|
1
|
WHO and UNICEF. Health in the post-2015
development agenda report of the Global Thematic Consultation on
Health. World We Want. 31:514–526. 2014.
|
|
2
|
Dora C, Haines A, Balbus J, Fletcher E,
Adair-Rohani H, Alabaster G, Hossain R, de Onis M, Branca F and
Neira M: Indicators linking health and sustainability in the
post-2015 development agenda. Lancet. 385:380–391. 2015.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Novelli G, Biancolella M, Latini A,
Spallone A, Borgiani P and Papaluca M: Precision medicine in
non-communicable diseases. High-Throughput. 9(3)2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Imaoka T, Nishimura M, Daino K, Takabatake
M, Moriyama H, Nishimura Y, Morioka T, Shimada Y and Kakinuma S:
Risk of second cancer after ion beam radiotherapy: Insights from
animal carcinogenesis studies. Int J Radiat Biol. 95:1431–1440.
2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
O'Malley RB and Revels JW: Imaging of
abdominal postoperative complications. Radiol Clin North Am.
58:73–91. 2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Suri S, Kumar V, Kumar S, Goyal A, Tanwar
B and Kaur J and Kaur J: DASH dietary pattern: A treatment for
non-communicable diseases. Curr Hypertens Rev. 16:108–114.
2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Zhu J, Yang J and Luo Y: Applications of
engineered intestinal bacteria in disease diagnosis and treatment.
Sheng Wu Gong Cheng Xue Bao. 35:2350–2366. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
8
|
Parséus A, Sommer N, Sommer F, Caesar R,
Molinaro A, Ståhlman M, Greiner TU, Perkins R and Bäckhed F:
Microbiota-induced obesity requires farnesoid X receptor. Gut.
66:429–437. 2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Kostic AD, Gevers D, Siljander H, Vatanen
T, Hyötyläinen T, Hämäläinen AM, Peet A, Tillmann V, Pöhö P,
Mattila I, et al: The dynamics of the human infant gut microbiome
in development and in progression toward type 1 diabetes. Cell Host
Microbe. 17:260–273. 2015.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F,
Liang S, Zhang W, Guan Y, Shen D, et al: A metagenome-wide
association study of gut microbiota in type 2 diabetes. Nature.
490:55–60. 2012.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Zhang M, Sun K, Wu Y, Yang Y, Tso P and Wu
Z: Interactions between intestinal microbiota and host immune
response in inflammatory bowel disease. Front Immunol.
8(942)2017.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Lu T, Chen Y, Guo Y, Sun J, Shen W, Yuan
M, Zhang S, He P and Jiao X: Altered gut microbiota diversity and
composition in chronic urticaria. Dis Markers.
2019(6417471)2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Cryan JF, O'Riordan KJ, Sandhu K, Peterson
V and Dinan TG: The gut microbiome in neurological disorders.
Lancet Neurol. 19:179–194. 2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Jiménez-Avalos JA, Arrevillaga-Boni G,
González-López L, García-Carvajal ZY and González-Avila M:
Classical methods and perspectives for manipulating the human gut
microbial ecosystem. Crit Rev Food Sci Nutr: Mar 2, 2020 (Epub
ahead of print). doi: 10.1080/10408398.2020.1724075.
|
|
15
|
Szajewska H: What are the indications for
using probiotics in children? Arch Dis Child. 101:398–403.
2016.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Chua KJ, Kwok WC, Aggarwal N, Sun T and
Chang MW: Designer probiotics for the prevention and treatment of
human diseases. Curr Opin Chem Biol. 40:8–16. 2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Sanders ME, Akkermans LMA, Haller D,
Hammerman C, Heimbach J, Hörmannsperger G, Huys G, Levy DD,
Lutgendorff F, Mack D, et al: Safety assessment of probiotics for
human use. Gut Microbes. 1:164–185. 2010.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Khangwal I and Shukla P: Combinatory
biotechnological intervention for gut microbiota. Appl Microbiol
Biotechnol. 103:3615–3625. 2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Yadav M and Shukla P: Recent systems
biology approaches for probiotics use in health aspects: A review.
3 Biotech. 9(448)2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kumar M, Yadav AK, Verma V, Singh B, Mal
G, Nagpal R and Hemalatha R: Bioengineered probiotics as a new hope
for health and diseases: An overview of potential and prospects.
