|
1
|
Munro N: Immunology and immunotherapy in
critical care: An overview. AACN Adv Crit Care. 30:113–125.
2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
de Visser KE, Eichten A and Coussens LM:
Paradoxical roles of the immune system during cancer development.
Nat Rev Cancer. 6:24–37. 2006.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lin WW and Karin M: A cytokine-mediated
link between innate immunity, inflammation, and cancer. J Clin
Invest. 117:1175–1183. 2007.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Nishimura T, Iwakabe K, Sekimoto M, Ohmi
Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M and Ohta A:
Distinct role of antigen-specific T helper type 1 (Th1) and Th2
cells in tumor eradication in vivo. J Exp Med. 190:617–627.
1999.PubMed/NCBI View Article : Google Scholar
|
|
5
|
DeNardo DG and Coussens LM: Inflammation
and breast cancer. Balancing immune response: Crosstalk between
adaptive and innate immune cells during breast cancer progression.
Breast Cancer Res. 9(212)2007.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Mailliard RB, Egawa S, Cai Q, Kalinska A,
Bykovskaya SN, Lotze MT, Kapsenberg ML, Storkus WJ and Kalinski P:
Complementary dendritic cell-activating function of CD8+
and CD4+ T cells: Helper role of CD8+ T cells
in the development of T helper type 1 responses. J Exp Med.
195:473–483. 2002.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Srivastava MK, Sinha P, Clements VK,
Rodriguez P and Ostrand-Rosenberg S: Myeloid derived suppressor
cells inhibit T-cell activation by depleting cystine and cysteine.
Cancer Res. 70:68–77. 2010.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Gabrilovich DI, Ostrand-Rosenberg S and
Bronte V: Coordinated regulation of myeloid cells by tumours. Nat
Rev Immunol. 12:253–268. 2012.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Gabrilovich DI and Nagaraj S:
Myeloid-derived suppressor cells as regulators of the immune
system. Nat Rev Immunol. 9:162–174. 2009.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Mantovani A and Sica A: Macrophages,
innate immunity and cancer: Balance, tolerance, and diversity. Curr
Opin Immunol. 22:231–237. 2010.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Solinas G, Germano G, Mantovani A and
Allavena P: Tumorassociated macrophages (TAM) as major players of
the cancerrelated inflammation. J Leukoc Biol. 86:1065–1073.
2009.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Franklin RA, Liao W, Sarkar A, Kim MV,
Bivona MR, Liu K, Pamer EG and Li MO: The cellular and molecular
origin of tumor-associated macrophages. Science. 344:921–925.
2014.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Nielsen SR and Schmid MC: Macrophages as
key drivers of cancer progression and metastasis. Mediators
Inflamm. 2017(9624760)2017.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Buchbinder EI and Desai A: CTLA-4 and PD-1
pathways: Similarities, differences, and implications of their
inhibition. Am J Clin Oncol. 39:98–106. 2016.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Schreiber RD, Old LJ and Smyth MJ: Cancer
immunoediting: Integrating immunity's roles in cancer suppression
and promotion. Science. 331:1565–1570. 2011.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Lesterhuis WJ, Haanen JB and Punt CJ:
Cancer immunotherapy-revisited. Nat Rev Drug Discov. 10:591–600.
2011.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Galluzzi L, Vacchelli E, Bravo-San Pedro
JM, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado
JP, Agostinis P, et al: Classification of current anticancer
immunotherapies. Oncotarget. 5:12472–12508. 2014.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Cobaleda-Siles M, Henriksen-Lacey M, Ruiz
de Angulo A, Bernecker A, Gómez Vallejo V, Szczupak B, Llop J,
Pastor G, Plaza-Garcia S, Jauregui-Osoro M, et al: An iron oxide
nanocarrier for dsRNA to target lymph nodes and strongly activate
cells of the immune system. Small. 10:5054–5067. 2014.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Khalil D, Smith E, Brentjens R and Wolchok
JD: The future of cancer treatment: Immunomodulation, CARs and
combination immunotherapy. Nat Rev Clin Oncol. 13:273–290.
2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Michielin O, van Akkooi ACJ, Ascierto PA,
Dummer R and Keilholz U: ESMO Guidelines Committee: Electronic
address: simpleclinicalguidelines@esmo.org.
Cutaneous melanoma: ESMO clinical practice guidelines for
diagnosis, treatment and follow-up†. Ann Oncol. 30:1884–1901.
2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Rosalia RA, Cruz LJ, van Duikeren S, Tromp
AT, Silva AL, Jiskoot W, de Gruijl T, Löwik C, Oostendorp J, van
der Burg SH and Ossendorp F: CD40-targeted dendritic cell delivery
of PLGA-nanoparticle vaccines induce potent anti-tumor responses.
