Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
December-2020 Volume 20 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2020 Volume 20 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Engineered Akkermansia muciniphila: A promising agent against diseases (Review)

  • Authors:
    • Yixuan Zou
    • Tingtao Chen
  • View Affiliations / Copyright

    Affiliations: Institute of Translational Medicine, National Engineering Research Center for Bioengineering Drugs and Technologies, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
    Copyright: © Zou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 285
    |
    Published online on: October 29, 2020
       https://doi.org/10.3892/etm.2020.9415
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Achieving a harmonious gut microbial ecosystem has been hypothesized to be a successful method for alleviating metabolic disorders. The administration of probiotics, such as Lactobacillus and Bifidobacteria, is a known traditional and safe pathway to regulate human commensal microbes. With advancements in genetic sequencing and genetic editing tools, more bacteria are able to function as engineered probiotics with multiple therapeutic properties. As one of the next‑generation probiotic candidates, Akkermansia muciniphila (A. muciniphila) has been discovered to enhance the gut barrier function and moderate inflammatory responses, exhibit improved effects with pasteurization and display beneficial probiotic effects in individuals with obesity, type 2 diabetes, atherosclerosis and autism‑related gastrointestinal disturbances. In view of this knowledge, the present review aimed to summarize the effects of A. muciniphila in the treatment of metabolic disorders and to discuss several mature recombination systems for the genetic modification of A. muciniphila. From gaining an enhanced understanding of its genetic background, ingested A. muciniphila is expected to be used in various applications, including as a diagnostic tool, and in the site‑specific delivery of therapeutic drugs.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

WHO and UNICEF. Health in the post-2015 development agenda report of the Global Thematic Consultation on Health. World We Want. 31:514–526. 2014.

2 

Dora C, Haines A, Balbus J, Fletcher E, Adair-Rohani H, Alabaster G, Hossain R, de Onis M, Branca F and Neira M: Indicators linking health and sustainability in the post-2015 development agenda. Lancet. 385:380–391. 2015.PubMed/NCBI View Article : Google Scholar

3 

Novelli G, Biancolella M, Latini A, Spallone A, Borgiani P and Papaluca M: Precision medicine in non-communicable diseases. High-Throughput. 9(3)2020.PubMed/NCBI View Article : Google Scholar

4 

Imaoka T, Nishimura M, Daino K, Takabatake M, Moriyama H, Nishimura Y, Morioka T, Shimada Y and Kakinuma S: Risk of second cancer after ion beam radiotherapy: Insights from animal carcinogenesis studies. Int J Radiat Biol. 95:1431–1440. 2019.PubMed/NCBI View Article : Google Scholar

5 

O'Malley RB and Revels JW: Imaging of abdominal postoperative complications. Radiol Clin North Am. 58:73–91. 2020.PubMed/NCBI View Article : Google Scholar

6 

Suri S, Kumar V, Kumar S, Goyal A, Tanwar B and Kaur J and Kaur J: DASH dietary pattern: A treatment for non-communicable diseases. Curr Hypertens Rev. 16:108–114. 2020.PubMed/NCBI View Article : Google Scholar

7 

Zhu J, Yang J and Luo Y: Applications of engineered intestinal bacteria in disease diagnosis and treatment. Sheng Wu Gong Cheng Xue Bao. 35:2350–2366. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).

8 

Parséus A, Sommer N, Sommer F, Caesar R, Molinaro A, Ståhlman M, Greiner TU, Perkins R and Bäckhed F: Microbiota-induced obesity requires farnesoid X receptor. Gut. 66:429–437. 2017.PubMed/NCBI View Article : Google Scholar

9 

Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen AM, Peet A, Tillmann V, Pöhö P, Mattila I, et al: The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 17:260–273. 2015.PubMed/NCBI View Article : Google Scholar

10 

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al: A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 490:55–60. 2012.PubMed/NCBI View Article : Google Scholar

11 

Zhang M, Sun K, Wu Y, Yang Y, Tso P and Wu Z: Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front Immunol. 8(942)2017.PubMed/NCBI View Article : Google Scholar

12 

Lu T, Chen Y, Guo Y, Sun J, Shen W, Yuan M, Zhang S, He P and Jiao X: Altered gut microbiota diversity and composition in chronic urticaria. Dis Markers. 2019(6417471)2019.PubMed/NCBI View Article : Google Scholar

