|
1
|
Diab NS, Barish S, Dong W, Zhao S,
Allington G, Yu X, Kahle KT, Brueckner M and Jin SC: Molecular
genetics and complex inheritance of congenital heart disease. Genes
(Basel). 12(1020)2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Martin LJ and Benson DW: Focused
strategies for defining the genetic architecture of congenital
heart defects. Genes (Basel). 12(827)2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Benjamin EJ, Muntner P, Alonso A,
Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR,
Cheng S, Das SR, et al: Heart disease and stroke statistics-2019
update: A report from the American Heart Association. Circulation.
139:e56–e528. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Skeffington KL, Bond AR, Bigotti MG,
AbdulGhani S, Iacobazzi D, Kang SL, Heesom KJ, Wilson MC, Stoica S,
Martin R, et al: Changes in inflammation and oxidative stress
signalling pathways in coarcted aorta triggered by bicuspid aortic
valve and growth in young children. Exp Ther Med.
20(48)2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Dragomir C, Manea AM, Enatescu VR,
Lacatusu AAM, Lacatusu A, Henry OI, Boia M and Ilie C: Left heart
hypoplasia operated using double pulmonary arterial banding with
double arterial duct stenting: A case report. Exp Ther Med.
20(193)2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Hu C, Huang S, Wu F and Ding H:
MicroRNA-219-5p participates in cyanotic congenital heart disease
progression by regulating cardiomyocyte apoptosis. Exp Ther Med.
21(36)2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Andonian CS, Freilinger S, Achenbach S,
Ewert P, Gundlach U, Hoerer J, Kaemmerer H, Pieper L, Weyand M,
Neidenbach RC, et al: ‘Well-being paradox’ revisited: A
cross-sectional study of quality of life in over 4000 adults with
congenital heart disease. BMJ Open. 11(e049531)2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Brudy L, Meyer M, Oberhoffer R, Ewert P
and Müller J: Move more-be happier? physical activity and
health-related quality of life in children with congenital heart
disease. Am Heart J. 241:68–73. 2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Moons P, Luyckx K, Thomet C, Budts W,
Enomoto J, Sluman MA, Lu CW, Jackson JL, Khairy P, Cook SC, et al:
Physical functioning, mental health, and quality of life in
different congenital heart defects: Comparative analysis in 3538
patients from 15 countries. Can J Cardiol. 37:215–223.
2021.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Hayama Y, Ohuchi H, Negishi J, Iwasa T,
Sakaguchi H, Miyazaki A, Tsuda E and Kurosaki K: Effect of
stiffened and dilated ascending aorta on aerobic exercise capacity
in repaired patients with complex congenital heart disease. Am J
Cardiol. 129:87–94. 2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Spiesshoefer J, Orwat S, Henke C, Kabitz
HJ, Katsianos S, Borrelli C, Baumgartner H, Nofer JR, Spieker M,
Bengel P, et al: Inspiratory muscle dysfunction and restrictive
lung function impairment in congenital heart disease: Association
with immune inflammatory response and exercise intolerance. Int J
Cardiol. 318:45–51. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Meyer M, Brudy L, García-Cuenllas L, Hager
A, Ewert P, Oberhoffer R and Müller J: Current state of home-based
exercise interventions in patients with congenital heart disease: A
systematic review. Heart. 106:333–341. 2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xu C, Su X, Ma S, Shu Y, Zhang Y, Hu Y and
Mo X: Effects of exercise training in postoperative patients with
congenital heart disease: A systematic review and meta-analysis of
randomized controlled trials. J Am Heart Assoc.
9(e013516)2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Meyer M, Brudy L, Fuertes-Moure A, Hager
A, Oberhoffer-Fritz R, Ewert P and Müller J: E-health exercise
intervention for pediatric patients with congenital heart disease:
A randomized controlled trial. J Pediatr. 233:163–168.
2021.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Asschenfeldt B, Evald L, Heiberg J, Salvig
C, Østergaard L, Dalby RB, Eskildsen SF and Hjortdal VE:
Neuropsychological status and structural brain imaging in adults
with simple congenital heart defects closed in childhood. J Am
Heart Assoc. 9(e015843)2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Kessler N, Feldmann M, Schlosser L,
Rometsch S, Brugger P, Kottke R, Knirsch W, Oxenius A, Greutmann M
and Latal B: Structural brain abnormalities in adults with
congenital heart disease: Prevalence and association with estimated
intelligence quotient. Int J Cardiol. 306:61–66. 2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Bonthrone AF, Dimitrova R, Chew A, Kelly
CJ, Cordero-Grande L, Carney O, Egloff A, Hughes E, Vecchiato K,
Simpson J, et al: Individualized brain development and cognitive
outcome in infants with congenital heart disease. Brain Commun.
