The role of autophagy/lipophagy in the response of osteoblastic cells to hyperlipidemia (Review)
- Authors:
- Yizhang He
- Yantong Liu
- Ran Li
- Aoqi Xiang
- Xiaochang Chen
- Qi Yu
- Peihong Su
-
Affiliations: Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China, School of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China - Published online on: June 19, 2024 https://doi.org/10.3892/etm.2024.12617
- Article Number: 328
This article is mentioned in:
Abstract
Hu LF, Yin C, Zhao F, Ali A, Ma J and Qian A: Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci. 19(360)2018.PubMed/NCBI View Article : Google Scholar | |
Johnell O and Kanis JA: An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 17:1726–1733. 2006.PubMed/NCBI View Article : Google Scholar | |
Van Staa TP, Dennison EM, Leufkens HG and Cooper C: Epidemiology of fractures in England and Wales. Bone. 29:517–522. 2001.PubMed/NCBI View Article : Google Scholar | |
Hu X, Ma S, Yang C, Wang W and Chen L: Relationship between senile osteoporosis and cardiovascular and cerebrovascular diseases. Exp Ther Med. 17:4417–4420. 2019.PubMed/NCBI View Article : Google Scholar | |
Tanko LB, Bagger YZ, Nielsen SB and Christiansen C: Does serum cholesterol contribute to vertebral bone loss in postmenopausal women? Bone. 32:8–14. 2003.PubMed/NCBI View Article : Google Scholar | |
Trimpou P, Oden A, Simonsson T, Wilhelmsen L and Landin-Wilhelmsen K: High serum total cholesterol is a long-term cause of osteoporotic fracture. Osteoporos Int. 22:1615–1620. 2011.PubMed/NCBI View Article : Google Scholar | |
Polyzos SA, Anastasilakis AD, Efstathiadou ZA, Yavropoulou MP and Makras P: Postmenopausal osteoporosis coexisting with other metabolic diseases: Treatment considerations. Maturitas. 147:19–25. 2021.PubMed/NCBI View Article : Google Scholar | |
Yin C, Tian Y, Hu L, Yu Y, Wu Z, Zhang Y, Wang X, Miao Z and Qian A: MACF1 alleviates aging-related osteoporosis via HES1. J Cell Mol Med. 25:6242–6257. 2021.PubMed/NCBI View Article : Google Scholar | |
Kim SP, Li Z, Zoch ML, Frey JL, Bowman CE, Kushwaha P, Ryan KA, Goh BC, Scafidi S, Pickett JE, et al: Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight. 2(e92704)2017.PubMed/NCBI View Article : Google Scholar | |
Niemeier A, Niedzielska D, Secer R, Schilling A, Merkel M, Enrich C, Rensen PCN and Heeren J: Uptake of postprandial lipoproteins into bone in vivo: Impact on osteoblast function. Bone. 43:230–237. 2008.PubMed/NCBI View Article : Google Scholar | |
Choi AM, Ryter SW and Levine B: Autophagy in human health and disease. N Engl J Med. 368:1845–1846. 2013.PubMed/NCBI View Article : Google Scholar | |
Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Camuzard O and Carle GF: Autophagy in bone: Self-eating to stay in balance. Ageing Res Rev. 24:206–217. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L and Wang X: The role of autophagy in bone metabolism and clinical significance. Autophagy. 19:2409–2427. 2023.PubMed/NCBI View Article : Google Scholar | |
Shin DW: Lipophagy: Molecular mechanisms and implications in metabolic disorders. Mol Cells. 43:686–693. 2020.PubMed/NCBI View Article : Google Scholar | |
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates lipid metabolism. Nature. 458:1131–1135. 2009.PubMed/NCBI View Article : Google Scholar | |
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, et al: Selective autophagy of intracellular organelles: Recent research advances. Theranostics. 11:222–256. 2021.PubMed/NCBI View Article : Google Scholar | |
Schulze RJ, Sathyanarayan A and Mashek DG: Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:1178–1187. 2017.PubMed/NCBI View Article : Google Scholar | |
Miao J, Zang X, Cui X and Zhang J: Autophagy, hyperlipidemia, and atherosclerosis. Adv Exp Med Biol. 1207:237–264. 2020.PubMed/NCBI View Article : Google Scholar | |
Barros JAS, Siqueira JAB, Cavalcanti JHF, Araújo WL and Avin-Wittenberg T: Multifaceted roles of plant autophagy in lipid and energy metabolism. Trends Plant Sci. 25:1141–1153. 2020.PubMed/NCBI View Article : Google Scholar | |