13 

Cryan JF, O'Riordan KJ, Sandhu K, Peterson V and Dinan TG: The gut microbiome in neurological disorders. Lancet Neurol. 19:179–194. 2020.PubMed/NCBI View Article : Google Scholar

14 

Jiménez-Avalos JA, Arrevillaga-Boni G, González-López L, García-Carvajal ZY and González-Avila M: Classical methods and perspectives for manipulating the human gut microbial ecosystem. Crit Rev Food Sci Nutr: Mar 2, 2020 (Epub ahead of print). doi: 10.1080/10408398.2020.1724075.

15 

Szajewska H: What are the indications for using probiotics in children? Arch Dis Child. 101:398–403. 2016.PubMed/NCBI View Article : Google Scholar

16 

Chua KJ, Kwok WC, Aggarwal N, Sun T and Chang MW: Designer probiotics for the prevention and treatment of human diseases. Curr Opin Chem Biol. 40:8–16. 2017.PubMed/NCBI View Article : Google Scholar

17 

Sanders ME, Akkermans LMA, Haller D, Hammerman C, Heimbach J, Hörmannsperger G, Huys G, Levy DD, Lutgendorff F, Mack D, et al: Safety assessment of probiotics for human use. Gut Microbes. 1:164–185. 2010.PubMed/NCBI View Article : Google Scholar

18 

Khangwal I and Shukla P: Combinatory biotechnological intervention for gut microbiota. Appl Microbiol Biotechnol. 103:3615–3625. 2019.PubMed/NCBI View Article : Google Scholar

19 

Yadav M and Shukla P: Recent systems biology approaches for probiotics use in health aspects: A review. 3 Biotech. 9(448)2019.PubMed/NCBI View Article : Google Scholar

20 

Kumar M, Yadav AK, Verma V, Singh B, Mal G, Nagpal R and Hemalatha R: Bioengineered probiotics as a new hope for health and diseases: An overview of potential and prospects. Future Microbiol. 11:585–600. 2016.PubMed/NCBI View Article : Google Scholar

21 

Yadav R, Singh PK and Shukla P: Metabolic engineering for probiotics and their genome-wide expression profiling. Curr Protein Pept Sci. 19:68–74. 2018.PubMed/NCBI View Article : Google Scholar

22 

Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W and Remaut E: Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 289:1352–1355. 2000.PubMed/NCBI View Article : Google Scholar

23 

Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S, Peppelenbosch MP and Steidler L: A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol. 4:754–759. 2006.PubMed/NCBI View Article : Google Scholar

24 

Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, Kotula JW, Antipov E, Dagon Y, Denney WS, et al: An engineered E. Coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 11(eaau7975)2019.PubMed/NCBI View Article : Google Scholar

25 

Saltzman DA, Katsanis E, Heise CP, Hasz DE, Vigdorovich V, Kelly SM, Curtiss R III, Leonard AS and Anderson PM: Antitumor mechanisms of attenuated Salmonella typhimurium containing the gene for human interleukin-2: A novel antitumor agent? J Pediatr Surg. 32:301–306. 1997.PubMed/NCBI View Article : Google Scholar

26 

Fang X, Tian P, Zhao X, Jiang C and Chen T: Neuroprotective effects of an engineered commensal bacterium in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinson disease mouse model via producing glucagon-like peptide-1. J Neurochem. 160:441–452. 2019.PubMed/NCBI View Article : Google Scholar

27 

Yang G, Jiang Y, Yang W, Du F, Yao Y, Shi C and Wang C: Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb Cell Fact. 14(202)2015.

28 

Cani PD and de Vos WM: Next-generation beneficial microbes: The case of Akkermansia muciniphila. Front Microbiol. 8(1765)2017.PubMed/NCBI View Article : Google Scholar

29 

Rodríguez V, Asenjo JA and Andrews BA: Design and implementation of a high yield production system for recombinant expression of peptides. Microb Cell Fact. 13(65)2014.PubMed/NCBI View Article : Google Scholar

30 

Sahdev S, Khattar SK and Saini KS: Production of active eukaryotic proteins through bacterial expression systems: A review of the existing biotechnology strategies. Mol Cell Biochem. 307:249–264. 2008.PubMed/NCBI View Article : Google Scholar