3(fcab046)2021.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Gui J, Liang S, Sun Y, Liu Y, Chen C, Wang
B, Zhong J, Yu Y and He S: Effect of perioperative
amplitude-integrated electroencephalography on neurodevelopmental
outcomes following infant heart surgery. Exp Ther Med.
20:2879–2887. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Giang KW, Mandalenakis Z, Dellborg M,
Lappas G, Eriksson P, Hansson PO and Rosengren A: Long-term risk of
hemorrhagic stroke in young patients with congenital heart disease.
Stroke. 49:1155–1162. 2018.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Giang KW, Fedchenko M, Dellborg M,
Eriksson P and Mandalenakis Z: Burden of ischemic stroke in
patients with congenital heart disease: a nationwide, case-control
study. J Am Heart Assoc. 10(e020939)2021.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Freisinger E, Gerß J, Makowski L,
Marschall U, Reinecke H, Baumgartner H, Koeppe J and Diller GP:
Current use and safety of novel oral anticoagulants in adults with
congenital heart disease: Results of a nationwide analysis
including more than 44 000 patients. Eur Heart J. 41:4168–4177.
2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Diller GP, Körten MA, Bauer UM, Miera O,
Tutarel O, Kaemmerer H, Berger F and Baumgartner H: German
Competence Network for Congenital Heart Defects Investigators.
Current therapy and outcome of Eisenmenger syndrome: Data of the
German National Register for congenital heart defects. Eur Heart J.
37:1449–1455. 2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Kaemmerer H, Gorenflo M, Huscher D,
Pittrow D, Apitz C, Baumgartner H, Berger F, Bruch L, Brunnemer E,
Budts W, et al: Pulmonary hypertension in adults with congenital
heart disease: Real-world data from the International COMPERA-CHD
Registry. J Clin Med. 9(1456)2020.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Long L, Xiao Y, Yin X, Gao S, Zhou L and
Liu H: Expression of serum miR-27b and miR-451 in patients with
congenital heart disease associated pulmonary artery hypertension
and risk factor analysis. Exp Ther Med. 20:3196–3202.
2020.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Diller GP, Enders D, Lammers AE, Orwat S,
Schmidt R, Radke RM, Gerss J, De Torres Alba F, Kaleschke G, Bauer
UM, et al: Mortality and morbidity in patients with congenital
heart disease hospitalised for viral pneumonia. Heart.
107:1069–1076. 2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Radke RM, Frenzel T, Baumgartner H and
Diller GP: Adult congenital heart disease and the COVID-19
pandemic. Heart. 106:1302–1309. 2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Diller GP, Gatzoulis MA, Broberg CS,
Aboulhosn J, Brida M, Schwerzmann M, Chessa M, Kovacs AH and
Roos-Hesselink J: Coronavirus disease 2019 in adults with
congenital heart disease: A position paper from the ESC working
group of adult congenital heart disease, and the International
Society for Adult Congenital Heart Disease. Eur Heart J.
42:1858–1865. 2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Diller GP and Baumgartner H: Endocarditis
in adults with congenital heart disease: New answers-new questions.
Eur Heart J. 38:2057–2059. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Tutarel O, Alonso-Gonzalez R, Montanaro C,
Schiff R, Uribarri A, Kempny A, Grübler MR, Uebing A, Swan L,
Diller GP, et al: Infective endocarditis in adults with congenital
heart disease remains a lethal disease. Heart. 104:161–165.
2018.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Cahill TJ, Jewell PD, Denne L, Franklin
RC, Frigiola A, Orchard E and Prendergast BD: Contemporary
epidemiology of infective endocarditis in patients with congenital
heart disease: A UK prospective study. Am Heart J. 215:70–77.
2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Fedchenko M, Mandalenakis Z, Giang KW,
Rosengren A, Eriksson P and Dellborg M: Long-term outcomes after
myocardial infarction in middle-aged and older patients with
congenital heart disease-a nationwide study. Eur Heart J.
