|
1
|
Maranduca MA, Branisteanu D, Serban DN,
Branisteanu DC, Stoleriu G, Manolache N and Serban IL: Synthesis
and physiological implications of melanic pigments. Oncol Lett.
17:4183–4187. 2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hänel KH, Cornelissen C, Lüscher B and
Baron JM: Cytokines and the skin barrier. Int J Mol Sci.
14:6720–6745. 2013.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Ilie MA, Caruntu C, Tampa M, Georgescu SR,
Matei C, Negrei C, Ion RM, Constantin C, Neagu M and Boda D:
Capsaicin: Physicochemical properties, cutaneous reactions and
potential applications in painful and inflammatory conditions. Exp
Ther Med. 18:916–925. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Branisteanu D, Caruntu C, Negrei C, Ghita
MA, Caruntu A, Badarau AI, Buraga I, Boda D and Albu A: Capsaicin,
a hot topic in skin pharmacology and physiology. Farmacia.
63:487–491. 2015.
|
|
5
|
Căruntu C, Boda D, Musat S, Căruntu A and
Mandache E: Stress-induced mast cell activation in glabrous and
hairy skin. Mediators Inflamm. 2014(105950)2014.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Guttman-Yassky E, Nograles KE and Krueger
JG: Contrasting pathogenesis of atopic dermatitis and psoriasis -
part I: Clinical and pathologic concepts. J Allergy Clin Immunol.
127:1110–1118. 2011.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Caruntu C, Boda D, Musat S, Caruntu A,
Poenaru E, Calenic B, Savulescu-Fiedler I, Draghia A, Rotaru M and
Badarau AI: Stress effects on cutaneous nociceptive nerve fibers
and their neurons of origin in rats. Rom Biotechnol Lett.
19:9517–9530. 2014.
|
|
8
|
Lupu M, Caruntu A, Caruntu C, Papagheorghe
LML, Ilie MA, Voiculescu V, Boda D, Constantin C, Tanase C, Sifaki
M, et al: Neuroendocrine factors: The missing link in non melanoma
skin cancer (Review). Oncol Rep. 38:1327–1340. 2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
International Federation of Psoriasis
Associations: World Psoriasis Day, 2015. Available at: https://ifpa-pso.com/2015/10/29/press-world-psoriasis-day-2015-brings-hope.
|
|
10
|
Parisi R, Symmons DP, Griffiths CE and
Ashcroft DM: Identification and Management of Psoriasis and
Associated ComorbidiTy (IMPACT) project team. Global epidemiology
of psoriasis: A systematic review of incidence and prevalence. J
Invest Dermatol. 133:377–385. 2013.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Taïeb A and Picardo M: Clinical practice.
Vitiligo. N Engl J Med. 360:160–169. 2009.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Alkhateeb A, Fain PR, Thody A, Bennett DC
and Spritz RA: Epidemiology of vitiligo and associated autoimmune
diseases in Caucasian probands and their families. Pigment Cell
Res. 16:208–214. 2003.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Proksch E, Brandner JM and Jensen JM: The
skin: An indispensable barrier. Exp Dermatol. 17:1063–1072.
2008.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Freeman SC and Sonthalia S: Histology,
Keratohyalin Granules. StatPearls Publishing, Treasure Island, FL,
2019.
|
|
15
|
Harder J, Schröder JM and Gläser R: The
skin surface as antimicrobial barrier: Present concepts and future
outlooks. Exp Dermatol. 22:1–5. 2013.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Gallo RL and Hooper LV: Epithelial
antimicrobial defence of the skin and intestine. Nat Rev Immunol.
12:503–516. 2012.PubMed/NCBI View
Article : Google Scholar
|
|
17
|
Manabe M and O'Guin WM: Keratohyalin,
trichohyalin and keratohyalin-trichohyalin hybrid granules: An
overview. J Dermatol. 19:749–755. 1992.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Nithya S, Radhika T and Jeddy N: Loricrin
- an overview. J Oral Maxillofac Pathol. 19:64–68. 2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Westerhof W and Dingemans KP: The
morphology of keratohyalin granules in orthokeratotic and
parakeratotic skin and oral mucosa. Int J Dermatol. 26:308–313.
1987.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Yousef H, Alhajj M and Sharma S: Anatomy,
Skin (Integument), Epidermis. StatPearls Publishing, Treasure
Island, FL, 2019.
|
|
21
|
Westerhof W and Dingemans KP: The
morphological details of globular keratohyalin granules. J Cutan
Pathol. 13:375–382. 1986.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Dinh MH, McRaven MD, Kelley Z, Penugonda S
and Hope TJ: Keratinization of the adult male foreskin and
implications for male circumcision. AIDS. 24:899–906.