31 

Chance RE and Frank BH: Research, development, production, and safety of biosynthetic human insulin. Diabetes Care. 16 (Suppl 3):S133–S142. 1993.PubMed/NCBI View Article : Google Scholar

32 

Whelan RA, Rausch S, Ebner F, Günzel D, Richter JF, Hering NA, Schulzke JD, Kühl AA, Keles A, Janczyk P, et al: A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation. Mol Ther. 22:1730–1740. 2014.PubMed/NCBI View Article : Google Scholar

33 

Zoetendal EG, Vaughan EE and De Vos WM: A microbial world within us. Mol Microbiol. 59:1639–1650. 2006.PubMed/NCBI View Article : Google Scholar

34 

Coeuret V, Dubernet S, Bernardeau M, Gueguen M and Vernoux JP: Isolation, characterisation and identification of lactobacilli focusing mainly on cheeses and other dairy products. Lait. 83:269–306. 2003.

35 

Kikuchi Y, Kunitoh-Asari A, Hayakawa K, Imai S, Kasuya K, Abe K, Adachi Y, Fukudome S, Takahashi Y and Hachimura S: Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice. PLoS One. 9(e86416)2014.PubMed/NCBI View Article : Google Scholar

36 

Sazawal S, Hiremath G, Dhingra U, Malik P, Deb S and Black RE: Efficacy of probiotics in prevention of acute diarrhoea: A meta-analysis of masked, randomised, placebo-controlled trials. Lancet Infect Dis. 6:374–382. 2006.PubMed/NCBI View Article : Google Scholar

37 

Wolvers D, Antoine JM, Myllyluoma E, Schrezenmeir J, Szajewska H and Rijkers GT: Guidance for substantiating the evidence for beneficial effects of probiotics: Prevention and management of infections by probiotics. J Nutr. 140:S698–S712. 2010.PubMed/NCBI View Article : Google Scholar

38 

Spath K, Heinl S and Grabherr R: ‘Direct cloning in Lactobacillus plantarum: Electroporation with non-methylated plasmid DNA enhances transformation efficiency and makes shuttle vectors obsolete’. Microb Cell Fact. 11(141)2012.PubMed/NCBI View Article : Google Scholar

39 

Heiss S, Hörmann A, Tauer C, Sonnleitner M, Egger E, Grabherr R and Heinl S: Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum. Microb Cell Fact. 15(50)2016.PubMed/NCBI View Article : Google Scholar

40 

Yadav R and Shukla P: An overview of advanced technologies for selection of probiotics and their expediency: A review. Crit Rev Food Sci Nutr. 57:3233–3242. 2017.PubMed/NCBI View Article : Google Scholar

41 

Allain T, Mansour NM, Bahr MMA, Martin R, Florent I, Langella P and Bermúdez-Humarán LG: A new lactobacilli in vivo expression system for the production and delivery of heterologous proteins at mucosal surfaces. FEMS Microbiol Lett. 363(fnw117)2016.PubMed/NCBI View Article : Google Scholar

42 

Rong G, Corrie SR and Clark HA: In vivo biosensing: Progress and perspectives. ACS Sens. 2:327–338. 2017.PubMed/NCBI View Article : Google Scholar

43 

Rowland IR, Rumney CJ, Coutts JT and Lievense LC: Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis. 19:281–285. 1998.PubMed/NCBI View Article : Google Scholar

44 

Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, Klinder A, O'Riordan M, O'Sullivan GC, Pool-Zobel B, et al: Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr. 85:488–496. 2007.PubMed/NCBI View Article : Google Scholar

45 

Le Leu RK, Hu Y, Brown IL, Woodman RJ and Young GP: Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis. 31:246–251. 2010.PubMed/NCBI View Article : Google Scholar

46 

Bae EA, Han MJ, Song MJ and Kim DH: Purification of Rotavirus infection-inhibitory protein from Bifidobacterium breve K-110. J Microbiol Biotechnol. 12:553–556. 2002.