Future Microbiol. 11:585–600. 2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Yadav R, Singh PK and Shukla P: Metabolic
engineering for probiotics and their genome-wide expression
profiling. Curr Protein Pept Sci. 19:68–74. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Steidler L, Hans W, Schotte L, Neirynck S,
Obermeier F, Falk W, Fiers W and Remaut E: Treatment of murine
colitis by Lactococcus lactis secreting interleukin-10.
Science. 289:1352–1355. 2000.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Braat H, Rottiers P, Hommes DW,
Huyghebaert N, Remaut E, Remon JP, van Deventer SJ, Neirynck S,
Peppelenbosch MP and Steidler L: A phase I trial with transgenic
bacteria expressing interleukin-10 in Crohn's disease. Clin
Gastroenterol Hepatol. 4:754–759. 2006.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kurtz CB, Millet YA, Puurunen MK,
Perreault M, Charbonneau MR, Isabella VM, Kotula JW, Antipov E,
Dagon Y, Denney WS, et al: An engineered E. Coli Nissle
improves hyperammonemia and survival in mice and shows
dose-dependent exposure in healthy humans. Sci Transl Med.
11(eaau7975)2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Saltzman DA, Katsanis E, Heise CP, Hasz
DE, Vigdorovich V, Kelly SM, Curtiss R III, Leonard AS and Anderson
PM: Antitumor mechanisms of attenuated Salmonella
typhimurium containing the gene for human interleukin-2: A
novel antitumor agent? J Pediatr Surg. 32:301–306. 1997.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Fang X, Tian P, Zhao X, Jiang C and Chen
T: Neuroprotective effects of an engineered commensal bacterium in
the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinson disease
mouse model via producing glucagon-like peptide-1. J Neurochem.
160:441–452. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Yang G, Jiang Y, Yang W, Du F, Yao Y, Shi
C and Wang C: Effective treatment of hypertension by recombinant
Lactobacillus plantarum expressing angiotensin converting
enzyme inhibitory peptide. Microb Cell Fact. 14(202)2015.
|
|
28
|
Cani PD and de Vos WM: Next-generation
beneficial microbes: The case of Akkermansia muciniphila.
Front Microbiol. 8(1765)2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Rodríguez V, Asenjo JA and Andrews BA:
Design and implementation of a high yield production system for
recombinant expression of peptides. Microb Cell Fact.
13(65)2014.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Sahdev S, Khattar SK and Saini KS:
Production of active eukaryotic proteins through bacterial
expression systems: A review of the existing biotechnology
strategies. Mol Cell Biochem. 307:249–264. 2008.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Chance RE and Frank BH: Research,
development, production, and safety of biosynthetic human insulin.
Diabetes Care. 16 (Suppl 3):S133–S142. 1993.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Whelan RA, Rausch S, Ebner F, Günzel D,
Richter JF, Hering NA, Schulzke JD, Kühl AA, Keles A, Janczyk P, et
al: A transgenic probiotic secreting a parasite immunomodulator for
site-directed treatment of gut inflammation. Mol Ther.
22:1730–1740. 2014.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Zoetendal EG, Vaughan EE and De Vos WM: A
microbial world within us. Mol Microbiol. 59:1639–1650.
2006.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Coeuret V, Dubernet S, Bernardeau M,
Gueguen M and Vernoux JP: Isolation, characterisation and
identification of lactobacilli focusing mainly on cheeses and other
dairy products. Lait. 83:269–306. 2003.
|
|
35
|
Kikuchi Y, Kunitoh-Asari A, Hayakawa K,
Imai S, Kasuya K, Abe K, Adachi Y, Fukudome S, Takahashi Y and
Hachimura S: Oral administration of Lactobacillus plantarum
strain AYA enhances IgA secretion and provides survival protection
against influenza virus infection in mice. PLoS One.
9(e86416)2014.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Sazawal S, Hiremath G, Dhingra U, Malik P,
Deb S and Black RE: Efficacy of probiotics in prevention of acute
diarrhoea: A meta-analysis of masked, randomised,
placebo-controlled trials. Lancet Infect Dis. 6:374–382.