Biomaterials. 40:88–97. 2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Yuba E, Yamaguchi A, Yoshizaki Y, Harada A
and Kono K: Bioactive polysaccharide-based pH-sensitive polymers
for cytoplasmic delivery of antigen and activation of
antigen-specific immunity. Biomaterials. 120:32–45. 2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Buonaguro L, Tagliamonte M, Tornesello ML
and Buonaguro FM: Developments in virus-like particle-based
vaccines for infectious diseases and cancer. Expert Rev Vaccines.
10:1569–1583. 2011.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Hassan HA, Smyth L, Wang JT, Costa PM,
Ratnasothy K, Diebold SS, Lombardi G and Al-Jamal KT: Dual
stimulation of antigen presenting cells using carbon nanotube-based
vaccine delivery system for cancer immunotherapy. Biomaterials.
104:310–322. 2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Wong HL, Rauth AM, Bendayan R, Manias JL,
Ramaswamy M, Liu ZS, Erhan SZ and Wu XY: A new polymer-lipid hybrid
nanoparticle system increases cytotoxicity of doxorubicin against
multidrug-resistant human breast cancer cells. Pharm Res.
23:1574–1585. 2006.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Waeckerle-Men Y and Groettrup M: PLGA
microspheres for improved antigen delivery to dendritic cells as
cellular vaccines. Adv Drug Deliv Rev. 57:475–482. 2005.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Kim H, Niu L, Larson P, Kucaba TA, Murphy
KA, James BR, Ferguson DM, Griffith TS and Panyam J: Polymeric
nanoparticles encapsulating novel TLR7/8 agonists as
immunostimulatory adjuvants for enhanced cancer immunotherapy.
Biomaterials. 164:38–53. 2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Heo MB and Lim YT: Programmed
nanoparticles for combined immunomodulation, antigen presentation
and tracking of immunotherapeutic cells. Biomaterials. 35:590–600.
2014.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Kokate RA, Chaudhary P, Sun XL, Thamake
SI, Maji S, Chib R, Vishwanatha JK and Jones HP: Rationalizing the
use of functionalized poly-lactic-co-glycolic acid nanoparticles
for dendritic cell-based targeted anticancer therapy. Nanomedicine
(Lond). 11:479–494. 2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Cruz LJ, Tacken PJ, Fokkink R, Joosten B,
Stuart MC, Albericio F, Torensma R and Figdor CG: Targeted PLGA
nano-but not microparticles specifically deliver antigen to human
dendritic cells via DC-SIGN in vitro. J Control Release.
144:118–126. 2010.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Nanjwade BK, Bechra HM, Derkar GK, Manvi
FV and Nanjwade VK: Dendrimers: Emerging polymers for drug-delivery
systems. Eur J Pharm Sci. 38:185–196. 2009.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Torchilin VP: Recent advances with
liposomes as pharmaceutical carriers. Nat Rev Drug Discov.
4:145–160. 2005.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia
Y, Qu Y and Qian Z: Photosensitizer micelles together with IDO
inhibitor enhance cancer photothermal therapy and immunotherapy.
Adv Sci (Weinh). 5(1700891)2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Li H, Li Y, Wang X, Hou Y, Hong X, Gong T,
Zhang Z and Sun X: Rational design of polymeric hybrid micelles to
overcome lymphatic and intracellular delivery barriers in cancer
immunotherapy. Theranostics. 7:4383–4398. 2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ
and Wang W: Unique roles of gold nanoparticles in drug delivery,
targeting and imaging applications. Molecules.
22(1445)2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kodiha M, Wang YM, Hutter E, Maysinger D
and Stochaj U: Off to the organelles-killing cancer cells with
targeted gold nanoparticles. Theranostics. 5:357–370.
2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Lin AY, Almeida JP, Bear A, Liu N, Luo L,
Foster AE and Drezek RA: Gold nanoparticle delivery of modified CpG
stimulates macrophages and inhibits tumor growth for enhanced
immunotherapy. PLoS One. 8(e63550)2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Dykman LA, Staroverov SA, Fomin AS,
Khanadeev VA, Khlebtsov BN and Bogatyrev VA: Gold nanoparticles as
an adjuvant: Influence of size, shape, and technique of combination
with CpG on antibody production. Int Immunopharmacol. 54:163–168.