2010.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Takahashi M, Horiuchi Y and Tezuka T:
Hematoxylin-stainability of keratohyalin granules is due to the
novel component, fibrinogen γ-chain protein. Arch Dermatol Res.
302:679–684. 2010.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Fukuyama K and Epstein WL: Heterogeneous
ultrastructure of keratohyalin granules: A comparative study of
adjacent skin and mucous membrane. J Invest Dermatol. 61:94–100.
1973.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Nwabudike LC, Elisei AM, Buzia OD,
Miulescu M and Tatu AL: Statins: A review on structural
perspectives, adverse reactions and relations with non-melanoma
skin cancer. Rev Chim Buchar. 69:2557–2562. 2018.
|
|
26
|
Cioplea M, Caruntu C, Zurac S, Bastian A,
Sticlaru L, Cioroianu A, Boda D, Jugulete G, Nichita L and Popp C:
Dendritic cell distribution in mycosis fungoides vs. inflammatory
dermatosis and other T-cell skin lymphoma. Oncol Lett.
17:4055–4059. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Steinman RM and Cohn ZA: Identification of
a novel cell type in peripheral lymphoid organs of mice I.
Morphology, quantitation, tissue distribution. J Exp Med.
137:1142–1162. 1973.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Rajesh A, Wise L and Hibma M: The role of
Langerhans cells in pathologies of the skin. Immunol Cell Biol.
97:700–713. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Nirschl CJ and Anandasabapathy N: Duality
at the gate: Skin dendritic cells as mediators of vaccine immunity
and tolerance. Hum Vaccin Immunother. 12:104–116. 2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Teunissen MBM, Haniffa M and Collin MP:
Insight into the immunobiology of human skin and functional
specialization of skin dendritic cell subsets to innovate
intradermal vaccination design. Curr Top Microbiol Immunol.
351:25–76. 2012.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Scharschmidt TC, Vasquez KS, Pauli ML,
Leitner EG, Chu K, Truong HA, Lowe MM, Sanchez Rodriguez R, Ali N,
Laszik ZG, et al: Commensal microbes and hair follicle
morphogenesis coordinately drive treg migration into neonatal skin.
Cell Host Microbe. 21:467–477.e5. 2017.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Brănişteanu DE, Pintilie A, Andreş LE,
Dimitriu A, Oanţă A, Stoleriu G and Brănişteanu DC: Ethiopatogenic
hypotheses in lichen planus. Rev Med Chir Soc Med Nat Iasi.
120:760–767. 2016.PubMed/NCBI
|
|
33
|
Brănişteanu DE, Brănişteanu DC, Stoleriu
G, Ferariu D, Voicu CM, Stoica LE, Căruntu C, Boda D,
Filip-Ciubotaru FM, Dimitriu A, et al: Histopathological and
clinical traps in lichen sclerosus: A case report. Rom J Morphol
Embryol. 57 (Suppl 2):817–823. 2016.PubMed/NCBI
|
|
34
|
Sakaguchi S, Yamaguchi T, Nomura T and Ono
M: Regulatory T cells and immune tolerance. Cell. 133:775–787.
2008.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Tang L and Wang K: Chronic inflammation in
skin malignancies. J Mol Signal. 11(2)2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Suwanpradid J, Holcomb ZE and MacLeod AS:
Emerging skin T-cell functions in response to environmental
insults. J Invest Dermatol. 137:288–294. 2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ali N and Rosenblum MD: Regulatory T cells
in skin. Immunology. 152:372–381. 2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Boda D: Cellomics as integrative omics for
cancer. Curr Proteomics. 10:237–245. 2013.
|
|
39
|
Sakaguchi S, Vignali DA, Rudensky AY, Niec
RE and Waldmann H: The plasticity and stability of regulatory T
cells. Nat Rev Immunol. 13:461–467. 2013.PubMed/NCBI View
Article : Google Scholar
|
|
40
|
Schlapbach C, Gehad A, Yang C, Watanabe R,
Guenova E, Teague JE, Campbell L, Yawalkar N, Kupper TS and Clark
RA: Human TH9 cells are skin-tropic and have autocrine and
paracrine proinflammatory capacity. Sci Transl Med.
6(219ra8)2014.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Kaplan MH, Hufford MM and Olson MR: The
development and in vivo function of T helper 9 cells. Nat Rev
Immunol. 15:295–307. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Liu J, Harberts E, Tammaro A, Girardi N,
Filler RB, Fishelevich R, Temann A, Licona-Limón P, Girardi M,
Flavell RA, et al: IL-9 regulates allergen-specific Th1 responses
in allergic contact dermatitis. J Invest Dermatol. 134:1903–1911.
