2004.PubMed/NCBI

52 

Madhusudan S, Smart F, Shrimpton P, et al: Isolation of a small molecule inhibitor of base excision repair. Nucleic Acids Res. 33:4711–4724. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Seiple LA, Cardellina JH II, Akee R and Stivers JT: Potent inhibition of human apurinic/apyrimidinic endonuclease 1 by arylstibonic acids. Mol Pharmacol. 73:669–677. 2008. View Article : Google Scholar

54 

Fishel ML and Kelley MR: The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med. 28:375–395. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Nathrath M, Kremer M, Letzel H, Remberger K, Höfler H and Ulle T: Expression of genes of potential importance in the response to chemotherapy in osteosarcoma patients. Klin Padiatr. 214:230–235. 2002.(In German).

56 

Li X, Guo W, Shen DH, Yang RL, Liu J and Zhao H: Expressions of ERCC2 and ERCC4 genes in osteosarcoma and peripheral blood lymphocytes and their clinical significance. Beijing Da Xue Xue Bao. 39:467–471. 2007.(In Chinese).

57 

Caronia D, Patiño-García A, Milne RL, Zalacain-Díez M, Pita G, Alonso MR, Moreno LT, et al: Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J. 9:347–353. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Biason P, Hattinger CM, Innocenti F, Talamini R, Alberghini M, Scotlandi K, Zanusso C, Serra M and Toffoli G: Nucleotide excision repair gene variants and association with survival in osteosarcoma patients treated with neoadjuvant chemotherapy. Pharmacogenomics J. 12:476–483. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Hao T, Feng W, Zhang J, Sun YJ and Wang G: Association of four ERCC1 and ERCC2 SNPs with survival of bone tumour patients. Asian Pac J Cancer Prev. 13:3821–3824. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Meric-Bernstam F and Gonzalez-Angulo AM: Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 27:2278–2287. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Gordon IK, Ye F and Kent MS: Evaluation of the mammalian target of rapamycin pathway and the effect of rapamycin on target expression and cellular proliferation in osteosarcoma cells from dogs. Am J Vet Res. 69:1079–1084. 2008. View Article : Google Scholar

62 

Gazitt Y, Kolapathi V, Moncada K, Thomas C and Freeman J: Targeted therapy of human osteosarcoma with 17AAG or rapamycin: characterization of induced apoptosis and inhibition of mTOR and Akt/MAPK/Wnt pathways. Int J Oncol. 34:551–561. 2009.

63 

Zhou Q, Deng Z, Zhu Y, Long H, Zhang S and Zhao J: mTOR/p70S6K signal transduction pathway contributes to osteosarcoma progression and patients’ prognosis. Med Oncol. 27:1239–1245. 2010.

64 

Houghton PJ, Morton CL, Kolb EA, et al: Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer. 50:799–805. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Wan X, Mendoza A, Khanna C and Helman LJ: Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res. 65:2406–2411. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Mu X, Isaac C, Schott T, Huard J and Weiss K: Rapamycin inhibits ALDH activity, resistance to oxidative stress, and metastatic potential in murine osteosarcoma cells. Sarcoma. 2013:4807132013.

67 

LeRoith D and Roberts CT Jr: The insulin-like growth factor system and cancer. Cancer Lett. 195:127–137. 2003. View Article : Google Scholar : PubMed/NCBI

68 

Chitnis MM, Yuen JS, Protheroe AS, Pollak M and Macaulay VM: The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res. 14:6364–6370. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Chou AJ, Merola PR, Sowers R, et al: Analysis of aberrant signal transduction pathways in osteosarcoma cell lines. Proc Amer Assoc Cancer Res. 46:45512005.

70 

Scotlandi K, Manara MC, Nicoletti G, et al: Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res. 65:3868–3876. 2005. View Article : Google Scholar : PubMed/NCBI

71 

Tanno B, Mancini C, Vitali R, et al: Down-regulation of insulin-like growth factor I receptor activity by NVP-AEW541 has an antitumor effect on neuroblastoma cells in vitro and in vivo. Clin Cancer Res. 12:6772–6780. 2006. View Article : Google Scholar

72 

Hassan SE, Bekarev M, Kim MY, Lin J, Piperdi S, Gorlick R and Geller DS: Cell surface receptor expression patterns in osteosarcoma. Cancer. 118:740–749. 2012. View Article : Google Scholar