2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhao Y, Zhao X, Cheng Y, Guo X and Yuan W:
Iron oxide nanoparticles-based vaccine delivery for cancer
treatment. Mol Pharm. 15:1791–1799. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Slowing II, Vivero-Escoto JL, Wu CW and
Lin VS: Mesoporous silica nanoparticles as controlled release drug
delivery and gene transfection carriers. Adv Drug Deliv Rev.
60:1278–1288. 2008.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Nguyen TL, Choi Y and Kim J: Mesoporous
silica as a versatile platform for cancer immunotherapy. Adv Mater.
31(e1803953)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Croissant JG, Fatieiev Y and Khashab NM:
Degradability and clearance of silicon, organosilica,
silsesquioxane, silica mixed oxide, and mesoporous silica
nanoparticles. Adv Mater 29, 2017.
|
|
43
|
Vallhov H, Gabrielsson S, Strømme M,
Scheynius A and Garcia-Bennett AE: Mesoporous silica particles
induce size dependent effects on human dendritic cells. Nano Lett.
7:3576–3582. 2007.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Kwon D, Cha BG, Cho Y, Min J, Park EB,
Kang SJ and Kim J: Extra-large pore mesoporous silica nanoparticles
for directing in vivo M2 Macrophage polarization by delivering
IL-4. Nano Lett. 17:2747–2756. 2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Guo HC, Feng XM, Sun SQ, Wei YQ, Sun DH,
Liu XT, Liu ZX, Luo JX and Yin H: Immunization of mice by hollow
mesoporous silica nanoparticles as carriers of porcine circovirus
type 2 ORF2 protein. Virol J. 9(108)2012.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Wang C, Xu L, Liang C, Xiang J, Peng R and
Liu Z: Immunological responses triggered by photothermal therapy
with carbon nanotubes in combination with anti-CTLA-4 therapy to
inhibit cancer metastasis. Adv Mater. 26:8154–8162. 2014.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Raposo G, Nijman HW, Stoorvogel W,
Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes
secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172.
1996.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Yang H, Fu H, Wang B, Zhang X, Mao J, Li
X, Wang M, Sun Z, Qian H and Xu W: Exosomal miR-423-5p targets SUFU
to promote cancer growth and metastasis and serves as a novel
marker for gastric cancer. Mol Carcinog. 57:1223–1236.
2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Lizotte PH, Wen AM, Sheen MR, Fields J,
Rojanasopondist P, Steinmetz NF and Fiering S: In situ vaccination
with cowpea mosaic virus nanoparticles suppresses metastatic
cancer. Nat Nanotechnol. 11:295–303. 2016.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Guo ZS, Liu Z and Bartlett DL: Oncolytic
immunotherapy: Dying the right way is a key to eliciting potent
antitumor immunity. Front Oncol. 4(74)2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Fu LQ, Wang SB, Cai MH, Wang XJ, Chen JY,
Tong XM, Chen XY and Mou XZ: Recent advances in oncolytic
virus-based cancer therapy. Virus Res. 270(197675)2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Round JL and Mazmanian SK: Inducible
Foxp3+ regulatory T-cell development by a commensal
bacterium of the intestinal microbiota. Proc Natl Acad Sci USA.
107:12204–12209. 2010.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Cebula A, Seweryn M, Rempala GA, Pabla SS,
McIndoe RA, Denning TL, Bry L, Kraj P, Kisielow P and Ignatowicz L:
Thymus-derived regulatory T cells contribute to tolerance to
commensal microbiota. Nature. 497:258–262. 2013.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Ivanov II, Atarashi K, Manel N, Brodie EL,
Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al:
Induction of intestinal Th17 cells by segmented filamentous
bacteria. Cell. 139:485–498. 2009.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Gaboriau-Routhiau V, Rakotobe S, Lécuyer
E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M,
Brandi G, et al: The key role of segmented filamentous bacteria in
the coordinated maturation of gut helper T cell responses.
Immunity. 31:677–689. 2009.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Tomkovich S and Jobin C: Microbiota and
host immune responses: A love-hate relationship. Immunology.
147:1–10. 2016.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Gopalakrishnan V, Spencer CN, Nezi L,
Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman
K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1
immunotherapy in melanoma patients. Science. 359:97–103.
2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Matson V, Fessler J, Bao R, Chongsuwat T,
Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome
is associated with anti-PD-1 efficacy in metastatic melanoma
patients. Science. 359:104–108. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Sivan A, Corrales L, Hubert N, Williams
JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B,
Alegre ML, et al: Commensal Bifidobacterium promotes
antitumor immunity and facilitates anti-PD-L1 efficacy. Science.