2006.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Wolvers D, Antoine JM, Myllyluoma E,
Schrezenmeir J, Szajewska H and Rijkers GT: Guidance for
substantiating the evidence for beneficial effects of probiotics:
Prevention and management of infections by probiotics. J Nutr.
140:S698–S712. 2010.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Spath K, Heinl S and Grabherr R: ‘Direct
cloning in Lactobacillus plantarum: Electroporation with
non-methylated plasmid DNA enhances transformation efficiency and
makes shuttle vectors obsolete’. Microb Cell Fact.
11(141)2012.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Heiss S, Hörmann A, Tauer C, Sonnleitner
M, Egger E, Grabherr R and Heinl S: Evaluation of novel inducible
promoter/repressor systems for recombinant protein expression in
Lactobacillus plantarum. Microb Cell Fact.
15(50)2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Yadav R and Shukla P: An overview of
advanced technologies for selection of probiotics and their
expediency: A review. Crit Rev Food Sci Nutr. 57:3233–3242.
2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Allain T, Mansour NM, Bahr MMA, Martin R,
Florent I, Langella P and Bermúdez-Humarán LG: A new lactobacilli
in vivo expression system for the production and delivery of
heterologous proteins at mucosal surfaces. FEMS Microbiol Lett.
363(fnw117)2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Rong G, Corrie SR and Clark HA: In vivo
biosensing: Progress and perspectives. ACS Sens. 2:327–338.
2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Rowland IR, Rumney CJ, Coutts JT and
Lievense LC: Effect of Bifidobacterium longum and inulin on
gut bacterial metabolism and carcinogen-induced aberrant crypt foci
in rats. Carcinogenesis. 19:281–285. 1998.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Rafter J, Bennett M, Caderni G, Clune Y,
Hughes R, Karlsson PC, Klinder A, O'Riordan M, O'Sullivan GC,
Pool-Zobel B, et al: Dietary synbiotics reduce cancer risk factors
in polypectomized and colon cancer patients. Am J Clin Nutr.
85:488–496. 2007.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Le Leu RK, Hu Y, Brown IL, Woodman RJ and
Young GP: Synbiotic intervention of Bifidobacterium lactis
and resistant starch protects against colorectal cancer development
in rats. Carcinogenesis. 31:246–251. 2010.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Bae EA, Han MJ, Song MJ and Kim DH:
Purification of Rotavirus infection-inhibitory protein from
Bifidobacterium breve K-110. J Microbiol Biotechnol.
12:553–556. 2002.
|
|
47
|
Patole SK, Rao SC, Keil AD, Nathan EA,
Doherty DA and Simmer KN: Benefits of Bifidobacterium breve
M-16V Supplementation in preterm neonates-A retrospective cohort
study. PLoS One. 11(e0150775)2016.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Venturi A, Gionchetti P, Rizzello F,
Johansson R, Zucconi E, Brigidi P, Matteuzzi D and Campieri M:
Impact on the composition of the faecal flora by a new probiotic
preparation: Preliminary data on maintenance treatment of patients
with ulcerative colitis. Aliment Pharmacol Ther. 13:1103–1108.
1999.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Yadav R, Kumar V, Baweja M and Shukla P:
Gene editing and genetic engineering approaches for advanced
probiotics: A review. Crit Rev Food Sci Nutr. 58:1735–1746.
2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Wei C, Xun AY, Wei XX, Yao J, Wang JY, Shi
RY, Yang GH, Li YX, Xu ZL, Lai MG, et al: Bifidobacteria expressing
tumstatin protein for antitumor therapy in tumor-bearing mice.
Technol Cancer Res Treat. 15:498–508. 2015.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Xu YF, Zhu LP, Hu B, Fu GF, Zhang HY, Wang
JJ and Xu GX: A new expression plasmid in Bifidobacterium
longum as a delivery system of endostatin for cancer gene
therapy. Cancer Gene Ther. 14:151–157. 2007.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Zhu LP, Yin Y, Xing J, Li C, Kou L, Hu B,
Wu ZW, Wang JJ and Xu GX: Therapeutic efficacy of
Bifidobacterium longum-mediated human granulocyte
colony-stimulating factor and/or endostatin combined with
cyclophosphamide in mouse-transplanted tumors. Cancer Sci.
