Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
May-2021 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2021 Volume 21 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review)

  • Authors:
    • Simona Ruxandra Volovat
    • Serban Negru
    • Cati Raluca Stolniceanu
    • Constantin Volovat
    • Cristian Lungulescu
    • Dragos Scripcariu
    • Bogdan Mihail Cobzeanu
    • Cipriana Stefanescu
    • Cristina Grigorescu
    • Iolanda Augustin
    • Corina Lupascu Ursulescu
    • Cristian Constantin Volovat
  • View Affiliations / Copyright

    Affiliations: Department of Medicine III‑Medical Oncology-Radiotherapy, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Medical Oncology, ‘Victor Babes’ University of Medicine and Pharmacy, 300041 Timisoara, Romania, Department of Biophysics and Medical Physics-Nuclear Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Medical Oncology, University of Medicine and Pharmacy, 200349 Craiova, Romania, Department of Surgery, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania, Department of Medical Oncology, ‘Euroclinic’ Center of Oncology, 70010 Iasi, Romania, Department of Radiology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
    Copyright: © Volovat et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 535
    |
    Published online on: March 23, 2021
       https://doi.org/10.3892/etm.2021.9967
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer immunotherapy has shifted the paradigm in cancer treatment in recent years. Immune checkpoint blockage (ICB), the active cancer vaccination and chimeric antigen receptor (CAR) for T‑cell‑based adoptive cell transfer represent the main developments, achieving a surprising increased survival in patients included in clinical trials. In spite of these results, the current state‑of‑the‑art immunotherapy has its limitations in efficacy. The existence of an interdisciplinary interface involving current knowledge in biology, immunology, bioengineering and materials science represents important progress in increasing the effectiveness of immunotherapy in cancer. Cutaneous melanoma remains a difficult cancer to treat, in which immunotherapy is a major therapeutic option. In fact, enhancing immunotherapy is possible using sophisticated biomedical nanotechnology platforms of organic or inorganic materials or engineering various immune cells to enhance the immune system. In addition, biological devices have developed, changing the approach to and treatment results in melanoma. In this review, we present different modalities to modulate the immune system, as well as opportunities and challenges in melanoma treatment.
View Figures

Figure 1

View References

1 

Munro N: Immunology and immunotherapy in critical care: An overview. AACN Adv Crit Care. 30:113–125. 2019.PubMed/NCBI View Article : Google Scholar

2 

de Visser KE, Eichten A and Coussens LM: Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 6:24–37. 2006.PubMed/NCBI View Article : Google Scholar

3 

Lin WW and Karin M: A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 117:1175–1183. 2007.PubMed/NCBI View Article : Google Scholar

4 

Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M and Ohta A: Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med. 190:617–627. 1999.PubMed/NCBI View Article : Google Scholar

5 

DeNardo DG and Coussens LM: Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 9(212)2007.PubMed/NCBI View Article : Google Scholar

6 

Mailliard RB, Egawa S, Cai Q, Kalinska A, Bykovskaya SN, Lotze MT, Kapsenberg ML, Storkus WJ and Kalinski P: Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: Helper role of CD8+ T cells in the development of T helper type 1 responses. J Exp Med. 195:473–483. 2002.PubMed/NCBI View Article : Google Scholar

7 

Srivastava MK, Sinha P, Clements VK, Rodriguez P and Ostrand-Rosenberg S: Myeloid derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 70:68–77. 2010.PubMed/NCBI View Article : Google Scholar

8 

Gabrilovich DI, Ostrand-Rosenberg S and Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 12:253–268. 2012.PubMed/NCBI View Article : Google Scholar

9 

Gabrilovich DI and Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 9:162–174. 2009.PubMed/NCBI View Article : Google Scholar

10 

Mantovani A and Sica A: Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opin Immunol. 22:231–237. 2010.PubMed/NCBI View Article : Google Scholar

11 

Solinas G, Germano G, Mantovani A and Allavena P: Tumorassociated macrophages (TAM) as major players of the cancerrelated inflammation. J Leukoc Biol. 86:1065–1073. 2009.PubMed/NCBI View Article : Google Scholar

12 

Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG and Li MO: The cellular and molecular origin of tumor-associated macrophages. Science. 344:921–925. 2014.PubMed/NCBI View Article : Google Scholar

13 

Nielsen SR and Schmid MC: Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm. 2017(9624760)2017.PubMed/NCBI View Article : Google Scholar

14 

Buchbinder EI and Desai A: CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am J Clin Oncol. 39:98–106. 2016.PubMed/NCBI View Article : Google Scholar

15 

Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011.PubMed/NCBI View Article : Google Scholar