42:2577–2586. 2021.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Orwat S and Diller GP: Congenital heart
defects as an intrinsic additional risk factor for the occurrence
and outcome of myocardial infarction. Eur Heart J. 42:2587–2589.
2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Hirono K, Hata Y, Miyao N, Okabe M,
Takarada S, Nakaoka H, Ibuki K, Ozawa S, Yoshimura N, Nishida N, et
al: Left ventricular noncompaction and congenital heart disease
increases the risk of congestive heart failure. J Clin Med.
9(785)2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Menachem JN, Schlendorf KH, Mazurek JA,
Bichell DP, Brinkley DM, Frischhertz BP, Mettler BA, Shah AS,
Zalawadiya S, Book W, et al: Advanced heart failure in adults with
congenital heart disease. JACC Heart Fail. 8:87–99. 2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Arnaert S, De Meester P, Troost E, Droogne
W, Van Aelst L, Van Cleemput J, Voros G, Gewillig M, Cools B, Moons
P, et al: Heart failure related to adult congenital heart disease:
Prevalence, outcome and risk factors. ESC Heart Fail. 8:2940–2950.
2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Sakhi R, Kauling RM, Theuns DA,
Szili-Torok T, Bhagwandien RE, van den Bosch AE, Cuypers JAAE,
Roos-Hesselink JW and Yap SC: Early detection of ventricular
arrhythmias in adults with congenital heart disease using an
insertable cardiac monitor (EDVA-CHD study). Int J Cardiol.
305:63–69. 2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Casteigt B, Samuel M, Laplante L, Shohoudi
A, Apers S, Kovacs AH, Luyckx K, Thomet C, Budts W, Enomoto J, et
al: Atrial arrhythmias and patient-reported outcomes in adults with
congenital heart disease: An international study. Heart Rhythm.
18:793–800. 2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Wasmer K, Eckardt L, Baumgartner H and
Köbe J: Therapy of supraventricular and ventricular arrhythmias in
adults with congenital heart disease-narrative review. Cardiovasc
Diagn Ther. 11:550–562. 2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Goldstein SA, D'Ottavio A, Spears T,
Chiswell K, Hartman RJ, Krasuski RA, Kemper AR, Meyer RE, Hoffman
TM, Walsh MJ, et al: Causes of death and cardiovascular
comorbidities in adults with congenital heart disease. J Am Heart
Assoc. 9(e016400)2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Oliver JM, Gallego P, Gonzalez AE, Avila
P, Alonso A, Garcia-Hamilton D, Peinado R, Dos-Subirà L,
Pijuan-Domenech A, Rueda J, et al: Predicting sudden cardiac death
in adults with congenital heart disease. Heart. 107:67–75.
2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Vehmeijer JT, Koyak Z, Leerink JM,
Zwinderman AH, Harris L, Peinado R, Oechslin EN, Robbers-Visser D,
Groenink M, Boekholdt SM, et al: Identification of patients at risk
of sudden cardiac death in congenital heart disease: the
PRospEctiVE study on implaNTable cardIOverter defibrillator therapy
and suddeN cardiac death in Adults with Congenital Heart Disease
(PREVENTION-ACHD). Heart Rhythm. 18:785–792. 2021.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Williams JL, Torok RD, D'Ottavio A, Spears
T, Chiswell K, Forestieri NE, Sang CJ, Paolillo JA, Walsh MJ,
Hoffman TM, et al: Causes of death in infants and children with
congenital heart disease. Pediatr Cardiol. 42:1308–1315.
2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Virani SS, Alonso A, Aparicio HJ, Benjamin
EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng
S, Delling FN, et al: Heart disease and stroke statistics-2021
update: A report from the American Heart Association. Circulation.
143:e254–e743. 2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Diller GP, Arvanitaki A, Opotowsky AR,
Jenkins K, Moons P, Kempny A, Tandon A, Redington A, Khairy P,
Mital S, et al: Lifespan perspective on congenital heart disease
research: JACC state-of-the-art review. J Am Coll Cardiol.
77:2219–2235. 2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Bouma BJ and Mulder BJ: Changing landscape
of congenital heart disease. Circ Res. 120:908–922. 2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Spector LG, Menk JS, Knight JH, McCracken
C, Thomas AS, Vinocur JM, Oster ME, St Louis JD, Moller JH and
Kochilas L: Trends in long-term mortality after congenital heart
surgery. J Am Coll Cardiol. 71:2434–2446. 2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Niwa K, Kaemmerer H and von Kodolitsch Y:
Current diagnosis and management of late complications in adult
congenital heart disease. Cardiovasc Diagn Ther. 11:478–480.