73 

Luk F, Yu Y, Walsh WR and Yang JL: IGF1R-targeted therapy and its enhancement of doxorubicin chemosensitivity in human osteosarcoma cell lines. Cancer Invest. 29:521–532. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Wang YH, Xiong J, Wang SF, Yu Y, Wang B, Chen YX, Shi HF and Qiu Y: Lentivirus-mediated shRNA targeting insulin-like growth factor-1 receptor (IGF-1R) enhances chemosensitivity of osteosarcoma cells in vitro and in vivo. Mol Cell Biochem. 341:225–233. 2010. View Article : Google Scholar

75 

Rettew AN, Young ED, Lev DC, Kleinerman ES, Abdul-Karim FW, Getty PJ and Greenfield EM: Multiple receptor tyrosine kinases promote the in vitro phenotype of metastatic human osteosarcoma cell lines. Oncogenesis. 1:e342012. View Article : Google Scholar : PubMed/NCBI

76 

Wang YH, Han XD, Qiu Y, et al: Increased expression of insulin-like growth factor-1 receptor is correlated with tumor metastasis and prognosis in patients with osteosarcoma. J Surg Oncol. 105:235–243. 2012. View Article : Google Scholar

77 

Gombos A, Metzger-Filho O, Dal Lago L and Awada-Hussein A: Clinical development of insulin-like growth factor receptor-1 (IGF-1R) inhibitors: at the crossroad? Invest New Drugs. 30:2433–2442. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Tap WD, Demetri GD, Barnette P, et al: AMG 479 in relapsed or refractory Ewing’s family tumors (EFT) or desmoplastic small round cell tumors (DSRCT): Phase II results. J Clin Oncol. 28(15 Suppl): 100012010.

79 

Natinoal Institutes of Health. A Study to Determine the Activity of SCH 717454 in Subjects with Relapsed Osteosarcoma or Ewing’s Sarcoma (Study P04720AM3). http://clinicaltrials.gov/ct2/show/NCT00617890?term=sch-717454&rank=2urisimplehttp://clinicaltrials.gov/ct2/show/NCT00617890?term=sch-717454&rank=2. Accessed April 6, 2011

80 

Akatsuka T, Wada T, Kokai Y, et al: ErbB2 expression is correlated with increased survival of patients with osteosarcoma. Cancer. 94:1397–1404. 2002. View Article : Google Scholar : PubMed/NCBI

81 

Zhou Q, Zhu Y, Deng Z, Long H, Zhang S and Chen X: VEGF and EMMPRIN expression correlates with survival of patients with osteosarcoma. Surg Oncol. 20:13–19. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Maris JM, Courtright J, Houghton PJ, et al: Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer. 50:581–587. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Ebb D, Meyers P, Grier H, et al: Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children’s oncology group. J Clin Oncol. 30:2545–2551. 2012.PubMed/NCBI

84 

Liebermann DA, Hoffman B and Steinman RA: Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene. 11:199–210. 1995.

85 

Asada N, Tsuchiya H and Tomita K: De novo deletions of p53 gene and wild-type p53 correlate with acquired cisplatin-resistance in human osteosarcoma OST cell line. Anticancer Res. 19:5131–5137. 1999.PubMed/NCBI

86 

Wong RP, Tsang WP, Chau PY, Co NN, Tsang TY and Kwok TT: p53-R273H gains new function in induction of drug resistance through down-regulation of procaspase-3. Mol Cancer Ther. 6:1054–1061. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Fan J and Bertino JR: Modulation of cisplatinum cytotoxicity by p53: effect of p53-mediated apoptosis and DNA repair. Mol Pharmacol. 56:966–972. 1999.PubMed/NCBI

88 

Tsuchiya H, Mori Y, Ueda Y, Okada G and Tomita K: Sensitization and caffeine potentiation of cisplatin cytotoxicity resulting from introduction of wild-type p53 gene in human osteosarcoma. Anticancer Res. 20:235–242. 2000.PubMed/NCBI

89 

Sato N, Mizumoto K, Maehara N, Kusumoto M, Nishio S, Urashima T, Ogawa T and Tanaka M: Enhancement of drug-induced apoptosis by antisense oligodeoxynucleotides targeted against Mdm2 and p21WAF1/CIP1. Anticancer Res. 20:837–842. 2000.PubMed/NCBI

90 

Tang HJ, Qian D, Sondak VK, Stachura S and Lin J: A modified p53 enhances apoptosis in sarcoma cell lines mediated by doxorubicin. Br J Cancer. 90:1285–1292. 2004. View Article : Google Scholar : PubMed/NCBI

91 

Goto A, Kanda H, Ishikawa Y, et al: Association of loss of heterozygosity at the p53 locus with chemoresistance in osteosarcomas. Jpn J Cancer Res. 89:539–547. 1998. View Article : Google Scholar : PubMed/NCBI

92 

Pápai Z, Féja CN, Hanna EN, Sztán M, Oláh E and Szendrôi M: P53 overexpression as an indicator of overall survival and response to treatment in osteosarcomas. Pathol Oncol Res. 3:15–19. 1997.