47 

Patole SK, Rao SC, Keil AD, Nathan EA, Doherty DA and Simmer KN: Benefits of Bifidobacterium breve M-16V Supplementation in preterm neonates-A retrospective cohort study. PLoS One. 11(e0150775)2016.PubMed/NCBI View Article : Google Scholar

48 

Venturi A, Gionchetti P, Rizzello F, Johansson R, Zucconi E, Brigidi P, Matteuzzi D and Campieri M: Impact on the composition of the faecal flora by a new probiotic preparation: Preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther. 13:1103–1108. 1999.PubMed/NCBI View Article : Google Scholar

49 

Yadav R, Kumar V, Baweja M and Shukla P: Gene editing and genetic engineering approaches for advanced probiotics: A review. Crit Rev Food Sci Nutr. 58:1735–1746. 2018.PubMed/NCBI View Article : Google Scholar

50 

Wei C, Xun AY, Wei XX, Yao J, Wang JY, Shi RY, Yang GH, Li YX, Xu ZL, Lai MG, et al: Bifidobacteria expressing tumstatin protein for antitumor therapy in tumor-bearing mice. Technol Cancer Res Treat. 15:498–508. 2015.PubMed/NCBI View Article : Google Scholar

51 

Xu YF, Zhu LP, Hu B, Fu GF, Zhang HY, Wang JJ and Xu GX: A new expression plasmid in Bifidobacterium longum as a delivery system of endostatin for cancer gene therapy. Cancer Gene Ther. 14:151–157. 2007.PubMed/NCBI View Article : Google Scholar

52 

Zhu LP, Yin Y, Xing J, Li C, Kou L, Hu B, Wu ZW, Wang JJ and Xu GX: Therapeutic efficacy of Bifidobacterium longum-mediated human granulocyte colony-stimulating factor and/or endostatin combined with cyclophosphamide in mouse-transplanted tumors. Cancer Sci. 100:1986–1990. 2009.PubMed/NCBI View Article : Google Scholar

53 

Hu B, Kou L, Li C, Zhu LP, Fan YR, Wu ZW, Wang JJ and Xu GX: Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth. Cancer Gene Ther. 16:655–663. 2009.PubMed/NCBI View Article : Google Scholar

54 

Bolhassani A and Zahedifard F: Therapeutic live vaccines as a potential anticancer strategy. Int J Cancer. 131:1733–1743. 2012.PubMed/NCBI View Article : Google Scholar

55 

Chen T, Zhao X, Ren Y, Wang Y, Tang X, Tian P, Wang H and Xin H: Triptolide modulates tumour-colonisation and anti-tumour effect of attenuated Salmonella encoding DNase I. Appl Microbiol Biotechnol. 103:929–939. 2019.PubMed/NCBI View Article : Google Scholar

56 

Shahabi V, Reyes-Reyes M, Wallecha A, Rivera S, Paterson Y and MacIag P: Development of a Listeria monocytogenes based vaccine against prostate cancer. Cancer Immunol Immunother. 57:1301–1313. 2008.PubMed/NCBI View Article : Google Scholar

57 

Chen Y, Yang D, Li S, Gao Y, Jiang R, Deng L, Frankel FR and Sun B: Development of a Listeria monocytogenes-based vaccine against hepatocellular carcinoma. Oncogene. 31:2140–2152. 2012.PubMed/NCBI View Article : Google Scholar

58 

Chan CT, Lee JW, Cameron DE, Bashor CJ and Collins JJ: ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat Chem Biol. 12:82–86. 2016.PubMed/NCBI View Article : Google Scholar

59 

Derrien M, Vaughan EE, Plugge CM and de Vos WM: Akkermansia municiphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 54:1469–1476. 2004.PubMed/NCBI View Article : Google Scholar

60 

Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H, de Vos WM and Satokari R: Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol. 81:3655–3662. 2015.PubMed/NCBI View Article : Google Scholar

61 

Ottman N, Geerlings SY, Aalvink S, de Vos WM and Belzer C: Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol. 31:637–642. 2017.PubMed/NCBI View Article : Google Scholar

62 

Thibault R, Blachier F, Darcy-Vrillon B, De Coppet P, Bourreille A and Segain JP: Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: A transport deficiency. Inflamm Bowel Dis. 16:684–695. 2010.PubMed/NCBI View Article : Google Scholar

63 

Puertollano E, Kolida S and Yaqoob P: Biological significance of short-chain fatty acid metabolism by the intestinal microbiome. Curr Opin Clin Nutr Metab Care. 17:139–144. 2014.PubMed/NCBI View Article : Google Scholar