100:1986–1990. 2009.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Hu B, Kou L, Li C, Zhu LP, Fan YR, Wu ZW,
Wang JJ and Xu GX: Bifidobacterium longum as a delivery
system of TRAIL and endostatin cooperates with chemotherapeutic
drugs to inhibit hypoxic tumor growth. Cancer Gene Ther.
16:655–663. 2009.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Bolhassani A and Zahedifard F: Therapeutic
live vaccines as a potential anticancer strategy. Int J Cancer.
131:1733–1743. 2012.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Chen T, Zhao X, Ren Y, Wang Y, Tang X,
Tian P, Wang H and Xin H: Triptolide modulates tumour-colonisation
and anti-tumour effect of attenuated Salmonella encoding DNase I.
Appl Microbiol Biotechnol. 103:929–939. 2019.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Shahabi V, Reyes-Reyes M, Wallecha A,
Rivera S, Paterson Y and MacIag P: Development of a Listeria
monocytogenes based vaccine against prostate cancer. Cancer
Immunol Immunother. 57:1301–1313. 2008.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Chen Y, Yang D, Li S, Gao Y, Jiang R, Deng
L, Frankel FR and Sun B: Development of a Listeria
monocytogenes-based vaccine against hepatocellular carcinoma.
Oncogene. 31:2140–2152. 2012.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Chan CT, Lee JW, Cameron DE, Bashor CJ and
Collins JJ: ‘Deadman’ and ‘Passcode’ microbial kill switches for
bacterial containment. Nat Chem Biol. 12:82–86. 2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Derrien M, Vaughan EE, Plugge CM and de
Vos WM: Akkermansia municiphila gen. nov., sp. nov., a human
intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol.
54:1469–1476. 2004.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Reunanen J, Kainulainen V, Huuskonen L,
Ottman N, Belzer C, Huhtinen H, de Vos WM and Satokari R:
Akkermansia muciniphila adheres to enterocytes and
strengthens the integrity of the epithelial cell layer. Appl
Environ Microbiol. 81:3655–3662. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Ottman N, Geerlings SY, Aalvink S, de Vos
WM and Belzer C: Action and function of Akkermansia
muciniphila in microbiome ecology, health and disease. Best
Pract Res Clin Gastroenterol. 31:637–642. 2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Thibault R, Blachier F, Darcy-Vrillon B,
De Coppet P, Bourreille A and Segain JP: Butyrate utilization by
the colonic mucosa in inflammatory bowel diseases: A transport
deficiency. Inflamm Bowel Dis. 16:684–695. 2010.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Puertollano E, Kolida S and Yaqoob P:
Biological significance of short-chain fatty acid metabolism by the
intestinal microbiome. Curr Opin Clin Nutr Metab Care. 17:139–144.
2014.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Ottman N, Reunanen J, Meijerink M, Pietilä
TE, Kainulainen V, Klievink J, Huuskonen L, Aalvink S, Skurnik M,
Boeren S, et al: Pili-like proteins of Akkermansia
muciniphila modulate host immune responses and gut barrier
function. PLoS One. 12(e0173004)2017.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Plovier H, Everard A, Druart C, Depommier
C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T,
Lichtenstein L, et al: A purified membrane protein from
Akkermansia muciniphila or the pasteurized bacterium
improves metabolism in obese and diabetic mice. Nat Med.
23:107–113. 2017.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Ng M, Fleming T, Robinson M, Thomson B,
Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF,
et al: Global, regional, and national prevalence of overweight and
obesity in children and adults during 1980-2013: A systematic
analysis for the Global Burden of Disease Study 2013. Lancet.
384:766–781. 2014.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Cani PD, Neyrinck AM, Fava F, Knauf C,
Burcelin RG, Tuohy KM, Gibson GR and Delzenne NM: Selective
increases of bifidobacteria in gut microflora improve
high-fat-diet-induced diabetes in mice through a mechanism
associated with endotoxaemia. Diabetologia. 50:2374–2383.
2007.PubMed/NCBI View Article : Google Scholar
|
|
68
|
GBD 2015 Obesity Collaborators. Afshin A,
Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L,
Mokdad AH, Moradi-Lakeh M, et al: Health effects of overweight and
obesity in 195 countries over 25 years. N Engl J Med. 377:13–27.