2014.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Ma L, Xue HB, Guan XH, Shu CM, Zhang JH
and Yu J: Possible pathogenic role of T helper type 9 cells and
interleukin (IL)-9 in atopic dermatitis. Clin Exp Immunol.
175:25–31. 2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
World Health Organization: Global report
on psoriasis. World Health Organization, Geneva,. 2016, ISBN 978 92
4 156518 9. Available at: https://apps.who.int/iris/handle/10665/204417.
|
|
45
|
Gelfand JM, Neimann AL, Shin DB, Wang X,
Margolis DJ and Troxel AB: Risk of myocardial infarction in
patients with psoriasis. JAMA. 296:1735–1741. 2006.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Solomon I, Voiculescu VM, Caruntu C, Lupu
M, Popa A, Ilie MA, Albulescu R, Caruntu A, Tanase C, Constantin C,
et al: Neuroendocrine factors and head and neck squamous cell
carcinoma: An affair to remember. Dis Markers.
2018(9787831)2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Batycka-Baran A, Maj J, Wolf R and
Szepietowski JC: The new insight into the role of antimicrobial
proteins-alarmins in the immunopathogenesis of psoriasis. J Immunol
Res. 2014(628289)2014.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Dunphy SE, Sweeney CM, Kelly G, Tobin AM,
Kirby B and Gardiner CM: Natural killer cells from psoriasis
vulgaris patients have reduced levels of cytotoxicity associated
degranulation and cytokine production. Clin Immunol. 177:43–49.
2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Grigore O, Mihailescu AI, Solomon I, Boda
D and Caruntu C: Role of stress in modulation of skin neurogenic
inflammation. Exp Ther Med. 17:997–1003. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Witte E, Kokolakis G, Witte K, Philipp S,
Doecke WD, Babel N, Wittig BM, Warszawska K, Kurek A,
Erdmann-Keding M, et al: IL-19 is a component of the pathogenetic
IL-23/IL-17 cascade in psoriasis. J Invest Dermatol. 134:2757–2767.
2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Nograles KE, Zaba LC, Guttman-Yassky E,
Fuentes-Duculan J, Suárez-Fariñas M, Cardinale I, Khatcherian A,
Gonzalez J, Pierson KC, White TR, et al: Th17 cytokines interleukin
(IL)-17 and IL-22 modulate distinct inflammatory and
keratinocyte-response pathways. Br J Dermatol. 159:1092–1102.
2008.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Chen W, Gong Y, Zhang X, Tong Y, Wang X,
Fei C, Xu H, Yu Q, Wang Y and Shi Y: Decreased expression of IL-27
in moderate-to-severe psoriasis and its anti-inflammation role in
imiquimod-induced psoriasis-like mouse model. J Dermatol Sci.
85:115–123. 2017.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Caruntu C, Boda D, Dumitrascu G,
Constantin C and Neagu M: Proteomics focusing on immune markers in
psoriatic arthritis. Biomarkers Med. 9:513–528. 2015.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Harris JE: Cellular stress and innate
inflammation in organ-specific autoimmunity: Lessons learned from
vitiligo. Immunol Rev. 269:11–25. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Goronzy J, Weyand CM and Waase I: T cell
subpopulations in inflammatory bowel disease: Evidence for a
defective induction of T8+ suppressor/cytotoxic T
lymphocytes. Clin Exp Immunol. 61:593–600. 1985.PubMed/NCBI
|
|
56
|
Ongenae K, Van Geel N and Naeyaert JM:
Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell
Res. 16:90–100. 2003.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Grimes PE, Morris R, Avaniss-Aghajani E,
Soriano T, Meraz M and Metzger A: Topical tacrolimus therapy for
vitiligo: Therapeutic responses and skin messenger RNA expression
of proinflammatory cytokines. J Am Acad Dermatol. 51:52–61.
2004.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Birol A, Kisa U, Kurtipek GS, Kara F,
Kocak M, Erkek E and Caglayan O: Increased tumor necrosis factor
alpha (TNF-alpha) and interleukin 1 alpha (IL1-alpha) levels in the
lesional skin of patients with nonsegmental vitiligo. Int J
Dermatol. 45:992–993. 2006.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Moretti S, Spallanzani A, Amato L,
Hautmann G, Gallerani I, Fabiani M and Fabbri P: New insights into
the pathogenesis of vitiligo: Imbalance of epidermal cytokines at
sites of lesions. Pigment Cell Res. 15:87–92. 2002.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Zailaie MZ: Decreased proinflammatory
cytokine production by peripheral blood mononuclear cells from
vitiligo patients following aspirin treatment. Saudi Med J.