16 

Lesterhuis WJ, Haanen JB and Punt CJ: Cancer immunotherapy-revisited. Nat Rev Drug Discov. 10:591–600. 2011.PubMed/NCBI View Article : Google Scholar

17 

Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al: Classification of current anticancer immunotherapies. Oncotarget. 5:12472–12508. 2014.PubMed/NCBI View Article : Google Scholar

18 

Cobaleda-Siles M, Henriksen-Lacey M, Ruiz de Angulo A, Bernecker A, Gómez Vallejo V, Szczupak B, Llop J, Pastor G, Plaza-Garcia S, Jauregui-Osoro M, et al: An iron oxide nanocarrier for dsRNA to target lymph nodes and strongly activate cells of the immune system. Small. 10:5054–5067. 2014.PubMed/NCBI View Article : Google Scholar

19 

Khalil D, Smith E, Brentjens R and Wolchok JD: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 13:273–290. 2016.PubMed/NCBI View Article : Google Scholar

20 

Michielin O, van Akkooi ACJ, Ascierto PA, Dummer R and Keilholz U: ESMO Guidelines Committee: Electronic address: simpleclinicalguidelines@esmo.org. Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 30:1884–1901. 2019.PubMed/NCBI View Article : Google Scholar

21 

Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W, de Gruijl T, Löwik C, Oostendorp J, van der Burg SH and Ossendorp F: CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials. 40:88–97. 2015.PubMed/NCBI View Article : Google Scholar

22 

Yuba E, Yamaguchi A, Yoshizaki Y, Harada A and Kono K: Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials. 120:32–45. 2017.PubMed/NCBI View Article : Google Scholar

23 

Buonaguro L, Tagliamonte M, Tornesello ML and Buonaguro FM: Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev Vaccines. 10:1569–1583. 2011.PubMed/NCBI View Article : Google Scholar

24 

Hassan HA, Smyth L, Wang JT, Costa PM, Ratnasothy K, Diebold SS, Lombardi G and Al-Jamal KT: Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials. 104:310–322. 2016.PubMed/NCBI View Article : Google Scholar

25 

Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu ZS, Erhan SZ and Wu XY: A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res. 23:1574–1585. 2006.PubMed/NCBI View Article : Google Scholar

26 

Waeckerle-Men Y and Groettrup M: PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev. 57:475–482. 2005.PubMed/NCBI View Article : Google Scholar

27 

Kim H, Niu L, Larson P, Kucaba TA, Murphy KA, James BR, Ferguson DM, Griffith TS and Panyam J: Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials. 164:38–53. 2018.PubMed/NCBI View Article : Google Scholar

28 

Heo MB and Lim YT: Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials. 35:590–600. 2014.PubMed/NCBI View Article : Google Scholar

29 

Kokate RA, Chaudhary P, Sun XL, Thamake SI, Maji S, Chib R, Vishwanatha JK and Jones HP: Rationalizing the use of functionalized poly-lactic-co-glycolic acid nanoparticles for dendritic cell-based targeted anticancer therapy. Nanomedicine (Lond). 11:479–494. 2016.PubMed/NCBI View Article : Google Scholar

30 

Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R and Figdor CG: Targeted PLGA nano-but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release. 144:118–126. 2010.PubMed/NCBI View Article : Google Scholar

31 

Nanjwade BK, Bechra HM, Derkar GK, Manvi FV and Nanjwade VK: Dendrimers: Emerging polymers for drug-delivery systems. Eur J Pharm Sci. 38:185–196. 2009.PubMed/NCBI View Article : Google Scholar

32 

Torchilin VP: Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 4:145–160. 2005.PubMed/NCBI View Article : Google Scholar

33 

Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y and Qian Z: Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv Sci (Weinh). 5(1700891)2018.PubMed/NCBI View Article : Google Scholar

34 

Li H, Li Y, Wang X, Hou Y, Hong X, Gong T, Zhang Z and Sun X: Rational design of polymeric hybrid micelles to overcome lymphatic and intracellular delivery barriers in cancer immunotherapy. Theranostics. 7:4383–4398. 2017.PubMed/NCBI View Article : Google Scholar

35 

Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ and Wang W: Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 22(1445)2017.PubMed/NCBI View Article : Google Scholar

36 

Kodiha M, Wang YM, Hutter E, Maysinger D and Stochaj U: Off to the organelles-killing cancer cells with targeted gold nanoparticles. Theranostics. 5:357–370. 2015.PubMed/NCBI View Article : Google Scholar

37 

Lin AY, Almeida JP, Bear A, Liu N, Luo L, Foster AE and Drezek RA: Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS One. 8(e63550)2013.PubMed/NCBI View Article : Google Scholar