2017.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Santacruz A, Collado MC, García-Valdés L,
Segura MT, Martín-Lagos JA, Anjos T, Martí-Romero M, Lopez RM,
Florido J, Campoy C and Sanz Y: Gut microbiota composition is
associated with body weight, weight gain and biochemical parameters
in pregnant women. Br J Nutr. 104:83–92. 2010.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Karlsson CL, Önnerfält J, Xu J, Molin G,
Ahrné S and Thorngren-Jerneck K: The microbiota of the gut in
preschool children with normal and excessive body weight. Obesity
(Silver Spring). 20:2257–2261. 2012.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Everard A, Belzer C, Geurts L, Ouwerkerk
JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne
NM, et al: Cross-talk between Akkermansia muciniphila and
intestinal epithelium controls diet-induced obesity. Proc Natl Acad
Sci USA. 110:9066–9071. 2013.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Depommier C, Everard A, Druart C, Plovier
H, Van Hul M, Vieira-Silva S, Falony G, Raes J, Maiter D, Delzenne
NM, et al: Supplementation with Akkermansia muciniphila in
overweight and obese human volunteers: A proof-of-concept
exploratory study. Nat Med. 25:1096–1103. 2019.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Hu FB, Manson JAE and Willett WC: Types of
dietary fat and risk of coronary heart disease: A critical review.
J Am Coll Nutr. 20:5–19. 2001.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Almdal T, Scharling H, Jensen JS and
Vestergaard H: The independent effect of type 2 diabetes mellitus
on ischemic heart disease, stroke, and death: A population-based
study of 13,000 men and women with 20 years of follow-up. Arch
Intern Med. 164:1422–1426. 2004.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Maleckas A, Venclauskas L, Wallenius V and
Fändriks HL: Metabolic surgery in the treatment of type 2 diabetes
mellitus. Oxford Textb Endocrinol Diabetes. 61:257–264. 2011.
|
|
76
|
Cani PD, Amar J, Iglesias MA, Poggi M,
Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, et
al: Metabolic endotoxemia initiates obesity and insulin resistance.
Diabetes. 56:1761–1772. 2007.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Zhang X, Shen D, Fang Z, Jie Z, Qiu X,
Zhang C, Chen Y and Ji L: Human gut microbiota changes reveal the
progression of glucose intolerance. PLoS One.
8(e711108)2013.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Hansen CH, Krych L, Nielsen DS, Vogensen
FK, Hansen LH, Sørensen SJ, Buschard K and Hansen AK: Early life
treatment with vancomycin propagates Akkermansia muciniphila
and reduces diabetes incidence in the NOD mouse. Diabetologia.
55:2285–2294. 2012.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Forslund K, Hildebrand F, Nielsen T,
Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S,
Gudmundsdottir V, Pedersen HK, et al: Disentangling type 2 diabetes
and metformin treatment signatures in the human gut microbiota.
Nature. 528:262–266. 2015.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Tedgui A and Mallat Z: Cytokines in
atherosclerosis: Pathogenic and regulatory pathways. Physiol Rev.
86:515–581. 2006.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Li J, Zhao F, Wang Y, Chen J, Tao J, Tian
G, Wu S, Liu W, Cui Q, Geng B, et al: Gut microbiota dysbiosis
contributes to the development of hypertension. Microbiome.
5(14)2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Jonsson AL and Bäckhed F: Role of gut
microbiota in atherosclerosis. Nat Rev Cardiol. 14:79–87.
2017.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Barrington WT and Lusis AJ:
Atherosclerosis: Association between the gut microbiome and
atherosclerosis. Nat Rev Cardiol. 14:699–700. 2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Li J, Lin S, Vanhoutte PM, Woo CW and Xu
A: Akkermansia muciniphila protects against atherosclerosis
by preventing metabolic endotoxemia-induced inflammation in
Apoe-/- Mice. Circulation. 133:2434–2446.
2016.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Campion D, Ponzo P, Alessandria C, Saracco
GM and Balzola F: The role of microbiota in autism spectrum
disorders. Minerva Gastroenterol Dietol. 64:333–350.