26:799–805. 2005.PubMed/NCBI
|
|
61
|
Basak PY, Adiloglu AK, Ceyhan AM, Tas T
and Akkaya VB: The role of helper and regulatory T cells in the
pathogenesis of vitiligo. J Am Acad Dermatol. 60:256–260.
2009.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Kemp EH, Emhemad S, Akhtar S, Watson PF,
Gawkrodger DJ and Weetman AP: Autoantibodies against tyrosine
hydroxylase in patients with non-segmental (generalised) vitiligo.
Exp Dermatol. 20:35–40. 2011.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Barisić-Drusko V and Rucević I: Trigger
factors in childhood psoriasis and vitiligo. Coll Antropol.
28:277–285. 2004.PubMed/NCBI
|
|
64
|
Manolache L and Benea V: Stress in
patients with alopecia areata and vitiligo. J Eur Acad Dermatol
Venereol. 21:921–928. 2007.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Papadopoulos L, Bor R, Legg C and Hawk JL:
Impact of life events on the onset of vitiligo in adults:
Preliminary evidence for a psychological dimension in aetiology.
Clin Exp Dermatol. 23:243–248. 1998.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Picardi A, Pasquini P, Cattaruzza MS,
Gaetano P, Melchi CF, Baliva G, Camaioni D, Tiago A, Abeni D and
Biondi M: Stressful life events, social support, attachment
security and alexithymia in vitiligo. A case-control study.
Psychother Psychosom. 72:150–158. 2003.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Li S, Zhu G, Yang Y, Jian Z, Guo S, Dai W,
Shi Q, Ge R, Ma J, Liu L, et al: Oxidative stress drives
CD8+ T-cell skin trafficking in patients with vitiligo
through CXCL16 upregulation by activating the unfolded protein
response in keratinocytes. J Allergy Clin Immunol. 140:177–189.e9.
2017.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Kasperkiewicz M, Ellebrecht CT, Takahashi
H, Yamagami J, Zillikens D, Payne AS and Amagai M: Pemphigus. Nat
Rev Dis Primers. 3(17026)2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Pollmann R, Schmidt T, Eming R and Hertl
M: Pemphigus: A comprehensive review on pathogenesis, clinical
presentation and novel therapeutic approaches. Clin Rev Allergy
Immunol. 54:1–25. 2018.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Fujimoto M: Regulatory B cells in skin and
connective tissue diseases. J Dermatol Sci. 60:1–7. 2010.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Mauri C and Bosma A: Immune regulatory
function of B cells. Annu Rev Immunol. 30:221–241. 2012.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Inoue M and Shinohara ML: Intracellular
osteopontin (iOPN) and immunity. Immunol Res. 49:160–172.
2011.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Baroni A, De Filippis A, Buommino E,
Satriano RA and Cozza V: Osteopontin, a protein with cytokine-like
properties: A possible involvement in pemphigus vulgaris. Arch
Dermatol Res. 304:237–240. 2012.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Leung DY and Bieber T: Atopic dermatitis.
Lancet. 361:151–160. 2003.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Spergel JM and Paller AS: Atopic
dermatitis and the atopic march. J Allergy Clin Immunol. 112
(Suppl):S118–S127. 2003.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Leung DY: Infection in atopic dermatitis.
Curr Opin Pediatr. 15:399–404. 2003.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Cho SH, Strickland I, Boguniewicz M and
Leung DY: Fibronectin and fibrinogen contribute to the enhanced
binding of Staphylococcus aureus to atopic skin. J Allergy
Clin Immunol. 108:269–274. 2001.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Gallo RL, Murakami M, Ohtake T and Zaiou
M: Biology and clinical relevance of naturally occurring
antimicrobial peptides. J Allergy Clin Immunol. 110:823–831.
2002.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Ong PY, Ohtake T, Brandt C, Strickland I,
Boguniewicz M, Ganz T, Gallo RL and Leung DY: Endogenous
antimicrobial peptides and skin infections in atopic dermatitis. N
Engl J Med. 347:1151–1160. 2002.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Ochs RL, Muro Y, Si Y, Ge H, Chan EK and
Tan EM: Autoantibodies to DFS 70 kd/transcription coactivator p75
in atopic dermatitis and other conditions. J Allergy Clin Immunol.
105:1211–1220. 2000.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Seiberler S, Natter S, Hufnagl P, Binder
BR and Valenta R: Characterization of IgE-reactive autoantigens in
atopic dermatitis. 2. A pilot study on IgE versus IgG subclass
response and seasonal variation of IgE autoreactivity. Int Arch
Allergy Immunol. 120:117–125. 1999.PubMed/NCBI View Article : Google Scholar
|