350:1084–1089. 2015.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Matsumoto K, Yamamoto T, Kamata R and
Maeda H: Pathogenesis of serratial infection: Activation of the
Hageman factor-prekallikrein cascade by serratial protease. J
Biochem. 96:739–749. 1984.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Maeda H: Tumor-selective delivery of
macromolecular drugs via the EPR effect: Background and future
prospects. Bioconjug Chem. 21:797–802. 2010.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zhao M, Yang M, Li XM, Jiang P, Baranov E,
Li S, Xu M, Penman S and Hoffman RM: Tumor-targeting bacterial
therapy with amino acid auxotrophs of GFP-expressing Salmonella
typhimurium. Proc Natl Acad Sci USA. 102:755–760. 2005.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Marshall JS, Green AM, Pensky J, Williams
S, Zinn A and Carlson DM: Measurement of circulating desialylated
glycoproteins and correlation with hepatocellular damage. J Clin
Invest. 54:555–562. 1974.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Campbell RB, Fukumura D, Brown EB, Mazzola
LM, Izumi Y, Jain RK, Torchilin VP and Munn LL: Cationic charge
determines the distribution of liposomes between the vascular and
extravascular compartments of tumors. Cancer Res. 62:6831–6836.
2002.PubMed/NCBI
|
|
65
|
Matsumura Y, Hamaguchi T, Ura T, Muro K,
Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M and
Watanabe N: Phase I clinical trial and pharmacokinetic evaluation
of NK911, a micelle-encapsulated doxorubicin. Br J Cancer.
91:1775–1781. 2004.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Park J, Choi Y, Chang H, Um W, Ryu JH and
Kwon IC: Alliance with EPR effect: Combined strategies to improve
the EPR effect in the tumor microenvironment. Theranostics.
9:8073–8090. 2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Franqui LS, De Farias MA, Portugal RV,
Costa CAR, Domingues RR, Souza Filho AG, Coluci VR, Leme AFP and
Martinez DST: Interaction of graphene oxide with cell culture
medium: Evaluating the fetal bovine serum protein corona formation
towards in vitro nanotoxicity assessment and nanobiointeractions.
Mater Sci Eng C Mater Biol Appl. 100:363–377. 2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Glancy D, Zhang Y, Wu JLY, Ouyang B, Ohta
S and Chan WCW: Characterizing the protein corona of sub-10 nm
nanoparticles. J Control Release. 304:102–110. 2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Lai W, Wang Q, Li L, Hu Z, Chen J and Fang
Q: Interaction of gold and silver nanoparticles with human plasma:
Analysis of protein corona reveals specific binding patterns.
Colloids Surf B Biointerfaces. 152:317–325. 2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Giulimondi F, Digiacomo L, Pozzi D,
Palchetti S, Vulpis E, Capriotti AL, Chiozzi RZ, Laganà A,
Amenitsch H, Masuelli L, et al: Interplay of protein corona and
immune cells controls blood residency of liposomes. Nat Commun.
11(1697)2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Partikel K, Korte R, Stein NC, Mulac D,
Herrmann FC, Humpf HU and Langer K: Effect of nanoparticle size and
PEGylation on the protein corona of PLGA nanoparticles. Eur J Pharm
Biopharm. 141:70–80. 2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Ekdahl KN, Fromell K, Mohlin C, Teramura Y
and Nilsson B: A human whole-blood model to study the activation of
innate immunity system triggered by nanoparticles as a demonstrator
for toxicity. Sci Technol Adv Mater. 20:688–698. 2019.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Gossmann R, Fahrländer E, Hummel M, Mulac
D, Brockmeyer J and Langer K: Comparative examination of adsorption
of serum proteins on HSA- and PLGA-based nanoparticles using
SDS-PAGE and LC-MS. Eur J Pharm Biopharm. 93:80–87. 2015.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Kah JC, Wong KY, Neoh KG, Song JH, Fu JW,
Mhaisalkar S, Olivo M and Sheppard CJ: Critical parameters in the
pegylation of gold nanoshells for biomedical applications: An in
vitro macrophage study. J Drug Target. 17:181–193. 2009.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Fleischer CC and Payne CK: Secondary
structure of corona proteins determines the cell surface receptors
used by nanoparticles. J Phys Chem B. 118:14017–14026.
2014.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Mortimer GM, Butcher NJ, Musumeci AW, Deng
ZJ, Martin DJ and Minchin RF: Cryptic epitopes of albumin determine
mononuclear phagocyte system clearance of nanomaterials. ACS Nano.
8:3357–3366. 2014.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Lartigue L, Wilhelm C, Servais J, Factor
C, Dencausse A, Bacri JC, Luciani N and Gazeau F: Nanomagnetic
sensing of blood plasma protein interactions with iron oxide
nanoparticles: Impact on macrophage uptake. ACS Nano. 6:2665–2678.