64 

Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V, Klievink J, Huuskonen L, Aalvink S, Skurnik M, Boeren S, et al: Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One. 12(e0173004)2017.PubMed/NCBI View Article : Google Scholar

65 

Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, et al: A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 23:107–113. 2017.PubMed/NCBI View Article : Google Scholar

66 

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, et al: Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 384:766–781. 2014.PubMed/NCBI View Article : Google Scholar

67 

Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR and Delzenne NM: Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 50:2374–2383. 2007.PubMed/NCBI View Article : Google Scholar

68 

GBD 2015 Obesity Collaborators. Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M, et al: Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 377:13–27. 2017.PubMed/NCBI View Article : Google Scholar

69 

Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos T, Martí-Romero M, Lopez RM, Florido J, Campoy C and Sanz Y: Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 104:83–92. 2010.PubMed/NCBI View Article : Google Scholar

70 

Karlsson CL, Önnerfält J, Xu J, Molin G, Ahrné S and Thorngren-Jerneck K: The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 20:2257–2261. 2012.PubMed/NCBI View Article : Google Scholar

71 

Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, et al: Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 110:9066–9071. 2013.PubMed/NCBI View Article : Google Scholar

72 

Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne NM, et al: Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat Med. 25:1096–1103. 2019.PubMed/NCBI View Article : Google Scholar

73 

Hu FB, Manson JAE and Willett WC: Types of dietary fat and risk of coronary heart disease: A critical review. J Am Coll Nutr. 20:5–19. 2001.PubMed/NCBI View Article : Google Scholar

74 

Almdal T, Scharling H, Jensen JS and Vestergaard H: The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: A population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med. 164:1422–1426. 2004.PubMed/NCBI View Article : Google Scholar

75 

Maleckas A, Venclauskas L, Wallenius V and Fändriks HL: Metabolic surgery in the treatment of type 2 diabetes mellitus. Oxford Textb Endocrinol Diabetes. 61:257–264. 2011.

76 

Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, et al: Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 56:1761–1772. 2007.PubMed/NCBI View Article : Google Scholar

77 

Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y and Ji L: Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 8(e711108)2013.PubMed/NCBI View Article : Google Scholar

78 

Hansen CH, Krych L, Nielsen DS, Vogensen FK, Hansen LH, Sørensen SJ, Buschard K and Hansen AK: Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia. 55:2285–2294. 2012.PubMed/NCBI View Article : Google Scholar

79 

Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, et al: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 528:262–266. 2015.PubMed/NCBI View Article : Google Scholar

80 

Tedgui A and Mallat Z: Cytokines in atherosclerosis: Pathogenic and regulatory pathways. Physiol Rev. 86:515–581. 2006.PubMed/NCBI View Article : Google Scholar

81 

Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, et al: Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 5(14)2017.PubMed/NCBI View Article : Google Scholar

82 

Jonsson AL and Bäckhed F: Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 14:79–87. 2017.PubMed/NCBI View Article : Google Scholar

83 

Barrington WT and Lusis AJ: Atherosclerosis: Association between the gut microbiome and atherosclerosis. Nat Rev Cardiol. 14:699–700. 2017.PubMed/NCBI View Article : Google Scholar

84 

Li J, Lin S, Vanhoutte PM, Woo CW and Xu A: Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- Mice. Circulation. 133:2434–2446. 2016.PubMed/NCBI View Article : Google Scholar

85 

Campion D, Ponzo P, Alessandria C, Saracco GM and Balzola F: The role of microbiota in autism spectrum disorders. Minerva Gastroenterol Dietol. 64:333–350. 2018.PubMed/NCBI View Article : Google Scholar

86 

Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT and Conlon MA: Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 77:6718–6721. 2011.PubMed/NCBI View Article : Google Scholar

87 

Naito Y, Uchiyama K and Takagi T: A next-generation beneficial microbe: Akkermansia muciniphila. J Clin Biochem Nutr. 63:33–35. 2018.PubMed/NCBI View Article : Google Scholar

88 

Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018.PubMed/NCBI View Article : Google Scholar

89 

Zheng H, Liang H, Wang Y, Miao M, Shi T, Yang F, Liu E, Yuan W, Ji ZS and Li DK: Altered gut microbiota composition associated with eczema in infants. PLoS One. 11(e0166026)2016.PubMed/NCBI View Article : Google Scholar