2018.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Wang L, Christophersen CT, Sorich MJ,
Gerber JP, Angley MT and Conlon MA: Low relative abundances of the
mucolytic bacterium Akkermansia muciniphila and
Bifidobacterium spp. in feces of children with autism. Appl
Environ Microbiol. 77:6718–6721. 2011.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Naito Y, Uchiyama K and Takagi T: A
next-generation beneficial microbe: Akkermansia muciniphila.
J Clin Biochem Nutr. 63:33–35. 2018.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Routy B, Le Chatelier E, Derosa L, Duong
CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C,
Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based
immunotherapy against epithelial tumors. Science. 359:91–97.
2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Zheng H, Liang H, Wang Y, Miao M, Shi T,
Yang F, Liu E, Yuan W, Ji ZS and Li DK: Altered gut microbiota
composition associated with eczema in infants. PLoS One.
11(e0166026)2016.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Wu W, Lv L, Shi D, Ye J, Fang D, Guo F, Li
Y, He X and Li L: Protective effect of Akkermansia
muciniphila against immune-mediated liver injury in a mouse
model. Front Microbiol. 8(1804)2017.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Png CW, Lindén SK, Gilshenan KS, Zoetendal
EG, McSweeney CS, Sly LI, McGuckin MA and Florin TH: Mucolytic
bacteria with increased prevalence in IBD mucosa augment in vitro
utilization of mucin by other bacteria. Am J Gastroenterol.
105:2420–2428. 2010.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Wang HX, Liu M, Weng SY, Li JJ, Xie C, He
HL, Guan W, Yuan YS and Gao J: Immune mechanisms of Concanavalin a
model of autoimmune hepatitis. World J Gastroenterol. 18:119–125.
2012.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Drell T, Larionova A, Voor T, Simm J,
Julge K, Heilman K, Tillmann V, Štšepetova J and Sepp E:
Differences in gut microbiota between atopic and healthy children.
Curr Microbiol. 71:177–183. 2015.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Lukovac S, Belzer C, Pellis L, Keijser BJ,
de Vos WM, Montijn RC and Roeselers G: Differential modulation by
Akkermansia muciniphila and Faecalibacterium
prausnitzii of host peripheral lipid metabolism and histone
acetylation in mouse gut organoids. mBio. 5:e01438–14.
2014.PubMed/NCBI View Article : Google Scholar
|
|
95
|
van Passel MWJ, Kant R, Zoetendal EG,
Plugge CM, Derrien M, Malfatti SA, Chain PS, Woyke T, Palva A, de
Vos WM and Smidt H: The genome of Akkermansia muciniphila, a
dedicated intestinal mucin degrader, and its use in exploring
intestinal metagenomes. PLoS One. 6(e16876)2011.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Caputo A, Dubourg G, Croce O, Gupta S,
Robert C, Papazian L, Rolain JM and Raoult D: Whole-genome assembly
of Akkermansia muciniphila sequenced directly from human
stool. Biol Direct. 10(5)2015.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Guo X, Li S, Zhang J, Wu F, Li X, Wu D,
Zhang M, Ou Z, Jie Z, Yan Q, et al: Genome sequencing of 39
Akkermansia muciniphila isolates reveals its population
structure, genomic and functional diverisity, and global
distribution in mammalian gut microbiotas. BMC Genomics.
18(800)2017.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Ouwerkerk JP, Aalvink S, Belzer C and De
Vos WM: Preparation and preservation of viable Akkermansia
muciniphila cells for therapeutic interventions. Benef
Microbes. 8:163–169. 2017.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Ouwerkerk JP, van der Ark KCH, Davids M,
Claassens NJ, Finestra TR, de Vos WM and Belzer C: Adaptation of
Akkermansia muciniphila to the oxic-anoxic interface of the
mucus layer. Appl Environ Microbiol. 82:6983–6993. 2016.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Vectors DP: Suicide gene therapy of
cancer. Mol Ther. 3:S98–S115. 2001.
|
|
101
|
Baban CK, Cronin M, O'Hanlon D, O'Sullivan
GC and Tangney M: Bacteria as vectors for gene therapy of cancer.
Bioeng Bugs. 1:385–394. 2010.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Pedrolli DB, Ribeiro NV, Squizato PN, de
Jesus VN and Cozetto DA: Team AQA Unesp at iGEM 2017. Engineering
microbial living therapeutics: The synthetic biology toolbox.