93 

Ozger H, Eralp L, Atalar AC, et al: The effect of resistance-related proteins on the prognosis and survival of patients with osteosarcoma: an immunohistochemical analysis. Acta Orthop Traumatol Turc. 43:28–34. 2009.(In Turkish).

94 

Wunder JS, Gokgoz N, Parkes R, et al: TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 23:1483–1490. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Chao DT and Korsmeyer SJ: BCL-2 family: regulators of cell death. Ann Rev Immunol. 16:395–419. 1998. View Article : Google Scholar

96 

Reed JC: Double identity for proteins of the Bcl-2 family. Nature. 387:773–776. 1997. View Article : Google Scholar : PubMed/NCBI

97 

Korsmeyer SJ: BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 59(7 Suppl): 1693s–1700s. 1999.PubMed/NCBI

98 

Ye D, Li H, Qian S, Sun Y, Zheng J and Ma Y: bcl-2/bax expression and p53 gene status in human bladder cancer: relationship to early recurrence with intravesical chemotherapy after resection. J Urol. 160:2025–2029. 1998. View Article : Google Scholar

99 

Han JY, Chung YJ, Park SW, Kim JS, Rhyu MG, Kim HK and Lee KS: The relationship between cisplatin-induced apoptosis and p53, bcl-2 and bax expression in human lung cancer cells. Korean J Intern Med. 14:42–52. 1999.PubMed/NCBI

100 

Luo D, Cheng SC, Xie H and Xie Y: Chemosensitivity of human hepatocellular carcinoma cell line QGY-7703 is related to bcl-2 protein levels. Tumour Biol. 20:331–340. 1999. View Article : Google Scholar : PubMed/NCBI

101 

Murata T, Haisa M, Uetsuka H, et al: Molecular mechanism of chemoresistance to cisplatin in ovarian cancer cell lines. Int J Mol Med. 13:865–868. 2004.PubMed/NCBI

102 

Perego P, Righetti SC, Supino R, et al: Role of apoptosis and apoptosis-related proteins in the cisplatin-resistant phenotype of human tumor cell lines. Apoptosis. 2:540–548. 1997. View Article : Google Scholar : PubMed/NCBI

103 

Zhao Y, Zhang CL, Zeng BF, Wu XS, Gao TT and Oda Y: Enhanced chemosensitivity of drug-resistant osteosarcoma cells by lentivirus-mediated Bcl-2 silencing. Biochem Biophys Res Commun. 390:642–647. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Zhang C, Zhao Y and Zeng B: Enhanced chemosensitivity by simultaneously inhibiting cell cycle progression and promoting apoptosis of drug-resistant osteosarcoma MG63/DXR cells by targeting Cyclin D1 and Bcl-2. Cancer Biomark. 12:155–167. 2012.

105 

Dey R and Moraes CT: Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem. 275:7087–7094. 2000. View Article : Google Scholar

106 

Zangemeister-Wittke U: Antisense to apoptosis inhibitors facilitates chemotherapy and TRAIL-induced death signaling. Ann NY Acad Sci. 1002:90–94. 2003. View Article : Google Scholar : PubMed/NCBI

107 

Zhang L, Yu J, Park BH, et al: Role of BAX in the apoptotic response to anticancer agents. Science. 290:989–992. 2000. View Article : Google Scholar : PubMed/NCBI

108 

Eliseev RA, Dong YF, Sampson E, et al: Runx2-mediated activation of the Bax gene increases osteosarcoma cell sensitivity to apoptosis. Oncogene. 27:3605–3614. 2008. View Article : Google Scholar : PubMed/NCBI

109 

Cao X, Bennett RL and May WS: c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem. 283:14490–14496. 2008. View Article : Google Scholar

