1
|
No authors listed. Osteoporosis
prevention, diagnosis, and therapy. NIH Consens Statement. 17:1–45.
2000.
|
2
|
Ensrud KE and Crandall CJ: Osteoporosis.
Ann Intern Med. 168:306–307. 2018.PubMed/NCBI View Article : Google Scholar
|
3
|
Tu KN, Lie JD, Wan CKV, Cameron M, Austel
AG, Nguyen JK, Van K and Hyun D: Osteoporosis: a review of
treatment options. P T. 43:92–104. 2018.PubMed/NCBI
|
4
|
Ogdie A, Nowell WB, Applegate E, Gavigan
K, Venkatachalam S, de la Cruz M, Flood E, Schwartz EJ, Romero B
and Hur P: Patient perspectives on the pathway to psoriatic
arthritis diagnosis: Results from a web-based survey of patients in
the United States. BMC Rheumatol. 4(2)2020.PubMed/NCBI View Article : Google Scholar
|
5
|
Crandall CJ, Newberry SJ, Diamant A, Lim
YW, Gellad WF, Booth MJ, Motala A and Shekelle PG: Comparative
effectiveness of pharmacologic treatments to prevent fractures: An
updated systematic review. Ann Intern Med. 161:711–723.
2014.PubMed/NCBI View
Article : Google Scholar
|
6
|
Cawthon PM, Fullman RL, Marshall L, Mackey
DC, Fink HA, Cauley JA, Cummings SR, Orwoll ES and Ensrud KE:
Osteoporotic Fractures in Men (MrOS) Research Group. Physical
performance and risk of hip fractures in older men. J Bone Miner
Res. 23:1037–1044. 2008.PubMed/NCBI View Article : Google Scholar
|
7
|
Prestwood KM, Pilbeam CC and Raisz LG:
Treatment of osteoporosis. Annu Rev Med. 46:249–256.
1995.PubMed/NCBI View Article : Google Scholar
|
8
|
Cappola AR and Shoback DM: Osteoporosis
therapy in postmenopausal women with high risk of fracture. JAMA.
316:715–716. 2016.PubMed/NCBI View Article : Google Scholar
|
9
|
Park E, Kim J, Kim MC, Yeo S, Kim J, Park
S, Jo M, Choi CW, Jin HS, Lee SW, et al: Anti-osteoporotic effects
of kukoamine B isolated from Lycii radicis cortex extract on
osteoblast and osteoclast cells and ovariectomized osteoporosis
model mice. Int J Mol Sci. 20(20)2019.PubMed/NCBI View Article : Google Scholar
|
10
|
Li TM, Huang HC, Su CM, Ho TY, Wu CM, Chen
WC, Fong YC and Tang CH: Cistanche deserticola extract increases
bone formation in osteoblasts. J Pharm Pharmacol. 64:897–907.
2012.PubMed/NCBI View Article : Google Scholar
|
11
|
Zhang J, Zhang W, Dai J, Wang X and Shen
SG: Overexpression of Dlx2 enhances osteogenic differentiation of
BMSCs and MC3T3-E1 cells via direct upregulation of Osteocalcin and
Alp. Int J Oral Sci. 11(12)2019.PubMed/NCBI View Article : Google Scholar
|
12
|
Sasa K, Yoshimura K, Yamada A, Suzuki D,
Miyamoto Y, Imai H, Nagayama K, Maki K, Yamamoto M and Kamijo R:
Monocarboxylate transporter-1 promotes osteoblast differentiation
via suppression of p53, a negative regulator of osteoblast
differentiation. Sci Rep. 8(10579)2018.PubMed/NCBI View Article : Google Scholar
|
13
|
Boström P, Wu J, Jedrychowski MP, Korde A,
Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, et al: A
PGC1-α-dependent myokine that drives brown-fat-like development of
white fat and thermogenesis. Nature. 481:463–468. 2012.PubMed/NCBI View Article : Google Scholar
|
14
|
Hofmann T, Elbelt U and Stengel A: Irisin
as a muscle-derived hormone stimulating thermogenesis--a critical
update. Peptides. 54:89–100. 2014.PubMed/NCBI View Article : Google Scholar
|
15
|
Huh JY, Dincer F, Mesfum E and Mantzoros
CS: Irisin stimulates muscle growth-related genes and regulates
adipocyte differentiation and metabolism in humans. Int J Obes.