90 

Wu W, Lv L, Shi D, Ye J, Fang D, Guo F, Li Y, He X and Li L: Protective effect of Akkermansia muciniphila against immune-mediated liver injury in a mouse model. Front Microbiol. 8(1804)2017.PubMed/NCBI View Article : Google Scholar

91 

Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA and Florin TH: Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 105:2420–2428. 2010.PubMed/NCBI View Article : Google Scholar

92 

Wang HX, Liu M, Weng SY, Li JJ, Xie C, He HL, Guan W, Yuan YS and Gao J: Immune mechanisms of Concanavalin a model of autoimmune hepatitis. World J Gastroenterol. 18:119–125. 2012.PubMed/NCBI View Article : Google Scholar

93 

Drell T, Larionova A, Voor T, Simm J, Julge K, Heilman K, Tillmann V, Štšepetova J and Sepp E: Differences in gut microbiota between atopic and healthy children. Curr Microbiol. 71:177–183. 2015.PubMed/NCBI View Article : Google Scholar

94 

Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC and Roeselers G: Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio. 5:e01438–14. 2014.PubMed/NCBI View Article : Google Scholar

95 

van Passel MWJ, Kant R, Zoetendal EG, Plugge CM, Derrien M, Malfatti SA, Chain PS, Woyke T, Palva A, de Vos WM and Smidt H: The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS One. 6(e16876)2011.PubMed/NCBI View Article : Google Scholar

96 

Caputo A, Dubourg G, Croce O, Gupta S, Robert C, Papazian L, Rolain JM and Raoult D: Whole-genome assembly of Akkermansia muciniphila sequenced directly from human stool. Biol Direct. 10(5)2015.PubMed/NCBI View Article : Google Scholar

97 

Guo X, Li S, Zhang J, Wu F, Li X, Wu D, Zhang M, Ou Z, Jie Z, Yan Q, et al: Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genomics. 18(800)2017.PubMed/NCBI View Article : Google Scholar

98 

Ouwerkerk JP, Aalvink S, Belzer C and De Vos WM: Preparation and preservation of viable Akkermansia muciniphila cells for therapeutic interventions. Benef Microbes. 8:163–169. 2017.PubMed/NCBI View Article : Google Scholar

99 

Ouwerkerk JP, van der Ark KCH, Davids M, Claassens NJ, Finestra TR, de Vos WM and Belzer C: Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer. Appl Environ Microbiol. 82:6983–6993. 2016.PubMed/NCBI View Article : Google Scholar

100 

Vectors DP: Suicide gene therapy of cancer. Mol Ther. 3:S98–S115. 2001.

101 

Baban CK, Cronin M, O'Hanlon D, O'Sullivan GC and Tangney M: Bacteria as vectors for gene therapy of cancer. Bioeng Bugs. 1:385–394. 2010.PubMed/NCBI View Article : Google Scholar

102 

Pedrolli DB, Ribeiro NV, Squizato PN, de Jesus VN and Cozetto DA: Team AQA Unesp at iGEM 2017. Engineering microbial living therapeutics: The synthetic biology toolbox. Trends Biotechnol. 37:100–115. 2019.PubMed/NCBI View Article : Google Scholar

103 

Waller MC, Bober JR, Nair NU and Beisel CL: Toward a genetic tool development pipeline for host-associated bacteria. Curr Opin Microbiol. 38:156–164. 2017.PubMed/NCBI View Article : Google Scholar

104 

Riglar DT and Silver PA: Engineering bacteria for diagnostic and therapeutic applications. Nat Rev Microbiol. 16:214–225. 2018.PubMed/NCBI View Article : Google Scholar

105 

Welker DL, Hughes JE, Steele JL and Broadbent R: High efficiency electrotransformation of Lactobacillus casei. FEMS Microbiol Lett. 362:1–6. 2015.PubMed/NCBI View Article : Google Scholar

106 

Walsh M, Tangney M, O'Neill MJ, Larkin JO, Soden DM, McKenna SL, Darcy R, O'Sullivan GC and O'Driscoll CM: Evaluation of cellular uptake and gene transfer efficiency of pegylated poly-L-lysine compacted DNA: Implications for cancer gene therapy. Mol Pharm. 3:644–653. 2006.PubMed/NCBI View Article : Google Scholar

107 

Ahmad S, Casey G, Sweeney P, Tangney M and O'Sullivan GC: Optimised electroporation mediated DNA vaccination for treatment of prostate cancer. Genet Vaccines Ther. 8(1)2010.PubMed/NCBI View Article : Google Scholar

108 

Kado CI: Historical events that spawned the field of plasmid biology. Microbiol Spectr 2, 2014.