2021.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Kalisch-Smith JI, Ved N and Sparrow DB:
Environmental risk factors for congenital heart disease. Cold
Spring Harb Perspect Biol. 12(a037234)2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Zhou J, Xiong Y, Dong X, Wang H, Qian Y,
Ma D and Li X: Genome-wide methylation analysis reveals
differentially methylated CpG sites and altered expression of heart
development-associated genes in fetuses with cardiac defects. Exp
Ther Med. 22(1032)2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Bigras JL: Cardiovascular risk factors in
patients with congenital heart disease. Can J Cardiol.
36:1458–1466. 2020.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Helle E and Priest JR: Maternal obesity
and diabetes mellitus as risk factors for congenital heart disease
in the offspring. J Am Heart Assoc. 9(e011541)2020.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Saliba A, Figueiredo AC, Baroneza JE,
Afiune JY, Pic-Taylor A, Oliveira SF and Mazzeu JF: Genetic and
genomics in congenital heart disease: A clinical review. J Pediatr
(Rio J). 96:279–288. 2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Shabana NA, Shahid SU and Irfan U: Genetic
contribution to congenital heart disease (CHD). Pediatr Cardiol.
41:12–23. 2020.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Majumdar U, Yasuhara J and Garg V: In vivo
and in vitro genetic models of congenital heart disease. Cold
Spring Harb Perspect Biol. 13(a036764)2021.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Loffredo CA, Chokkalingam A, Sill AM,
Boughman JA, Clark EB, Scheel J and Brenner JI: Prevalence of
congenital cardiovascular malformations among relatives of infants
with hypoplastic left heart, coarctation of the aorta, and
d-transposition of the great arteries. Am J Med Genet A.
124A:225–230. 2004.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Arya P, Wilson TE, Parent JJ, Ware SM,
Breman AM and Helm BM: An adult female with 5q34-q35.2 deletion: A
rare syndromic presentation of left ventricular non-compaction and
congenital heart disease. Eur J Med Genet.
63(103797)2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Evangelidou P, Kousoulidou L, Salameh N,
Alexandrou A, Papaevripidou I, Alexandrou IM, Ketoni A, Ioannidou
C, Christophidou-Anastasiadou V, Tanteles GA, et al: An unusual
combination of an atypical maternally inherited novel 0.3 Mb
deletion in Williams-Beuren region and a de novo 22q11.21
microduplication in an infant with supravalvular aortic stenosis.
Eur J Med Genet. 63(104084)2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Szot JO, Campagnolo C, Cao Y, Iyer KR,
Cuny H, Drysdale T, Flores-Daboub JA, Bi W, Westerfield L, Liu P,
et al: Bi-allelic mutations in NADSYN1 cause multiple organ defects
and expand the genotypic spectrum of congenital NAD deficiency
disorders. Am J Hum Genet. 106:129–136. 2020.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Chen CA, Crutcher E, Gill H, Nelson TN,
Robak LA, Jongmans MC, Pfundt R, Prasad C, Berard RA, Fannemel M,
et al: The expanding clinical phenotype of germline ABL1-associated
congenital heart defects and skeletal malformations syndrome. Hum
Mutat. 41:1738–1744. 2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Hsieh A, Morton SU, Willcox JAL, Gorham
JM, Tai AC, Qi H, DePalma S, McKean D, Griffin E, Manheimer KB, et
al: EM-mosaic detects mosaic point mutations that contribute to
congenital heart disease. Genome Med. 12(42)2020.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Kolomenski JE, Delea M, Simonetti L,
Fabbro MC, Espeche LD, Taboas M, Nadra AD, Bruque CD and Dain L: An
update on genetic variants of the NKX2-5. Hum Mutat. 41:1187–1208.
2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Liu H, Giguet-Valard AG, Simonet T,
Szenker-Ravi E, Lambert L, Vincent-Delorme C, Scheidecker S, Fradin
M, Morice-Picard F, Naudion S, et al: Next-generation sequencing in
a series of 80 fetuses with complex cardiac malformations and/or
heterotaxy. Hum Mutat. 41:2167–2178. 2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Lin JI, Feinstein TN, Jha A, McCleary JT,
Xu J, Arrigo AB, Rong G, Maclay LM, Ridge T, Xu X, et al: Mutation
of LRP1 in cardiac neural crest cells causes congenital heart
defects by perturbing outflow lengthening. Commun Biol.