38 

Dykman LA, Staroverov SA, Fomin AS, Khanadeev VA, Khlebtsov BN and Bogatyrev VA: Gold nanoparticles as an adjuvant: Influence of size, shape, and technique of combination with CpG on antibody production. Int Immunopharmacol. 54:163–168. 2018.PubMed/NCBI View Article : Google Scholar

39 

Zhao Y, Zhao X, Cheng Y, Guo X and Yuan W: Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Mol Pharm. 15:1791–1799. 2018.PubMed/NCBI View Article : Google Scholar

40 

Slowing II, Vivero-Escoto JL, Wu CW and Lin VS: Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 60:1278–1288. 2008.PubMed/NCBI View Article : Google Scholar

41 

Nguyen TL, Choi Y and Kim J: Mesoporous silica as a versatile platform for cancer immunotherapy. Adv Mater. 31(e1803953)2019.PubMed/NCBI View Article : Google Scholar

42 

Croissant JG, Fatieiev Y and Khashab NM: Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29, 2017.

43 

Vallhov H, Gabrielsson S, Strømme M, Scheynius A and Garcia-Bennett AE: Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett. 7:3576–3582. 2007.PubMed/NCBI View Article : Google Scholar

44 

Kwon D, Cha BG, Cho Y, Min J, Park EB, Kang SJ and Kim J: Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 Macrophage polarization by delivering IL-4. Nano Lett. 17:2747–2756. 2017.PubMed/NCBI View Article : Google Scholar

45 

Guo HC, Feng XM, Sun SQ, Wei YQ, Sun DH, Liu XT, Liu ZX, Luo JX and Yin H: Immunization of mice by hollow mesoporous silica nanoparticles as carriers of porcine circovirus type 2 ORF2 protein. Virol J. 9(108)2012.PubMed/NCBI View Article : Google Scholar

46 

Wang C, Xu L, Liang C, Xiang J, Peng R and Liu Z: Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv Mater. 26:8154–8162. 2014.PubMed/NCBI View Article : Google Scholar

47 

Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ and Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 183:1161–1172. 1996.PubMed/NCBI View Article : Google Scholar

48 

Yang H, Fu H, Wang B, Zhang X, Mao J, Li X, Wang M, Sun Z, Qian H and Xu W: Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol Carcinog. 57:1223–1236. 2018.PubMed/NCBI View Article : Google Scholar

49 

Lizotte PH, Wen AM, Sheen MR, Fields J, Rojanasopondist P, Steinmetz NF and Fiering S: In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol. 11:295–303. 2016.PubMed/NCBI View Article : Google Scholar

50 

Guo ZS, Liu Z and Bartlett DL: Oncolytic immunotherapy: Dying the right way is a key to eliciting potent antitumor immunity. Front Oncol. 4(74)2014.PubMed/NCBI View Article : Google Scholar

51 

Fu LQ, Wang SB, Cai MH, Wang XJ, Chen JY, Tong XM, Chen XY and Mou XZ: Recent advances in oncolytic virus-based cancer therapy. Virus Res. 270(197675)2019.PubMed/NCBI View Article : Google Scholar

52 

Round JL and Mazmanian SK: Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 107:12204–12209. 2010.PubMed/NCBI View Article : Google Scholar

53 

Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, Denning TL, Bry L, Kraj P, Kisielow P and Ignatowicz L: Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature. 497:258–262. 2013.PubMed/NCBI View Article : Google Scholar

54 

Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, et al: Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 139:485–498. 2009.PubMed/NCBI View Article : Google Scholar

55 

Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, et al: The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 31:677–689. 2009.PubMed/NCBI View Article : Google Scholar

56 

Tomkovich S and Jobin C: Microbiota and host immune responses: A love-hate relationship. Immunology. 147:1–10. 2016.PubMed/NCBI View Article : Google Scholar

57 

Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018.PubMed/NCBI View Article : Google Scholar

58 

Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018.PubMed/NCBI View Article : Google Scholar

59 

Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015.PubMed/NCBI View Article : Google Scholar

60 

Matsumoto K, Yamamoto T, Kamata R and Maeda H: Pathogenesis of serratial infection: Activation of the Hageman factor-prekallikrein cascade by serratial protease. J Biochem. 96:739–749. 1984.PubMed/NCBI View Article : Google Scholar

61 

Maeda H: Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug Chem. 21:797–802. 2010.PubMed/NCBI View Article : Google Scholar

62 

Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S, Xu M, Penman S and Hoffman RM: Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA. 102:755–760. 2005.PubMed/NCBI View Article : Google Scholar