110 

Ferrari S, Bertoni F, Zanella L, et al: Evaluation of P-glycoprotein, HER-2/ErbB-2, p53, and Bcl-2 in primary tumor and metachronous lung metastases in patients with high-grade osteosarcoma. Cancer. 100:1936–1942. 2004. View Article : Google Scholar : PubMed/NCBI

111 

Wu X, Cai ZD, Lou LM and Zhu YB: Expressions of p53, c-MYC, BCL-2 and apoptotic index in human osteosarcoma and their correlations with prognosis of patients. Cancer Epidemiol. 36:212–216. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Wang ZX, Yang JS, Pan X, Wang JR, Li J, Yin YM and De W: Functional and biological analysis of Bcl-xL expression in human osteosarcoma. Bone. 47:445–454. 2010. View Article : Google Scholar

113 

Nedelcu T, Kubista B, Koller A, et al: Livin and Bcl-2 expression in high-grade osteosarcoma. J Cancer Res Clin Oncol. 134:237–244. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Kaseta MK, Khaldi L, Gomatos IP, et al: Prognostic value of bax, bcl-2, and p53 staining in primary osteosarcoma. J Surg Oncol. 97:259–266. 2008. View Article : Google Scholar : PubMed/NCBI

115 

Kaseta MK, Gomatos IP, Khaldi L, et al: Prognostic value of bax, cytochrome C, and caspase-8 protein expression in primary osteosarcoma. Hybridoma (Larchmt). 26:355–362. 2007. View Article : Google Scholar : PubMed/NCBI

116 

Degenhardt K, Mathew R, Beaudoin B, et al: Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10:51–64. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Klionsky DJ and Emr SD: Autophagy as a regulated pathway of cellular degradation. Science. 290:1717–1721. 2000. View Article : Google Scholar

118 

Maiuri MC, Zalckvar E, Kimchi A and Kroemer G: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 8:741–752. 2007. View Article : Google Scholar : PubMed/NCBI

119 

Kroemer G and Levine B: Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 9:1004–1010. 2008. View Article : Google Scholar

120 

Han J, Hou W, Goldstein LA, et al: Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem. 283:19665–19677. 2008. View Article : Google Scholar : PubMed/NCBI

121 

Amaravadi RK, Yu D, Lum JJ, et al: Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 117:326–336. 2007. View Article : Google Scholar : PubMed/NCBI

122 

Carew JS, Medina EC, Esquivel JA II, et al: Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med. 14:2448–2459. 2010. View Article : Google Scholar

123 

Wu Z, Chang PC, Yang JC, et al: Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer. 1:40–49. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Li J, Hou N, Faried A, Tsutsumi S and Kuwano H: Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur J Cancer. 46:1900–1909. 2010. View Article : Google Scholar : PubMed/NCBI

125 

White E and DiPaola RS: The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 15:5308–5316. 2009. View Article : Google Scholar

126 

Katayama M, Kawaguchi T, Berger MS and Pieper RO: DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 14:548–558. 2007. View Article : Google Scholar

127 

Carew JS, Nawrocki ST, Kahue CN, et al: Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood. 110:313–322. 2007. View Article : Google Scholar : PubMed/NCBI

128 

Lambert LA, Qiao N, Hunt KK, Lambert DH, Mills GB, Meijer L and Keyomarsi K: Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res. 68:7966–7974. 2008. View Article : Google Scholar : PubMed/NCBI

129 

Meschini S, Condello M, Calcabrini A, et al: The plant alkaloid voacamine induces apoptosis-independent autophagic cell death on both sensitive and multidrug resistant human osteosarcoma cells. Autophagy. 4:1020–1033. 2008. View Article : Google Scholar

130 

Kim HJ, Lee SG, Kim YJ, Park JE, Lee KY, Yoo YH and Kim JM: Cytoprotective role of autophagy during paclitaxel-induced apoptosis in Saos-2 osteosarcoma cells. Int J Oncol. 42:1985–1992. 2013.PubMed/NCBI

131 

Zhang Z, Shao Z, Xiong L, Che B, Deng C and Xu W: Expression of Beclin1 in osteosarcoma and the effects of down-regulation of autophagy on the chemotherapeutic sensitivity. J Huazhong Univ Sci Technolog Med Sci. 29:737–740. 2009. View Article : Google Scholar : PubMed/NCBI

132 

Coupienne I, Fettweis G and Piette J: RIP3 expression induces a death profile change in U2OS osteosarcoma cells after 5-ALA-PDT. Lasers Surg Med. 43:557–564. 2011.