38:1538–1544. 2014.PubMed/NCBI View Article : Google Scholar
|
16
|
Wu LF, Zhu DC, Tang CH, Ge B, Shi J, Wang
BH, Lu YH, He P, Wang WY, Lu SQ, et al: Association of plasma
irisin with bone mineral density in a large chinese population
using an extreme sampling design. Calcif Tissue Int. 103:246–251.
2018.PubMed/NCBI View Article : Google Scholar
|
17
|
Qiao X, Nie Y, Ma Y, Chen Y, Cheng R, Yin
W, Hu Y, Xu W and Xu L: Irisin promotes osteoblast proliferation
and differentiation via activating the MAP kinase signaling
pathways. Sci Rep. 6(18732)2016.PubMed/NCBI View Article : Google Scholar
|
18
|
Colaianni G, Cuscito C, Mongelli T,
Oranger A, Mori G, Brunetti G, Colucci S, Cinti S and Grano M:
Irisin enhances osteoblast differentiation in vitro. Int J
Endocrinol. 2014(902186)2014.PubMed/NCBI View Article : Google Scholar
|
19
|
Pullisaar H, Colaianni G, Lian AM,
Vandevska-Radunovic V, Grano M and Reseland JE: Irisin promotes
growth, migration and matrix formation in human periodontal
ligament cells. Arch Oral Biol. 111(104635)2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Sudo H, Kodama HA, Amagai Y, Yamamoto S
and Kasai S: In vitro differentiation and calcification in a new
clonal osteogenic cell line derived from newborn mouse calvaria. J
Cell Biol. 96:191–198. 1983.PubMed/NCBI View Article : Google Scholar
|
21
|
Nagao M, Tanabe N, Manaka S, Naito M,
Sekino J, Takayama T, Kawato T, Torigoe G, Kato S, Tsukune N, et
al: LIPUS suppressed LPS-induced IL-1α through the inhibition of
NF-κB nuclear translocation via AT1-PLCβ pathway in MC3T3-E1 cells.
J Cell Physiol. 232:3337–3346. 2017.PubMed/NCBI View Article : Google Scholar
|
22
|
Cheleschi S, Giordano N, Volpi N, Tenti S,
Gallo I, Di Meglio M, Giannotti S and Fioravanti A: A complex
relationship between visfatin and resistin and microrna: an in
vitro study on human chondrocyte cultures. Int J Mol Sci.
19(19)2018.PubMed/NCBI View Article : Google Scholar
|
23
|
Sun J, Zhao J, Bao X, Wang Q and Yang X:
Alkaline phosphatase assay based on the chromogenic interaction of
diethanolamine with 4-aminophenol. Anal Chem. 90:6339–6345.
2018.PubMed/NCBI View Article : Google Scholar
|
24
|
Palmieri V, Barba M, Di Pietro L, Conti C,
De Spirito M, Lattanzi W and Papi M: Graphene oxide induced
osteogenesis quantification by in-situ 2D-fluorescence
spectroscopy. Int J Mol Sci. 19(19)2018.PubMed/NCBI View Article : Google Scholar
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
26
|
Krause U, Seckinger A and Gregory CA:
Assays of osteogenic differentiation by cultured human mesenchymal
stem cells. Methods Mol Biol. 698:215–230. 2011.PubMed/NCBI View Article : Google Scholar
|
27
|
Ching HS, Luddin N, Rahman IA and Ponnuraj
KT: Expression of odontogenic and osteogenic markers in DPSCs and
SHED: a review. Curr Stem Cell Res Ther. 12:71–79. 2017.PubMed/NCBI View Article : Google Scholar
|
28
|
Siffert RS: The role of alkaline
phosphatase in osteogenesis. J Exp Med. 93:415–426. 1951.PubMed/NCBI View Article : Google Scholar
|
29
|
Birmingham E, Niebur GL, McHugh PE, Shaw
G, Barry FP and McNamara LM: Osteogenic differentiation of
mesenchymal stem cells is regulated by osteocyte and osteoblast
cells in a simplified bone niche. Eur Cell Mater. 23:13–27.