63 

Marshall JS, Green AM, Pensky J, Williams S, Zinn A and Carlson DM: Measurement of circulating desialylated glycoproteins and correlation with hepatocellular damage. J Clin Invest. 54:555–562. 1974.PubMed/NCBI View Article : Google Scholar

64 

Campbell RB, Fukumura D, Brown EB, Mazzola LM, Izumi Y, Jain RK, Torchilin VP and Munn LL: Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 62:6831–6836. 2002.PubMed/NCBI

65 

Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M and Watanabe N: Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 91:1775–1781. 2004.PubMed/NCBI View Article : Google Scholar

66 

Park J, Choi Y, Chang H, Um W, Ryu JH and Kwon IC: Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics. 9:8073–8090. 2019.PubMed/NCBI View Article : Google Scholar

67 

Franqui LS, De Farias MA, Portugal RV, Costa CAR, Domingues RR, Souza Filho AG, Coluci VR, Leme AFP and Martinez DST: Interaction of graphene oxide with cell culture medium: Evaluating the fetal bovine serum protein corona formation towards in vitro nanotoxicity assessment and nanobiointeractions. Mater Sci Eng C Mater Biol Appl. 100:363–377. 2019.PubMed/NCBI View Article : Google Scholar

68 

Glancy D, Zhang Y, Wu JLY, Ouyang B, Ohta S and Chan WCW: Characterizing the protein corona of sub-10 nm nanoparticles. J Control Release. 304:102–110. 2019.PubMed/NCBI View Article : Google Scholar

69 

Lai W, Wang Q, Li L, Hu Z, Chen J and Fang Q: Interaction of gold and silver nanoparticles with human plasma: Analysis of protein corona reveals specific binding patterns. Colloids Surf B Biointerfaces. 152:317–325. 2017.PubMed/NCBI View Article : Google Scholar

70 

Giulimondi F, Digiacomo L, Pozzi D, Palchetti S, Vulpis E, Capriotti AL, Chiozzi RZ, Laganà A, Amenitsch H, Masuelli L, et al: Interplay of protein corona and immune cells controls blood residency of liposomes. Nat Commun. 11(1697)2020.PubMed/NCBI View Article : Google Scholar

71 

Partikel K, Korte R, Stein NC, Mulac D, Herrmann FC, Humpf HU and Langer K: Effect of nanoparticle size and PEGylation on the protein corona of PLGA nanoparticles. Eur J Pharm Biopharm. 141:70–80. 2019.PubMed/NCBI View Article : Google Scholar

72 

Ekdahl KN, Fromell K, Mohlin C, Teramura Y and Nilsson B: A human whole-blood model to study the activation of innate immunity system triggered by nanoparticles as a demonstrator for toxicity. Sci Technol Adv Mater. 20:688–698. 2019.PubMed/NCBI View Article : Google Scholar

73 

Gossmann R, Fahrländer E, Hummel M, Mulac D, Brockmeyer J and Langer K: Comparative examination of adsorption of serum proteins on HSA- and PLGA-based nanoparticles using SDS-PAGE and LC-MS. Eur J Pharm Biopharm. 93:80–87. 2015.PubMed/NCBI View Article : Google Scholar

74 

Kah JC, Wong KY, Neoh KG, Song JH, Fu JW, Mhaisalkar S, Olivo M and Sheppard CJ: Critical parameters in the pegylation of gold nanoshells for biomedical applications: An in vitro macrophage study. J Drug Target. 17:181–193. 2009.PubMed/NCBI View Article : Google Scholar

75 

Fleischer CC and Payne CK: Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J Phys Chem B. 118:14017–14026. 2014.PubMed/NCBI View Article : Google Scholar

76 

Mortimer GM, Butcher NJ, Musumeci AW, Deng ZJ, Martin DJ and Minchin RF: Cryptic epitopes of albumin determine mononuclear phagocyte system clearance of nanomaterials. ACS Nano. 8:3357–3366. 2014.PubMed/NCBI View Article : Google Scholar

77 

Lartigue L, Wilhelm C, Servais J, Factor C, Dencausse A, Bacri JC, Luciani N and Gazeau F: Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: Impact on macrophage uptake. ACS Nano. 6:2665–2678. 2012.PubMed/NCBI View Article : Google Scholar

78 

Barbero F, Russo L, Vitali M, Piella J, Salvo I, Borrajo ML, Busquets-Fité M, Grandori M, Bastús NG, Casals E and Puntes V: Formation of the protein corona: The interface between nanoparticles and the immune system. Semin Immunol. 34:52–60. 2017.PubMed/NCBI View Article : Google Scholar