133 

Huang J, Ni J, Liu K, et al: HMGB1 promotes drug resistance in osteosarcoma. Cancer Res. 72:230–238. 2012. View Article : Google Scholar : PubMed/NCBI

134 

Huang J, Liu K, Yu Y, et al: Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma. Autophagy. 8:275–277. 2012. View Article : Google Scholar : PubMed/NCBI

135 

Pillai RS, Bhattacharyya SN and Fillipowicz W: Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 17:118–126. 2007. View Article : Google Scholar

136 

Lu J, Getz G, Miska EA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar

137 

Volinia S, Calin GA, Liu CG, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI

138 

Nakatani F, Ferracin M, Manara MC, et al: miR-34a predicts survival of Ewing’s sarcoma patients and directly influences cell chemo-sensitivity and malignancy. J Pathol. 226:796–805. 2012.PubMed/NCBI

139 

Gougelet A, Pissaloux D, Besse A, et al: Micro-RNA profiles in osteosarcoma as a predictive tool for ifosfamide response. Int J Cancer. 129:680–690. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Song B, Wang Y, Xi Y, et al: Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 28:4065–4074. 2009. View Article : Google Scholar : PubMed/NCBI

141 

Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M and Ju J: Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer. 9:962010. View Article : Google Scholar : PubMed/NCBI

142 

Cai CK, Zhao GY, Tian LY, et al: miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol Rep. 28:1764–1770. 2012.PubMed/NCBI

143 

Makino S: The role of tumor stem-cells in regrowth of the tumor following drastic applications. Acta Unio Int Contra Cancrum. 15(Suppl 1): 196–198. 1959.PubMed/NCBI

144 

Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI

145 

Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD and Steindler DA: Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 39:193–206. 2002. View Article : Google Scholar

146 

Singh SK, Clarke ID, Terasaki M, et al: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI

147 

Liu B, Ma W, Jha RK and Gurung K: Cancer stem cells in osteosarcoma: recent progress and perspective. Acta Oncol. 50:1142–1150. 2011. View Article : Google Scholar : PubMed/NCBI

148 

Woodward WA and Sulman EP: Cancer stem cells: markers or biomarkers? Cancer Metastasis Rev. 27:459–470. 2008. View Article : Google Scholar : PubMed/NCBI

149 

Vangipuram SD, Wang ZJ and Lyman WD: Resistance of stem-like cells from neuroblastoma cell lines to commonly used chemotherapeutic agents. Pediatr Blood Cancer. 54:361–368. 2010. View Article : Google Scholar

150 

Di Fiore R, Santulli A, Ferrante RD, et al: Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol. 219:301–313. 2009.PubMed/NCBI

151 

Fujii H, Honoki K, Tsujiuchi T, Kido A, Yoshitani K and Takakura Y: Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. Int J Oncol. 34:1381–1386. 2009.PubMed/NCBI

152 

Honoki K, Fujii H, Kubo A, Kido A, Mori T, Tanaka Y and Tsujiuchi T: Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep. 24:501–505. 2010. View Article : Google Scholar

153 

Martins-Neves SR, Lopes ÁO, do Carmo A, et al: Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line. BMC Cancer. 12:1392012. View Article : Google Scholar : PubMed/NCBI

154 

Chou AJ, Merola PR, Wexler LH, et al: Treatment of osteosarcoma at first recurrence after contemporary therapy: the Memorial Sloan-Kettering Cancer Center experience. Cancer. 104:2214–2221. 2005. View Article : Google Scholar

155 

Alberts DS, Muggia FM, Carmichael J, et al: Efficacy and safety of liposomal anthracyclines in phase I/II clinical trials. Semin Oncol. 31(Suppl 13): S53–S90. 2004. View Article : Google Scholar : PubMed/NCBI

156 

Maes H, Rubio N, Garg AD and Agostinis P: Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med. 19:428–446. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2014
Volume 7 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
He, H., Ni, J., & Huang, J. (2014). Molecular mechanisms of chemoresistance in osteosarcoma (Review). Oncology Letters, 7, 1352-1362. https://doi.org/10.3892/ol.2014.1935
MLA
He, H., Ni, J., Huang, J."Molecular mechanisms of chemoresistance in osteosarcoma (Review)". Oncology Letters 7.5 (2014): 1352-1362.
Chicago
He, H., Ni, J., Huang, J."Molecular mechanisms of chemoresistance in osteosarcoma (Review)". Oncology Letters 7, no. 5 (2014): 1352-1362. https://doi.org/10.3892/ol.2014.1935