3(312)2020.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Sutani A, Shima H, Hijikata A, Hosokawa S,
Katoh-Fukui Y, Takasawa K, Suzuki E, Doi S, Shirai T, Morio T, et
al: WDR11 is another causative gene for coloboma, cardiac anomaly
and growth retardation in 10q26 deletion syndrome. Eur J Med Genet.
63(103626)2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Le Fevre A, Baptista J, Ellard S, Overton
T, Oliver A, Gradhand E and Scurr I: Compound heterozygous Pkd1l1
variants in a family with two fetuses affected by heterotaxy and
complex Chd. Eur J Med Genet. 63(103657)2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Li W, Li B, Li T, Zhang E, Wang Q, Chen S
and Sun K: Identification and analysis of KLF13 variants in
patients with congenital heart disease. BMC Med Genet.
21(78)2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Wang SS, Wang TM, Qiao XH, Huang RT, Xue
S, Dong BB, Xu YJ, Liu XY and Yang YQ: KLF13 loss-of-function
variation contributes to familial congenital heart defects. Eur Rev
Med Pharmacol Sci. 24:11273–11285. 2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Zhang Y, Sun YM, Xu YJ, Zhao CM, Yuan F,
Guo XJ, Guo YH, Yang CX, Gu JN, Qiao Q, et al: A new TBX5
loss-of-function mutation contributes to congenital heart defect
and atrioventricular block. Int Heart J. 61:761–768.
2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Jiang WF, Xu YJ, Zhao CM, Wang XH, Qiu XB,
Liu X, Wu SH and Yang YQ: A novel TBX5 mutation predisposes to
familial cardiac septal defects and atrial fibrillation as well as
bicuspid aortic valve. Genet Mol Biol. 43(e20200142)2020.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Wang C, Lv H, Ling X, Li H, Diao F, Dai J,
Du J, Chen T, Xi Q, Zhao Y, et al: Association of assisted
reproductive technology, germline de novo mutations and congenital
heart defects in a prospective birth cohort study. Cell Res.
31:919–928. 2021.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Lahrouchi N, Postma AV, Salazar CM, De
Laughter DM, Tjong F, Piherová L, Bowling FZ, Zimmerman D, Lodder
EM, Ta-Shma A, et al: Biallelic loss-of-function variants in PLD1
cause congenital right-sided cardiac valve defects and neonatal
cardiomyopathy. J Clin Invest. 131(e142148)2021.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Audain E, Wilsdon A, Breckpot J,
Izarzugaza JM, Fitzgerald TW, Kahlert AK, Sifrim A, Wünnemann F,
Perez-Riverol Y, Abdul-Khaliq H, et al: Integrative analysis of
genomic variants reveals new associations of candidate
haploinsufficient genes with congenital heart disease. PLoS Genet.
17(e1009679)2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Zheng SQ, Chen HX, Liu XC, Yang Q and He
GW: Genetic analysis of the CITED2 gene promoter in isolated and
sporadic congenital ventricular septal defects. J Cell Mol Med.
25:2254–2261. 2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Fu F, Li R, Lei TY, Wang D, Yang X, Han J,
Pan M, Zhen L, Li J, Li FT, et al: Compound heterozygous mutation
of the ASXL3 gene causes autosomal recessive congenital heart
disease. Hum Genet. 140:333–348. 2021.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Hou C, Zheng J, Liu W, Xie L, Sun X, Zhang
Y, Xu M, Li Y and Xiao T: Identification and characterization of a
novel ELN mutation in congenital heart disease with pulmonary
artery stenosis. Sci Rep. 11(14154)2021.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Helm BM, Landis BJ and Ware SM: Genetic
evaluation of inpatient neonatal and infantile congenital heart
defects: New findings and review of the literature. Genes (Basel).
12(1244)2021.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Massadeh S, Albeladi M, Albesher N,
Alhabshan F, Kampe KD, Chaikhouni F, Kabbani MS, Beetz C and
Alaamery M: Novel autosomal recessive splice-altering variant in
PRKD1 is associated with congenital heart disease. Genes (Basel).
12(612)2021.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Musfee FI, Agopian AJ, Goldmuntz E,
Hakonarson H, Morrow BE, Taylor DM, Tristani-Firouzi M, Watkins WS,
Yandell M and Mitchell LE: Common variation in cytoskeletal genes
is associated with conotruncal heart defects. Genes (Basel).