79 

Xu J, Wang H, Xu L, Chao Y, Wang C, Han X, Dong Z, Chang H, Peng R, Cheng Y and Liu Z: Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials. 207:1–9. 2019.PubMed/NCBI View Article : Google Scholar

80 

Li L, Goedegebuure SP and Gillanders WE: Preclinical and clinical development of neoantigen vaccines. Ann Oncol. 28 (Suppl 12):xii11–xii17. 2017.PubMed/NCBI View Article : Google Scholar

81 

Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, et al: Checkpoint blockade cancer immunotherapy targets tumour-specificmutant antigens. Nature. 515:577–581. 2014.PubMed/NCBI View Article : Google Scholar

82 

Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 547:217–221. 2017.PubMed/NCBI View Article : Google Scholar

83 

Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B, et al: Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 547:222–226. 2017.PubMed/NCBI View Article : Google Scholar

84 

Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T, et al: Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 515:572–576. 2014.PubMed/NCBI View Article : Google Scholar

85 

Stone JD, Harris DT and Kranz DM: TCR affinity for p/MHC formed by tumor antigens that are self-proteins: Impact on efficacy and toxicity. Curr Opin Immunol. 33:16–22. 2015.PubMed/NCBI View Article : Google Scholar

86 

Atif SM, Gibbings SL, Redente EF, Camp FA, Torres RM, Kedl RM, Henson PM and Claudia V: Immune surveillance by natural IgM is required for early neoantigen recognition and initiation of adaptive immunity. Am J Respir Cell Mol Biol. 59:580–591. 2018.PubMed/NCBI View Article : Google Scholar

87 

Li Q, Zhang D, Zhang J, Jiang Y, Song A, Li Z and Luan Y: A three-in-one immunotherapy nanoweapon via cascade-amplifying cancer-immunity cycle against tumor metastasis, relapse, and postsurgical regrowth. Nano Lett. 19:6647–6657. 2019.PubMed/NCBI View Article : Google Scholar

88 

Nonomura C, Otsuka M, Kondou R, Iizuka A, Miyata H, Ashizawa T, Sakura N, Yoshikawa S, Kiyohara Y, Ohshima K, et al: Identification of a neoantigen epitope in a melanoma patient with good response to anti-PD-1 antibody therapy. Immunol Lett. 208:52–59. 2019.PubMed/NCBI View Article : Google Scholar

89 

Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, Türeci O and Sahin U: Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 70:9031–9040. 2010.PubMed/NCBI View Article : Google Scholar

90 

Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, et al: Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 565:240–245. 2019.PubMed/NCBI View Article : Google Scholar

91 

Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, Maurus D, Schwarck-Kokarakis D, Kuhn AN, Omokoko T, et al: An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 585:107–112. 2020.PubMed/NCBI View Article : Google Scholar

92 

Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al: Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 29:917–924. 2011.PubMed/NCBI View Article : Google Scholar

93 

Bencherif SA, Warren Sands R, Ali OA, Li WA, Lewin SA, Braschler TM, Shih TY, Verbeke CS, Bhatta D, Dranoff G and Mooney DJ: Injectable cryogel-based whole-cell cancer vaccines. Nat Commun. 6(7556)2015.PubMed/NCBI View Article : Google Scholar

94 

Hassani Najafabadi A, Zhang J, Aikins ME, Najaf Abadi ZI, Liao F, Qin Y, Okeke EB, Scheetz LM, Nam J, Xu Y, et al: Cancer immunotherapy via targeting cancer stem cells using vaccine nanodiscs. Nano Lett. 20:7783–7792. 2020.PubMed/NCBI View Article : Google Scholar

95 

Zheng F, Dang J, Zhang H, Xu F, Ba F, Zhang B, Cheng F, Chang AE, Wicha MS and Li Q: Cancer stem cell vaccination with PD-L1 and CTLA-4 blockades enhances the eradication of melanoma stem cells in a mouse tumor model. J Immunother. 41:361–368. 2018.PubMed/NCBI View Article : Google Scholar

96 

Aggarwal S: Adverse effects of immuno-oncology drugs-Awareness, diagnosis, and management: A literature review of immune-mediated adverse events. Indian J Cancer. 56 (Suppl):S10–S22. 2019.PubMed/NCBI View Article : Google Scholar

97 

Li Y, Fang M, Zhang J, Wang J, Song Y, Shi J, Li W, Wu G, Ren J, Wang Z, et al: Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology. 5(e1074374)2015.PubMed/NCBI View Article : Google Scholar

98 

Wang C, Ye Y, Hochu GM, Sadeghifar H and Gu Z: Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 16:2334–2340. 2016.PubMed/NCBI View Article : Google Scholar