Trends Biotechnol. 37:100–115. 2019.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Waller MC, Bober JR, Nair NU and Beisel
CL: Toward a genetic tool development pipeline for host-associated
bacteria. Curr Opin Microbiol. 38:156–164. 2017.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Riglar DT and Silver PA: Engineering
bacteria for diagnostic and therapeutic applications. Nat Rev
Microbiol. 16:214–225. 2018.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Welker DL, Hughes JE, Steele JL and
Broadbent R: High efficiency electrotransformation of
Lactobacillus casei. FEMS Microbiol Lett. 362:1–6.
2015.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Walsh M, Tangney M, O'Neill MJ, Larkin JO,
Soden DM, McKenna SL, Darcy R, O'Sullivan GC and O'Driscoll CM:
Evaluation of cellular uptake and gene transfer efficiency of
pegylated poly-L-lysine compacted DNA: Implications for cancer gene
therapy. Mol Pharm. 3:644–653. 2006.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Ahmad S, Casey G, Sweeney P, Tangney M and
O'Sullivan GC: Optimised electroporation mediated DNA vaccination
for treatment of prostate cancer. Genet Vaccines Ther.
8(1)2010.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Kado CI: Historical events that spawned
the field of plasmid biology. Microbiol Spectr 2, 2014.
|
|
109
|
St-Pierre F, Cui L, Priest DG, Endy D,
Dodd IB and Shearwin KE: One-step cloning and chromosomal
integration of DNA. ACS Synth Biol. 2:537–541. 2013.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Urnov FD, Rebar EJ, Holmes MC, Zhang HS
and Gregory PD: Genome editing with engineered zinc finger
nucleases. Nat Rev Genet. 11:636–646. 2010.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Miller JC, Tan S, Qiao G, Barlow KA, Wang
J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, et al: A TALE
nuclease architecture for efficient genome editing. Nat Biotechnol.
29:143–148. 2011.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G,
Forest CR and Church GM: Programming cells by multiplex genome
engineering and accelerated evolution. Nature. 460:894–898.
2009.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Kuipers OP, Beerthuyzen MM, de Ruyter PG,
Luesink EJ and de Vos WM: Autoregulation of nisin biosynthesis in
lactococcus lactis by signal transduction. J Biol Chem.
270:27299–27304. 1995.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Van der Meer JR, Polman J, Beerthuyzen MM,
Siezen RJ, Kuipers OP and De Vos WM: Characterization of the
Lactococcus lactis nisin A operon genes nisP, encoding a
subtilisin-like serine protease involved in precursor processing,
and nisR, encoding a regulatory protein involved in nisin
biosynthesis. J Bacteriol. 175:2578–2588. 1993.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Engelke G, Gutowski-Eckel Z, Kiesau P,
Siegers K, Hammelmann M and Entian KD: Regulation of nisin
biosynthesis and immunity in Lactococcus lactis 6F3. Appl
Environ Microbiol. 60:814–825. 1994.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Kleerebezem M, Bongers R, Rutten G, Vos
WMD and Kuipers OP: Autoregulation of subtilin biosynthesis in
Bacillus subtilis: The role of the spa-box in
subtilin-responsive promoters. Peptides. 25:1415–1424.
2004.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Mohseni AH, Razavilar V, Keyvani H, Razavi
MR and Khavari-Nejad RA: Efficient production and optimization of
E7 oncoprotein from Iranian human papillomavirus type 16 in
Lactococcus lactis using nisin-controlled gene expression
(NICE) system. Microb Pathog. 110:554–560. 2017.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Van Hoang V, Ochi T, Kurata K, Arita Y,
Ogasahara Y and Enomoto K: Nisin-induced expression of recombinant
T cell epitopes of major Japanese cedar pollen allergens in
Lactococcus lactis. Appl Microbiol Biotechnol. 102:261–268.
2018.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Kaiser AD: A genetic study of the
temperate coliphage λ. Virology. 1:424–443. 1955.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Carter DM and Radding CM: The role of
exonuclease and beta protein of phage lambda in genetic
recombination. II. Substrate specificity and the mode of action of
lambda exonuclease. J Biol Chem. 246:2502–2512. 1971.PubMed/NCBI
|
|
121
|
Murphy KC: Lambda Gam protein inhibits the
helicase and chi-stimulated recombination activities of
Escherichia coli RecBCD enzyme. J Bacteriol. 173:5808–5821.