2012.PubMed/NCBI View Article : Google Scholar
|
30
|
Ducy P, Zhang R, Geoffroy V, Ridall AL and
Karsenty G: Osf2/Cbfa1: A transcriptional activator of osteoblast
differentiation. Cell. 89:747–754. 1997.PubMed/NCBI View Article : Google Scholar
|
31
|
Stadlinger B, Pilling E, Mai R, Bierbaum
S, Berhardt R, Scharnweber D and Eckelt U: Effect of biological
implant surface coatings on bone formation, applying collagen,
proteoglycans, glycosaminoglycans and growth factors. J Mater Sci
Mater Med. 19:1043–1049. 2008.PubMed/NCBI View Article : Google Scholar
|
32
|
Schmidmaier G, Wildemann B, Lübberstedt M,
Haas NP and Raschke M: IGF-I and TGF-beta 1 incorporated in a
poly(D,L-lactide) implant coating stimulates osteoblast
differentiation and collagen-1 production but reduces osteoblast
proliferation in cell culture. J Biomed Mater Res B Appl Biomater.
65:157–162. 2003.PubMed/NCBI View Article : Google Scholar
|
33
|
Elango J, Saravanakumar K, Rahman SU,
Henrotin Y, Regenstein JM, Wu W and Bao B: Chitosan-collagen 3D
matrix mimics trabecular bone and regulates RANKL-mediated
paracrine cues of differentiated osteoblast and mesenchymal stem
cells for bone marrow macrophage-derived osteoclastogenesis.
Biomolecules. 9(9)2019.PubMed/NCBI View Article : Google Scholar
|
34
|
Hekmatnejad B, Gauthier C and St-Arnaud R:
Control of Fiat (factor inhibiting ATF4-mediated transcription)
expression by Sp family transcription factors in osteoblasts. J
Cell Biochem. 114:1863–1870. 2013.PubMed/NCBI View Article : Google Scholar
|
35
|
Gao Y, Xiao F, Wang C, Wang C, Cui P,
Zhang X and Chen X: Long noncoding RNA MALAT1 promotes osterix
expression to regulate osteogenic differentiation by targeting
miRNA-143 in human bone marrow-derived mesenchymal stem cells. J
Cell Biochem. 119:6986–6996. 2018.PubMed/NCBI View Article : Google Scholar
|
36
|
Singh A, Gill G, Kaur H, Amhmed M and
Jakhu H: Role of osteopontin in bone remodeling and orthodontic
tooth movement: A review. Prog Orthod. 19(18)2018.PubMed/NCBI View Article : Google Scholar
|
37
|
Simonet WS, Lacey DL, Dunstan CR, Kelley
M, Chang MS, Lüthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, et
al: Osteoprotegerin: A novel secreted protein involved in the
regulation of bone density. Cell. 89:309–319. 1997.PubMed/NCBI View Article : Google Scholar
|
38
|
Ren X, Zhou Q, Foulad D, Tiffany AS, Dewey
MJ, Bischoff D, Miller TA, Reid RR, He TC, Yamaguchi DT, et al:
Osteoprotegerin reduces osteoclast resorption activity without
affecting osteogenesis on nanoparticulate mineralized collagen
scaffolds. Sci Adv. 5(eaaw4991)2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Gao X, Zheng J, Tu S, Cai B, Zeng R and
Xiang L: Role of osteoprotegerin in the regulation of dental
epithelial mesenchymal signaling during tooth development. Mol Med
Rep. 20:3035–3042. 2019.PubMed/NCBI View Article : Google Scholar
|
40
|
Chuang SC, Chen CH, Fu YC, Tai IC, Li CJ,
Chang LF, Ho ML and Chang JK: Estrogen receptor mediates
simvastatin-stimulated osteogenic effects in bone marrow
mesenchymal stem cells. Biochem Pharmacol. 98:453–464.
2015.PubMed/NCBI View Article : Google Scholar
|
41
|
Galea GL, Price JS and Lanyon LE: Estrogen
receptors' roles in the control of mechanically adaptive bone
(re)modeling. Bonekey Rep. 2(413)2013.PubMed/NCBI View Article : Google Scholar
|
42
|
Ge L, Cui Y, Cheng K and Han J:
Isopsoralen Enhanced Osteogenesis by Targeting AhR/ERα. Molecules.
23(23)2018.PubMed/NCBI View Article : Google Scholar
|
43
|
Abdallah BM, Ditzel N, Mahmood A, Isa A,
Traustadottir GA, Schilling AF, Ruiz-Hidalgo MJ, Laborda J, Amling
M and Kassem M: DLK1 is a novel regulator of bone mass that
mediates estrogen deficiency-induced bone loss in mice. J Bone
Miner Res. 26:1457–1471. 2011.PubMed/NCBI View Article : Google Scholar
|