12(655)2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Meerschaut I, Vergult S, Dheedene A,
Menten B, De Groote K, De Wilde H, Muiño Mosquera L, Panzer J,
Vandekerckhove K, Coucke PJ, et al: A reassessment of copy number
variations in congenital heart defects: Picturing the whole genome.
Genes (Basel). 12(1048)2021.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Yadav ML, Jain D, Neelabh Agrawal D, Kumar
A and Mohapatra B: A gain-of-function mutation in CITED2 is
associated with congenital heart disease. Mutat Res.
822(111741)2021.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Basel-Salmon L, Ruhrman-Shahar N, Barel O,
Hagari O, Marek-Yagel D, Azulai N, Bazak L, Svirsky R, Reznik-Wolf
H, Lidzbarsky GA, et al: Biallelic variants in ETV2 in a family
with congenital heart defects, vertebral abnormalities and preaxial
polydactyly. Eur J Med Genet. 64(104124)2021.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Huang S, Wu Y, Chen S, Yang Y, Wang Y,
Wang H, Li P, Zhuang J and Xia Y: Novel insertion mutation
(Arg1822_Glu1823dup) in MYH6 coiled-coil domain causing familial
atrial septal defect. Eur J Med Genet. 64(104314)2021.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Zhao L, Jiang WF, Yang CX, Qiao Q, Xu YJ,
Shi HY, Qiu XB, Wu SH and Yang YQ: SOX17 loss-of-function variation
underlying familial congenital heart disease. Eur J Med Genet.
64(104211)2021.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Li YJ and Yang YQ: An update on the
molecular diagnosis of congenital heart disease: Focus on
loss-of-function mutations. Expert Rev Mol Diagn. 17:393–401.
2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Sifrim A, Hitz MP, Wilsdon A, Breckpot J,
Turki SH, Thienpont B, McRae J, Fitzgerald TW, Singh T, Swaminathan
GJ, et al: Distinct genetic architectures for syndromic and
nonsyndromic congenital heart defects identified by exome
sequencing. Nat Genet. 48:1060–1065. 2016.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Darwich R, Li W, Yamak A, Komati H,
Andelfinger G, Sun K and Nemer M: KLF13 is a genetic modifier of
the Holt-Oram syndrome gene TBX5. Hum Mol Genet. 26:942–954.
2017.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Song A, Patel A, Thamatrakoln K, Liu C,
Feng D, Clayberger C and Krensky AM: Functional domains and
DNA-binding sequences of RFLAT-1/KLF13, a Krüppel-like
transcription factor of activated T lymphocytes. J Biol Chem.
277:30055–30065. 2002.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Lavallée G, Andelfinger G, Nadeau M,
Lefebvre C, Nemer G, Horb ME and Nemer M: The Kruppel-like
transcription factor KLF13 is a novel regulator of heart
development. EMBO J. 25:5201–5213. 2006.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Zhao W, Wang J, Shen J, Sun K, Zhu J, Yu
T, Ji W, Chen Y, Fu Q and Li F: Mutations in VEGFA are associated
with congenital left ventricular outflow tract obstruction. Biochem
Biophys Res Commun. 396:483–488. 2010.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Greenway SC, McLeod R, Hume S, Roslin NM,
Alvarez N, Giuffre M, Zhan SH, Shen Y, Preuss C, Andelfinger G, et
al: Exome sequencing identifies a novel variant in ACTC1 associated
with familial atrial septal defect. Can J Cardiol. 30:181–187.
2014.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Matsson H, Eason J, Bookwalter CS, Klar J,
Gustavsson P, Sunnegårdh J, Enell H, Jonzon A, Vikkula M, Gutierrez
I, et al: Alpha-cardiac actin mutations produce atrial septal
defects. Hum Mol Genet. 17:256–265. 2008.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Martin KM, Metcalfe JC and Kemp PR:
Expression of Klf9 and Klf13 in mouse development. Mech Dev.
103:149–151. 2001.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Gordon AR, Outram SV, Keramatipour M,
Goddard CA, Colledge WH, Metcalfe JC, Hager-Theodorides AL,
Crompton T and Kemp PR: Splenomegaly and modified erythropoiesis in
KLF13-/- mice. J Biol Chem. 283:11897–11904.
2008.PubMed/NCBI View Article : Google Scholar
|