2012.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Barbero F, Russo L, Vitali M, Piella J,
Salvo I, Borrajo ML, Busquets-Fité M, Grandori M, Bastús NG, Casals
E and Puntes V: Formation of the protein corona: The interface
between nanoparticles and the immune system. Semin Immunol.
34:52–60. 2017.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Xu J, Wang H, Xu L, Chao Y, Wang C, Han X,
Dong Z, Chang H, Peng R, Cheng Y and Liu Z: Nanovaccine based on a
protein-delivering dendrimer for effective antigen
cross-presentation and cancer immunotherapy. Biomaterials. 207:1–9.
2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Li L, Goedegebuure SP and Gillanders WE:
Preclinical and clinical development of neoantigen vaccines. Ann
Oncol. 28 (Suppl 12):xii11–xii17. 2017.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Gubin MM, Zhang X, Schuster H, Caron E,
Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, et
al: Checkpoint blockade cancer immunotherapy targets
tumour-specificmutant antigens. Nature. 515:577–581.
2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J,
Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An
immunogenic personal neoantigen vaccine for patients with melanoma.
Nature. 547:217–221. 2017.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Sahin U, Derhovanessian E, Miller M, Kloke
BP, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B,
et al: Personalized RNA mutanome vaccines mobilize poly-specific
therapeutic immunity against cancer. Nature. 547:222–226.
2017.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Yadav M, Jhunjhunwala S, Phung QT,
Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J,
Weinschenk T, et al: Predicting immunogenic tumour mutations by
combining mass spectrometry and exome sequencing. Nature.
515:572–576. 2014.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Stone JD, Harris DT and Kranz DM: TCR
affinity for p/MHC formed by tumor antigens that are self-proteins:
Impact on efficacy and toxicity. Curr Opin Immunol. 33:16–22.
2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Atif SM, Gibbings SL, Redente EF, Camp FA,
Torres RM, Kedl RM, Henson PM and Claudia V: Immune surveillance by
natural IgM is required for early neoantigen recognition and
initiation of adaptive immunity. Am J Respir Cell Mol Biol.
59:580–591. 2018.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Li Q, Zhang D, Zhang J, Jiang Y, Song A,
Li Z and Luan Y: A three-in-one immunotherapy nanoweapon via
cascade-amplifying cancer-immunity cycle against tumor metastasis,
relapse, and postsurgical regrowth. Nano Lett. 19:6647–6657.
2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Nonomura C, Otsuka M, Kondou R, Iizuka A,
Miyata H, Ashizawa T, Sakura N, Yoshikawa S, Kiyohara Y, Ohshima K,
et al: Identification of a neoantigen epitope in a melanoma patient
with good response to anti-PD-1 antibody therapy. Immunol Lett.
208:52–59. 2019.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Kreiter S, Selmi A, Diken M, Koslowski M,
Britten CM, Huber C, Türeci O and Sahin U: Intranodal vaccination
with naked antigen-encoding RNA elicits potent prophylactic and
therapeutic antitumoral immunity. Cancer Res. 70:9031–9040.
2010.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur
V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V,
van der Burg SH, et al: Actively personalized vaccination trial for
newly diagnosed glioblastoma. Nature. 565:240–245. 2019.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Sahin U, Oehm P, Derhovanessian E,
Jabulowsky RA, Vormehr M, Gold M, Maurus D, Schwarck-Kokarakis D,
Kuhn AN, Omokoko T, et al: An RNA vaccine drives immunity in
checkpoint-inhibitor-treated melanoma. Nature. 585:107–112.
2020.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Robbins PF, Morgan RA, Feldman SA, Yang
JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ,
Mackall CL, et al: Tumor regression in patients with metastatic
synovial cell sarcoma and melanoma using genetically engineered
lymphocytes reactive with NY-ESO-1. J Clin Oncol. 29:917–924.
2011.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Bencherif SA, Warren Sands R, Ali OA, Li
WA, Lewin SA, Braschler TM, Shih TY, Verbeke CS, Bhatta D, Dranoff
G and Mooney DJ: Injectable cryogel-based whole-cell cancer
vaccines. Nat Commun. 6(7556)2015.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Hassani Najafabadi A, Zhang J, Aikins ME,
Najaf Abadi ZI, Liao F, Qin Y, Okeke EB, Scheetz LM, Nam J, Xu Y,
et al: Cancer immunotherapy via targeting cancer stem cells using
vaccine nanodiscs. Nano Lett. 20:7783–7792. 2020.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Zheng F, Dang J, Zhang H, Xu F, Ba F,
Zhang B, Cheng F, Chang AE, Wicha MS and Li Q: Cancer stem cell
vaccination with PD-L1 and CTLA-4 blockades enhances the
eradication of melanoma stem cells in a mouse tumor model. J
Immunother. 41:361–368. 2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Aggarwal S: Adverse effects of
immuno-oncology drugs-Awareness, diagnosis, and management: A
literature review of immune-mediated adverse events. Indian J
Cancer. 56 (Suppl):S10–S22. 2019.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Li Y, Fang M, Zhang J, Wang J, Song Y, Shi
J, Li W, Wu G, Ren J, Wang Z, et al: Hydrogel dual delivered
celecoxib and anti-PD-1 synergistically improve antitumor immunity.