99 

Ordikhani F, Uehara M, Kasinath V, Dai L, Eskandari SK, Bahmani B, Yonar M, Azzi JR, Haik Y, Sage PT, et al: Targeting antigen-presenting cells by anti-PD-1 nanoparticles augments antitumor immunity. JCI Insight. 3(e122700)2018.PubMed/NCBI View Article : Google Scholar

100 

Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, Xia JX, Zhu YH and Wang J: Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Control Release. 231:17–28. 2016.PubMed/NCBI View Article : Google Scholar

101 

Alimohammadi R, Alibeigi R, Nikpoor AR, Chalbatani GM, Webster TJ, Jaafari MR and Jalali SA: Encapsulated checkpoint blocker before chemotherapy: The optimal sequence of anti-CTLA-4 and doxil combination therapy. Int J Nanomedicine. 15:5279–5288. 2020.PubMed/NCBI View Article : Google Scholar

102 

Zhang YX, Zhao YY, Shen J, Sun X, Liu Y, Liu H and Wang Y and Wang Y: Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett. 19:2774–2783. 2019.PubMed/NCBI View Article : Google Scholar

103 

Hei Y, Teng B, Zeng Z, Zhang S, Li Q, Pan J, Luo Z, Xiong C and Wei S: Multifunctional immunoliposomes combining catalase and PD-L1 antibodies overcome tumor hypoxia and enhance immunotherapeutic effects against melanoma. Int J Nanomedicine. 15:1677–1691. 2020.PubMed/NCBI View Article : Google Scholar

104 

Mishchenko T, Mitroshina E, Balalaeva I, Krysko O, Vedunova M and Krysko DV: An emerging role for nanomaterials in increasing immunogenicity of cancer cell death. Biochim Biophys Acta Rev Cancer. 1871:99–108. 2019.PubMed/NCBI View Article : Google Scholar

105 

Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, Zitvogel L and Kroemer G: Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14:1848–1850. 2007.PubMed/NCBI View Article : Google Scholar

106 

Garg AD, Martin S, Golab J and Agostinis P: Danger signalling during cancer cell death: Origins, plasticity and regulation. Cell Death Differ. 21:26–38. 2014.PubMed/NCBI View Article : Google Scholar

107 

Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, et al: Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol. 12:877–882. 2017.PubMed/NCBI View Article : Google Scholar

108 

Seth A, Heo MB and Lim YT: Poly (γ-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy. Biomaterials. 35:7992–8001. 2014.PubMed/NCBI View Article : Google Scholar

109 

Deng H, Tan S, Gao X, Zou C, Xu C, Tu K, Song Q, Fan F, Huang W and Zhang Z: Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity. Acta Pharm Sin B. 10:358–373. 2020.PubMed/NCBI View Article : Google Scholar

110 

Tzeng SY, Patel KK, Wilson DR, Meyer RA, Rhodes KR and Green JJ: In situ genetic engineering of tumors for long-lasting and systemic immunotherapy. Proc Natl Acad Sci USA. 117:4043–4052. 2020.PubMed/NCBI View Article : Google Scholar

111 

Guan X, Lin L, Chen J, Hu Y, Sun P, Tian H, Maruyama A and Chen X: Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. J Control Release. 293:104–112. 2019.PubMed/NCBI View Article : Google Scholar

112 

Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J and Lavasanifar A: Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine. 26:5046–5057. 2008.PubMed/NCBI View Article : Google Scholar

113 

Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL and Sasada T: Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials. 32:3666–3678. 2011.PubMed/NCBI View Article : Google Scholar

114 

Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guérin M, Biton J, Ouakrim H, et al: Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 115:E4041–E4050. 2018.PubMed/NCBI View Article : Google Scholar

115 

Prendergast GC, Malachowski WP, DuHadaway JB and Muller AJ: Discovery of IDO1 inhibitors: From bench to bedside. Cancer Res. 77:6795–6811. 2017.PubMed/NCBI View Article : Google Scholar

116 

Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ and Weissleder R: TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2:578–588. 2018.PubMed/NCBI View Article : Google Scholar

117 

Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, Wang J, Wen D, Zhang Y, Lu Y, et al: In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 14:89–97. 2019.PubMed/NCBI View Article : Google Scholar

118 

Alupei MC, Licarete E, Patras L and Banciu M: Liposomal simvastatin inhibits tumor growth via targeting tumor-associated macrophages-mediated oxidative stress. Cancer Lett. 356:946–952. 2015.PubMed/NCBI View Article : Google Scholar