1991.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Karu AE, Sakaki Y, Echols H and Linn S:
The gamma protein specified by bacteriophage gamma. Structure and
inhibitory activity for the recBC enzyme of Escherichia
coli. J Biol Chem. 250:7377–7387. 1975.PubMed/NCBI
|
|
123
|
Murphy KC: λ recombination and
recombineering. EcoSal Plus 7, 2016.
|
|
124
|
Juhas M and Ajioka JW: Lambda Red
recombinase-mediated integration of the high molecular weight DNA
into the Escherichia coli chromosome. Microb Cell Fact.
15(172)2016.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Deltcheva E, Chylinski K, Sharma CM,
Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier
E: CRISPR RNA maturation by trans-encoded small RNA and host factor
RNase III. Nature. 471:602–607. 2011.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Bolotin A, Quinquis B, Sorokin A and Dusko
Ehrlich S: Clustered regularly interspaced short palindrome repeats
(CRISPRs) have spacers of extrachromosomal origin. Microbiology
(Reading). 151:2551–2561. 2005.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Deveau H, Barrangou R, Garneau JE, Labonté
J, Fremaux C, Boyaval P, Romero DA, Horvath P and Moineau S: Phage
response to CRISPR-encoded resistance in Streptococcus
thermophilus. J Bacteriol. 190:1390–1400. 2008.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Tong Y, Charusanti P, Zhang L, Weber T and
Lee SY: CRISPR-Cas9 based engineering of actinomycetal genomes. ACS
Synth Biol. 4:1020–1029. 2015.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Garneau JE, Dupuis MÈ, Villion M, Romero
DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH and
Moineau S: The CRISPR/Cas bacterial immune system cleaves
bacteriophage and plasmid DNA. Nature. 468:67–71. 2010.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Jiang W, Bikard D, Cox D, Zhang F and
Marraffini LA: RNA-guided editing of bacterial genomes using
CRISPR-Cas systems. Nat Biotechnol. 31:233–239. 2013.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Oh JH and Van Pijkeren JP:
CRISPR-Cas9-assisted recombineering in Lactobacillus
reuteri. Nucleic Acids Res. 42(e131)2014.PubMed/NCBI View Article : Google Scholar
|
|
132
|
van der Els S, James JK, Kleerebezem M and
Bron PA: Versatile Cas9-driven subpopulation selection toolbox for
Lactococcus lactis. Appl Environ Microbiol. 84:e02752–17.
2018.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Manghwar H, Lindsey K, Zhang X and Jin S:
CRISPR/Cas system: Recent advances and future prospects for genome
editing. Trends Plant Sci. 24:1102–1125. 2019.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Gauttam R, Seibold GM, Mueller P, Weil T,
Weiß T, Handrick R and Eikmanns BJ: A simple dual-inducible CRISPR
interference system for multiple gene targeting in
Corynebacterium glutamicum. Plasmid. 103:25–35.
2019.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Crawley AB, Henriksen JR and Barrangou R:
CRISPRdisco: An automated pipeline for the discovery and analysis
of CRISPR-Cas systems. CRISPR J. 1:171–181. 2018.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Takei S, Omoto C, Kitagawa K, Morishita N,
Katayama T, Shigemura K, Fujisawa M, Kawabata M, Hotta H and
Shirakawa T: Oral administration of genetically modified
Bifidobacterium displaying HCV-NS3 multi-epitope fusion
protein could induce an HCV-NS3-specific systemic immune response
in mice. Vaccine. 32:3066–3074. 2014.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Pathmakanthan S, Meance S and Edwards CA:
Probiotics: A review of human studies to date and methodological
approaches. Microb Ecol Health Dis. 12:10–30. 2000.
|
|
138
|
Lawenius L, Scheffler JM, Gustafsson KL,
Henning P, Nilsson KH, Colldén H, Islander U, Plovier H, Cani PD,
de Vos WM, et al: Pasteurized Akkermansia muciniphila
protects from fat mass gain but not from bone loss. Am J Physiol
Endocrinol Metab. 318:E480–E491. 2020.PubMed/NCBI View Article : Google Scholar
|