Oncoimmunology. 5(e1074374)2015.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Wang C, Ye Y, Hochu GM, Sadeghifar H and
Gu Z: Enhanced cancer immunotherapy by microneedle patch-assisted
delivery of anti-PD1 antibody. Nano Lett. 16:2334–2340.
2016.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Ordikhani F, Uehara M, Kasinath V, Dai L,
Eskandari SK, Bahmani B, Yonar M, Azzi JR, Haik Y, Sage PT, et al:
Targeting antigen-presenting cells by anti-PD-1 nanoparticles
augments antitumor immunity. JCI Insight. 3(e122700)2018.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ,
Xia JX, Zhu YH and Wang J: Restoring anti-tumor functions of T
cells via nanoparticle-mediated immune checkpoint modulation. J
Control Release. 231:17–28. 2016.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Alimohammadi R, Alibeigi R, Nikpoor AR,
Chalbatani GM, Webster TJ, Jaafari MR and Jalali SA: Encapsulated
checkpoint blocker before chemotherapy: The optimal sequence of
anti-CTLA-4 and doxil combination therapy. Int J Nanomedicine.
15:5279–5288. 2020.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Zhang YX, Zhao YY, Shen J, Sun X, Liu Y,
Liu H and Wang Y and Wang Y: Nanoenabled modulation of acidic tumor
microenvironment reverses anergy of infiltrating T cells and
potentiates anti-PD-1 therapy. Nano Lett. 19:2774–2783.
2019.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Hei Y, Teng B, Zeng Z, Zhang S, Li Q, Pan
J, Luo Z, Xiong C and Wei S: Multifunctional immunoliposomes
combining catalase and PD-L1 antibodies overcome tumor hypoxia and
enhance immunotherapeutic effects against melanoma. Int J
Nanomedicine. 15:1677–1691. 2020.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Mishchenko T, Mitroshina E, Balalaeva I,
Krysko O, Vedunova M and Krysko DV: An emerging role for
nanomaterials in increasing immunogenicity of cancer cell death.
Biochim Biophys Acta Rev Cancer. 1871:99–108. 2019.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Obeid M, Panaretakis T, Joza N, Tufi R,
Tesniere A, van Endert P, Zitvogel L and Kroemer G: Calreticulin
exposure is required for the immunogenicity of gamma-irradiation
and UVC light-induced apoptosis. Cell Death Differ. 14:1848–1850.
2007.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Garg AD, Martin S, Golab J and Agostinis
P: Danger signalling during cancer cell death: Origins, plasticity
and regulation. Cell Death Differ. 21:26–38. 2014.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Min Y, Roche KC, Tian S, Eblan MJ,
McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, et
al: Antigen-capturing nanoparticles improve the abscopal effect and
cancer immunotherapy. Nat Nanotechnol. 12:877–882. 2017.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Seth A, Heo MB and Lim YT: Poly
(γ-glutamic acid) based combination of water-insoluble paclitaxel
and TLR7 agonist for chemo-immunotherapy. Biomaterials.
35:7992–8001. 2014.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Deng H, Tan S, Gao X, Zou C, Xu C, Tu K,
Song Q, Fan F, Huang W and Zhang Z: Cdk5 knocking out mediated by
CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced
antitumor immunity. Acta Pharm Sin B. 10:358–373. 2020.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Tzeng SY, Patel KK, Wilson DR, Meyer RA,
Rhodes KR and Green JJ: In situ genetic engineering of tumors for
long-lasting and systemic immunotherapy. Proc Natl Acad Sci USA.
117:4043–4052. 2020.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Guan X, Lin L, Chen J, Hu Y, Sun P, Tian
H, Maruyama A and Chen X: Efficient PD-L1 gene silence promoted by
hyaluronidase for cancer immunotherapy. J Control Release.