119 

Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, Yu X, Luo Q and Zhang Z: Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 11:9536–9549. 2017.PubMed/NCBI View Article : Google Scholar

120 

Hornyák L, Dobos N, Koncz G, Karányi Z, Páll D, Szabó Z, Halmos G and Székvölgyi L: The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol. 9(151)2018.PubMed/NCBI View Article : Google Scholar

121 

Orabona C, Pallotta MT, Volpi C, Fallarino F, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Grohmann U and Puccetti P: SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proc Natl Acad Sci USA. 105:20828–20833. 2008.PubMed/NCBI View Article : Google Scholar

122 

Shou D, Liang W, Song Z, Yin J, Sun Q and Gong W: Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies. Oncotarget. 7:64505–64511. 2016.PubMed/NCBI View Article : Google Scholar

123 

Zhao Q, Kuang DM, Wu Y, Xiao X, Li XF, Li TJ and Zheng L: Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J Immunol. 188:1117–1124. 2012.PubMed/NCBI View Article : Google Scholar

124 

Cheng K, Ding Y, Zhao Y, Ye S, Zhao X, Zhang Y, Ji T, Wu H, Wang B, Anderson GJ, et al: Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. Nano Lett. 18:3250–3258. 2018.PubMed/NCBI View Article : Google Scholar

125 

Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang C and Gu Z: Synergistic transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano. 10:8956–8963. 2016.PubMed/NCBI View Article : Google Scholar

126 

Aoki CA, Borchers AT, Li M, Flavell RA, Bowlus CL, Ansari AA and Gershwin ME: Transforming growth factor beta (TGF-beta) and autoimmunity. Autoimmun Rev. 4:450–459. 2005.PubMed/NCBI View Article : Google Scholar

127 

Zheng Y, Tang L, Mabardi L, Kumari S and Irvine DJ: Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano. 11:3089–3100. 2017.PubMed/NCBI View Article : Google Scholar

128 

Kang M, Hong J, Jung M, Kwon SP, Song SY, Kim HY, Lee JR, Kang S, Han J, Koo JH, et al: T-cell-mimicking nanoparticles for cancer immunotherapy. Adv Mater. 32(e2003368)2020.PubMed/NCBI View Article : Google Scholar

129 

Shi Y and Lammers T: Combining nanomedicine and immunotherapy. Acc Chem Res. 52:1543–1554. 2019.PubMed/NCBI View Article : Google Scholar

130 

Xu Z, Wang Y, Zhang L and Huang L: Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano. 8:3636–3645. 2014.PubMed/NCBI View Article : Google Scholar

131 

Kohlhapp FJ and Kaufman HL: Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 22:1048–1054. 2016.PubMed/NCBI View Article : Google Scholar

132 

Ott PA and Hodi FS: Talimogene laherparepvec for the treatment of advanced melanoma. Clin Cancer Res. 22:3127–3131. 2016.PubMed/NCBI View Article : Google Scholar

133 

Conry RM, Westbrook B, McKee S and Norwood TG: Talimogene laherparepvec: First in class oncolytic virotherapy. Hum Vaccin Immunother. 14:839–846. 2018.PubMed/NCBI View Article : Google Scholar

134 

Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, Ӧhrling K and Kaufman HL: Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer. 7(145)2019.PubMed/NCBI View Article : Google Scholar

135 

Long GV, Dummer R, Ribas A, Puzanov I, Michielin O, Vanderwalde AM, Andtbacka RHI, Cebon J, Fernandez E, Malvehy J, et al: A phase I/III, multicenter, open-label trial of talimogene laherparepvec (T-VEC) in combination with pembrolizumab for the treatment of unresected, stage IIIb-IV melanoma (MASTERKEY-265). J Immunother Cancer. 3 (Suppl 2)(P181)2015.

136 

Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, Chastain M, Gorski KS, Anderson A, Chou J, et al: Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 34:2619–2626. 2016.PubMed/NCBI View Article : Google Scholar

137 

Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C, et al: Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 36:1658–1667. 2018.PubMed/NCBI View Article : Google Scholar

138 

Dummer R, Gyorki DE, Hyngstrom JR, Berger AC, Conry RM, Demidov LV, Sharma A, Treichel S, Faries MB and Ross MI: One-year (yr) recurrence-free survival (RFS) from a randomized, open label phase II study of neoadjuvant (neo) talimogene laherparepvec (T-VEC) plus surgery (surgx) versus surgx for resectable stage IIIB-IVM1a melanoma (MEL). J Clin Oncol. 37 (Suppl 15)(S9520)2019.