109 

St-Pierre F, Cui L, Priest DG, Endy D, Dodd IB and Shearwin KE: One-step cloning and chromosomal integration of DNA. ACS Synth Biol. 2:537–541. 2013.PubMed/NCBI View Article : Google Scholar

110 

Urnov FD, Rebar EJ, Holmes MC, Zhang HS and Gregory PD: Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 11:636–646. 2010.PubMed/NCBI View Article : Google Scholar

111 

Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, et al: A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 29:143–148. 2011.PubMed/NCBI View Article : Google Scholar

112 

Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR and Church GM: Programming cells by multiplex genome engineering and accelerated evolution. Nature. 460:894–898. 2009.PubMed/NCBI View Article : Google Scholar

113 

Kuipers OP, Beerthuyzen MM, de Ruyter PG, Luesink EJ and de Vos WM: Autoregulation of nisin biosynthesis in lactococcus lactis by signal transduction. J Biol Chem. 270:27299–27304. 1995.PubMed/NCBI View Article : Google Scholar

114 

Van der Meer JR, Polman J, Beerthuyzen MM, Siezen RJ, Kuipers OP and De Vos WM: Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protease involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol. 175:2578–2588. 1993.PubMed/NCBI View Article : Google Scholar

115 

Engelke G, Gutowski-Eckel Z, Kiesau P, Siegers K, Hammelmann M and Entian KD: Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol. 60:814–825. 1994.PubMed/NCBI View Article : Google Scholar

116 

Kleerebezem M, Bongers R, Rutten G, Vos WMD and Kuipers OP: Autoregulation of subtilin biosynthesis in Bacillus subtilis: The role of the spa-box in subtilin-responsive promoters. Peptides. 25:1415–1424. 2004.PubMed/NCBI View Article : Google Scholar

117 

Mohseni AH, Razavilar V, Keyvani H, Razavi MR and Khavari-Nejad RA: Efficient production and optimization of E7 oncoprotein from Iranian human papillomavirus type 16 in Lactococcus lactis using nisin-controlled gene expression (NICE) system. Microb Pathog. 110:554–560. 2017.PubMed/NCBI View Article : Google Scholar

118 

Van Hoang V, Ochi T, Kurata K, Arita Y, Ogasahara Y and Enomoto K: Nisin-induced expression of recombinant T cell epitopes of major Japanese cedar pollen allergens in Lactococcus lactis. Appl Microbiol Biotechnol. 102:261–268. 2018.PubMed/NCBI View Article : Google Scholar

119 

Kaiser AD: A genetic study of the temperate coliphage λ. Virology. 1:424–443. 1955.PubMed/NCBI View Article : Google Scholar

120 

Carter DM and Radding CM: The role of exonuclease and beta protein of phage lambda in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease. J Biol Chem. 246:2502–2512. 1971.PubMed/NCBI

121 

Murphy KC: Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J Bacteriol. 173:5808–5821. 1991.PubMed/NCBI View Article : Google Scholar

122 

Karu AE, Sakaki Y, Echols H and Linn S: The gamma protein specified by bacteriophage gamma. Structure and inhibitory activity for the recBC enzyme of Escherichia coli. J Biol Chem. 250:7377–7387. 1975.PubMed/NCBI

123 

Murphy KC: λ recombination and recombineering. EcoSal Plus 7, 2016.