293:104–112. 2019.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Hamdy S, Molavi O, Ma Z, Haddadi A,
Alshamsan A, Gobti Z, Elhasi S, Samuel J and Lavasanifar A:
Co-delivery of cancer-associated antigen and Toll-like receptor 4
ligand in PLGA nanoparticles induces potent CD8+ T
cell-mediated anti-tumor immunity. Vaccine. 26:5046–5057.
2008.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Zhang Z, Tongchusak S, Mizukami Y, Kang
YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL and Sasada
T: Induction of anti-tumor cytotoxic T cell responses through
PLGA-nanoparticle mediated antigen delivery. Biomaterials.
32:3666–3678. 2011.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Peranzoni E, Lemoine J, Vimeux L, Feuillet
V, Barrin S, Kantari-Mimoun C, Bercovici N, Guérin M, Biton J,
Ouakrim H, et al: Macrophages impede CD8 T cells from reaching
tumor cells and limit the efficacy of anti-PD-1 treatment. Proc
Natl Acad Sci USA. 115:E4041–E4050. 2018.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Prendergast GC, Malachowski WP, DuHadaway
JB and Muller AJ: Discovery of IDO1 inhibitors: From bench to
bedside. Cancer Res. 77:6795–6811. 2017.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Rodell CB, Arlauckas SP, Cuccarese MF,
Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ and Weissleder R:
TLR7/8-agonist-loaded nanoparticles promote the polarization of
tumour-associated macrophages to enhance cancer immunotherapy. Nat
Biomed Eng. 2:578–588. 2018.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li
H, Wang J, Wen D, Zhang Y, Lu Y, et al: In situ sprayed
bioresponsive immunotherapeutic gel for post-surgical cancer
treatment. Nat Nanotechnol. 14:89–97. 2019.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Alupei MC, Licarete E, Patras L and Banciu
M: Liposomal simvastatin inhibits tumor growth via targeting
tumor-associated macrophages-mediated oxidative stress. Cancer
Lett. 356:946–952. 2015.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L,
Yu X, Luo Q and Zhang Z: Molecular-targeted immunotherapeutic
strategy for melanoma via dual-targeting nanoparticles delivering
small interfering RNA to tumor-associated macrophages. ACS Nano.
11:9536–9549. 2017.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Hornyák L, Dobos N, Koncz G, Karányi Z,
Páll D, Szabó Z, Halmos G and Székvölgyi L: The role of
indoleamine-2,3-dioxygenase in cancer development, diagnostics, and
therapy. Front Immunol. 9(151)2018.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Orabona C, Pallotta MT, Volpi C, Fallarino
F, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Grohmann U and
Puccetti P: SOCS3 drives proteasomal degradation of indoleamine
2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis.
Proc Natl Acad Sci USA. 105:20828–20833. 2008.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Shou D, Liang W, Song Z, Yin J, Sun Q and
Gong W: Suppressive role of myeloid-derived suppressor cells
(MDSCs) in the microenvironment of breast cancer and targeted
immunotherapies. Oncotarget. 7:64505–64511. 2016.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Zhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li
TJ and Zheng L: Activated CD69+ T cells foster immune
privilege by regulating IDO expression in tumor-associated
macrophages. J Immunol. 188:1117–1124. 2012.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Cheng K, Ding Y, Zhao Y, Ye S, Zhao X,
Zhang Y, Ji T, Wu H, Wang B, Anderson GJ, et al: Sequentially
responsive therapeutic peptide assembling nanoparticles for
dual-targeted cancer immunotherapy. Nano Lett. 18:3250–3258.
2018.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang
C and Gu Z: Synergistic transcutaneous immunotherapy enhances
antitumor immune responses through delivery of checkpoint
inhibitors. ACS Nano. 10:8956–8963. 2016.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Aoki CA, Borchers AT, Li M, Flavell RA,
Bowlus CL, Ansari AA and Gershwin ME: Transforming growth factor
beta (TGF-beta) and autoimmunity. Autoimmun Rev. 4:450–459.
2005.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Zheng Y, Tang L, Mabardi L, Kumari S and
Irvine DJ: Enhancing adoptive cell therapy of cancer through
targeted delivery of small-molecule immunomodulators to
internalizing or noninternalizing receptors. ACS Nano.
11:3089–3100. 2017.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Kang M, Hong J, Jung M, Kwon SP, Song SY,
Kim HY, Lee JR, Kang S, Han J, Koo JH, et al: T-cell-mimicking
nanoparticles for cancer immunotherapy. Adv Mater.
32(e2003368)2020.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Shi Y and Lammers T: Combining
nanomedicine and immunotherapy. Acc Chem Res. 52:1543–1554.