139 

Trager MH, Geskin LJ and Saenger YM: Oncolytic viruses for the treatment of metastatic melanoma. Curr Treat Options Oncol. 21(26)2020.PubMed/NCBI View Article : Google Scholar

140 

Ancuceanu R, Dinu M, Neaga I, Laszlo FG and Boda D: Development of QSAR machine learning-based models to forecast the effect of substances on malignant melanoma cells. Oncol Lett. 17:4188–4196. 2019.PubMed/NCBI View Article : Google Scholar

141 

Ion A, Popa IM, Papagheorghe LML, Lisievici C, Lupu M, Voiculescu V, Caruntu C and Boda D: Proteomic approaches to biomarker discovery in cutaneous T-cell lymphoma. Dis Markers. 2016(9602472)2016.PubMed/NCBI View Article : Google Scholar

142 

Boda D, Negrei C, Arsene AL, Caruntu C, Lupuleasa D and Ion RM: Spectral and photochemical properties of hyperbranched nanostructures based on gardiquimod and TPPS4. Farmacia. 63:218–223. 2015.

143 

Boda D: Cellomics as integrative omics for cancer. Curr Proteomics. 10:237–245. 2013.

144 

Lupu M, Caruntu A, Caruntu C, Papagheorghe LML, Ilie MA, Voiculescu V, Boda D, Constantin C, Tanase C, Sifaki M, et al: Neuroendocrine factors: The missing link in non-melanoma skin cancer (Review). Oncol Rep. 38:1327–1340. 2017.PubMed/NCBI View Article : Google Scholar

145 

Zurac S, Neagu M, Constantin C, Cioplea M, Nedelcu R, Bastian A, Popp C, Nichita L, Andrei R, Tebeica T, et al: Variations in the expression of TIMP1, TIMP2 and TIMP3 in cutaneous melanoma with regression and their possible function as prognostic predictors. Oncol Lett. 11:3354–3360. 2016.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Volovat SR, Negru S, Stolniceanu CR, Volovat C, Lungulescu C, Scripcariu D, Cobzeanu BM, Stefanescu C, Grigorescu C, Augustin I, Augustin I, et al: Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review). Exp Ther Med 21: 535, 2021.
APA
Volovat, S.R., Negru, S., Stolniceanu, C.R., Volovat, C., Lungulescu, C., Scripcariu, D. ... Volovat, C.C. (2021). Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review). Experimental and Therapeutic Medicine, 21, 535. https://doi.org/10.3892/etm.2021.9967
MLA
Volovat, S. R., Negru, S., Stolniceanu, C. R., Volovat, C., Lungulescu, C., Scripcariu, D., Cobzeanu, B. M., Stefanescu, C., Grigorescu, C., Augustin, I., Ursulescu, C. L., Volovat, C. C."Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review)". Experimental and Therapeutic Medicine 21.5 (2021): 535.
Chicago
Volovat, S. R., Negru, S., Stolniceanu, C. R., Volovat, C., Lungulescu, C., Scripcariu, D., Cobzeanu, B. M., Stefanescu, C., Grigorescu, C., Augustin, I., Ursulescu, C. L., Volovat, C. C."Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review)". Experimental and Therapeutic Medicine 21, no. 5 (2021): 535. https://doi.org/10.3892/etm.2021.9967
Copy and paste a formatted citation
x
Spandidos Publications style
Volovat SR, Negru S, Stolniceanu CR, Volovat C, Lungulescu C, Scripcariu D, Cobzeanu BM, Stefanescu C, Grigorescu C, Augustin I, Augustin I, et al: Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review). Exp Ther Med 21: 535, 2021.
APA
Volovat, S.R., Negru, S., Stolniceanu, C.R., Volovat, C., Lungulescu, C., Scripcariu, D. ... Volovat, C.C. (2021). Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review). Experimental and Therapeutic Medicine, 21, 535. https://doi.org/10.3892/etm.2021.9967
MLA
Volovat, S. R., Negru, S., Stolniceanu, C. R., Volovat, C., Lungulescu, C., Scripcariu, D., Cobzeanu, B. M., Stefanescu, C., Grigorescu, C., Augustin, I., Ursulescu, C. L., Volovat, C. C."Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review)". Experimental and Therapeutic Medicine 21.5 (2021): 535.
Chicago
Volovat, S. R., Negru, S., Stolniceanu, C. R., Volovat, C., Lungulescu, C., Scripcariu, D., Cobzeanu, B. M., Stefanescu, C., Grigorescu, C., Augustin, I., Ursulescu, C. L., Volovat, C. C."Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review)". Experimental and Therapeutic Medicine 21, no. 5 (2021): 535. https://doi.org/10.3892/etm.2021.9967
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team