124 

Juhas M and Ajioka JW: Lambda Red recombinase-mediated integration of the high molecular weight DNA into the Escherichia coli chromosome. Microb Cell Fact. 15(172)2016.PubMed/NCBI View Article : Google Scholar

125 

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier E: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471:602–607. 2011.PubMed/NCBI View Article : Google Scholar

126 

Bolotin A, Quinquis B, Sorokin A and Dusko Ehrlich S: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading). 151:2551–2561. 2005.PubMed/NCBI View Article : Google Scholar

127 

Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P and Moineau S: Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 190:1390–1400. 2008.PubMed/NCBI View Article : Google Scholar

128 

Tong Y, Charusanti P, Zhang L, Weber T and Lee SY: CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol. 4:1020–1029. 2015.PubMed/NCBI View Article : Google Scholar

129 

Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH and Moineau S: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 468:67–71. 2010.PubMed/NCBI View Article : Google Scholar

130 

Jiang W, Bikard D, Cox D, Zhang F and Marraffini LA: RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 31:233–239. 2013.PubMed/NCBI View Article : Google Scholar

131 

Oh JH and Van Pijkeren JP: CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42(e131)2014.PubMed/NCBI View Article : Google Scholar

132 

van der Els S, James JK, Kleerebezem M and Bron PA: Versatile Cas9-driven subpopulation selection toolbox for Lactococcus lactis. Appl Environ Microbiol. 84:e02752–17. 2018.PubMed/NCBI View Article : Google Scholar

133 

Manghwar H, Lindsey K, Zhang X and Jin S: CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends Plant Sci. 24:1102–1125. 2019.PubMed/NCBI View Article : Google Scholar

134 

Gauttam R, Seibold GM, Mueller P, Weil T, Weiß T, Handrick R and Eikmanns BJ: A simple dual-inducible CRISPR interference system for multiple gene targeting in Corynebacterium glutamicum. Plasmid. 103:25–35. 2019.PubMed/NCBI View Article : Google Scholar

135 

Crawley AB, Henriksen JR and Barrangou R: CRISPRdisco: An automated pipeline for the discovery and analysis of CRISPR-Cas systems. CRISPR J. 1:171–181. 2018.PubMed/NCBI View Article : Google Scholar

136 

Takei S, Omoto C, Kitagawa K, Morishita N, Katayama T, Shigemura K, Fujisawa M, Kawabata M, Hotta H and Shirakawa T: Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV-NS3-specific systemic immune response in mice. Vaccine. 32:3066–3074. 2014.PubMed/NCBI View Article : Google Scholar

137 

Pathmakanthan S, Meance S and Edwards CA: Probiotics: A review of human studies to date and methodological approaches. Microb Ecol Health Dis. 12:10–30. 2000.

138 

Lawenius L, Scheffler JM, Gustafsson KL, Henning P, Nilsson KH, Colldén H, Islander U, Plovier H, Cani PD, de Vos WM, et al: Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss. Am J Physiol Endocrinol Metab. 318:E480–E491. 2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zou Y and Chen T: Engineered <em>Akkermansia muciniphila</em>: A promising agent against diseases (Review). Exp Ther Med 20: 285, 2020.
APA
Zou, Y., & Chen, T. (2020). Engineered <em>Akkermansia muciniphila</em>: A promising agent against diseases (Review). Experimental and Therapeutic Medicine, 20, 285. https://doi.org/10.3892/etm.2020.9415
MLA
Zou, Y., Chen, T."Engineered <em>Akkermansia muciniphila</em>: A promising agent against diseases (Review)". Experimental and Therapeutic Medicine 20.6 (2020): 285.
Chicago
Zou, Y., Chen, T."Engineered <em>Akkermansia muciniphila</em>: A promising agent against diseases (Review)". Experimental and Therapeutic Medicine 20, no. 6 (2020): 285. https://doi.org/10.3892/etm.2020.9415
Copy and paste a formatted citation
x
Spandidos Publications style
Zou Y and Chen T: Engineered <em>Akkermansia muciniphila</em>: A promising agent against diseases (Review). Exp Ther Med 20: 285, 2020.
APA
Zou, Y., & Chen, T. (2020). Engineered <em>Akkermansia muciniphila</em>: A promising agent against diseases (Review). Experimental and Therapeutic Medicine, 20, 285. https://doi.org/10.3892/etm.2020.9415
MLA
Zou, Y., Chen, T."Engineered <em>Akkermansia muciniphila</em>: A promising agent against diseases (Review)". Experimental and Therapeutic Medicine 20.6 (2020): 285.
Chicago
Zou, Y., Chen, T."Engineered <em>Akkermansia muciniphila</em>: A promising agent against diseases (Review)". Experimental and Therapeutic Medicine 20, no. 6 (2020): 285. https://doi.org/10.3892/etm.2020.9415
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team