2019.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Xu Z, Wang Y, Zhang L and Huang L:
Nanoparticle-delivered transforming growth factor-β siRNA enhances
vaccination against advanced melanoma by modifying tumor
microenvironment. ACS Nano. 8:3636–3645. 2014.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Kohlhapp FJ and Kaufman HL: Molecular
pathways: Mechanism of action for talimogene laherparepvec, a new
oncolytic virus immunotherapy. Clin Cancer Res. 22:1048–1054.
2016.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Ott PA and Hodi FS: Talimogene
laherparepvec for the treatment of advanced melanoma. Clin Cancer
Res. 22:3127–3131. 2016.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Conry RM, Westbrook B, McKee S and Norwood
TG: Talimogene laherparepvec: First in class oncolytic virotherapy.
Hum Vaccin Immunother. 14:839–846. 2018.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Andtbacka RHI, Collichio F, Harrington KJ,
Middleton MR, Downey G, Ӧhrling K and Kaufman HL: Final analyses of
OPTiM: A randomized phase III trial of talimogene laherparepvec
versus granulocyte-macrophage colony-stimulating factor in
unresectable stage III-IV melanoma. J Immunother Cancer.
7(145)2019.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Long GV, Dummer R, Ribas A, Puzanov I,
Michielin O, Vanderwalde AM, Andtbacka RHI, Cebon J, Fernandez E,
Malvehy J, et al: A phase I/III, multicenter, open-label trial of
talimogene laherparepvec (T-VEC) in combination with pembrolizumab
for the treatment of unresected, stage IIIb-IV melanoma
(MASTERKEY-265). J Immunother Cancer. 3 (Suppl 2)(P181)2015.
|
|
136
|
Puzanov I, Milhem MM, Minor D, Hamid O, Li
A, Chen L, Chastain M, Gorski KS, Anderson A, Chou J, et al:
Talimogene laherparepvec in combination with ipilimumab in
previously untreated, unresectable stage IIIB-IV melanoma. J Clin
Oncol. 34:2619–2626. 2016.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Chesney J, Puzanov I, Collichio F, Singh
P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C, et
al: Randomized, open-label phase II study evaluating the efficacy
and safety of talimogene laherparepvec in combination with
ipilimumab versus ipilimumab alone in patients with advanced,
unresectable melanoma. J Clin Oncol. 36:1658–1667. 2018.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Dummer R, Gyorki DE, Hyngstrom JR, Berger
AC, Conry RM, Demidov LV, Sharma A, Treichel S, Faries MB and Ross
MI: One-year (yr) recurrence-free survival (RFS) from a randomized,
open label phase II study of neoadjuvant (neo) talimogene
laherparepvec (T-VEC) plus surgery (surgx) versus surgx for
resectable stage IIIB-IVM1a melanoma (MEL). J Clin Oncol. 37 (Suppl
15)(S9520)2019.
|
|
139
|
Trager MH, Geskin LJ and Saenger YM:
Oncolytic viruses for the treatment of metastatic melanoma. Curr
Treat Options Oncol. 21(26)2020.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Ancuceanu R, Dinu M, Neaga I, Laszlo FG
and Boda D: Development of QSAR machine learning-based models to
forecast the effect of substances on malignant melanoma cells.
Oncol Lett. 17:4188–4196. 2019.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Ion A, Popa IM, Papagheorghe LML,
Lisievici C, Lupu M, Voiculescu V, Caruntu C and Boda D: Proteomic
approaches to biomarker discovery in cutaneous T-cell lymphoma. Dis
Markers. 2016(9602472)2016.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Boda D, Negrei C, Arsene AL, Caruntu C,
Lupuleasa D and Ion RM: Spectral and photochemical properties of
hyperbranched nanostructures based on gardiquimod and TPPS4.
Farmacia. 63:218–223. 2015.
|
|
143
|
Boda D: Cellomics as integrative omics for
cancer. Curr Proteomics. 10:237–245. 2013.
|
|
144
|
Lupu M, Caruntu A, Caruntu C, Papagheorghe
LML, Ilie MA, Voiculescu V, Boda D, Constantin C, Tanase C, Sifaki
M, et al: Neuroendocrine factors: The missing link in non-melanoma
skin cancer (Review). Oncol Rep. 38:1327–1340. 2017.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Zurac S, Neagu M, Constantin C, Cioplea M,
Nedelcu R, Bastian A, Popp C, Nichita L, Andrei R, Tebeica T, et
al: Variations in the expression of TIMP1, TIMP2 and TIMP3 in
cutaneous melanoma with regression and their possible function as
prognostic predictors. Oncol Lett. 11:3354–3360. 2016.PubMed/NCBI View Article : Google Scholar
|