Maan M, Peters JM, Dutta M and Patterson AD: Lipid metabolism and lipophagy in cancer. Biochem Biophys Res Commun. 504:582–589. 2018.PubMed/NCBI View Article : Google Scholar | |
Liu Q, Wang YM and Gu HF: Lipophagy in atherosclerosis. Clin Chim Acta. 511:208–214. 2020.PubMed/NCBI View Article : Google Scholar | |
Ji C, Zhang Z, Xu X, Song D and Zhang D: Hyperlipidemia impacts osteogenesis via lipophagy. Bone. 167(116643)2023.PubMed/NCBI View Article : Google Scholar | |
Ohsaki Y, Kawai T, Yoshikawa Y, Cheng J, Jokitalo E and Fujimoto T: PML isoform II plays a critical role in nuclear lipid droplet formation. J Cell Biol. 212:29–38. 2016.PubMed/NCBI View Article : Google Scholar | |
Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H and Mashek DG: The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 121:2102–2110. 2011.PubMed/NCBI View Article : Google Scholar | |
Pirih F, Lu J, Ye F, Bezouglaia O, Atti E, Ascenzi MG, Tetradis S, Demer L, Aghaloo T and Tintut Y: Adverse effects of hyperlipidemia on bone regeneration and strength. J Bone Miner Res. 27:309–318. 2012.PubMed/NCBI View Article : Google Scholar | |
Almeida M, Ambrogini E, Han L, Manolagas SC and Jilka RL: Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 284:27438–2748. 2009.PubMed/NCBI View Article : Google Scholar | |
Pelton K, Krieder J, Joiner D, Freeman MR, Goldstein SA and Solomon KR: Hypercholesterolemia promotes an osteoporotic phenotype. Am J Pathol. 181:928–936. 2012.PubMed/NCBI View Article : Google Scholar | |
Demigne C, Bloch-Faure M, Picard N, Sabboh H, Besson C, Rémésy C, Geoffroy V, Gaston AT, Nicoletti A, Hagège A, et al: Mice chronically fed a westernized experimental diet as a model of obesity, metabolic syndrome and osteoporosis. Eur J Nutr. 45:298–306. 2006.PubMed/NCBI View Article : Google Scholar | |
Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W and Demer LL: Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res. 16:182–188. 2001.PubMed/NCBI View Article : Google Scholar | |
You L, Sheng ZY, Tang CL, Chen L, Pan L and Chen JY: High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats. Acta Pharmacol Sin. 32:1498–1504. 2011.PubMed/NCBI View Article : Google Scholar | |
Li F and Zhang H: Lysosomal acid lipase in lipid metabolism and beyond. Arterioscler Thromb Vasc Biol. 39:850–856. 2019.PubMed/NCBI View Article : Google Scholar | |
Du H, Heur M, Duanmu M, Grabowski GA, Hui DY, Witte DP and Mishra J: Lysosomal acid lipase-deficient mice: Depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J Lipid Res. 42:489–500. 2001.PubMed/NCBI | |
Helderman RC, Whitney DG, Duta-Mare M, Akhmetshina A, Vujic N, Jayapalan S, Nyman JS, Misra BB, Rosen CJ, Czech MP, et al: Loss of function of lysosomal acid lipase (LAL) profoundly impacts osteoblastogenesis and increases fracture risk in humans. Bone. 148(115946)2021.PubMed/NCBI View Article : Google Scholar | |
Nakamichi R, Hayashi K and Itoh H: Effects of high glucose and lipotoxicity on diabetic podocytes. Nutrients. 13(241)2021.PubMed/NCBI View Article : Google Scholar | |
Zhang B, Li X, Liu G, Zhang C, Zhang X, Shen Q, Sun G and Sun X: Peroxiredomin-4 ameliorates lipotoxicity-induced oxidative stress and apoptosis in diabetic cardiomyopathy. Biomed Pharmacother. 141(111780)2021.PubMed/NCBI View Article : Google Scholar | |
Singh L, Tyagi S, Myers D and Duque G: Good, bad, or ugly: The biological roles of bone marrow fat. Curr Osteoporos Rep. 16:130–137. 2018.PubMed/NCBI View Article : Google Scholar | |
Veldhuis-Vlug AG and Rosen CJ: Clinical implications of bone marrow adiposity. J Intern Med. 283:121–139. 2018.PubMed/NCBI View Article : Google Scholar | |
Al Saedi A, Bermeo S, Plotkin L, Myers DE and Duque G: Mechanisms of palmitate-induced lipotoxicity in osteocytes. Bone. 127:353–359. 2019.PubMed/NCBI View Article : Google Scholar | |
Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M and Demer LL: Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res. 14:2067–2078. 1999.PubMed/NCBI View Article : Google Scholar | |
Yin W, Li Z and Zhang W: Modulation of bone and marrow niche by cholesterol. Nutrients. 11(1394)2019.PubMed/NCBI View Article : Google Scholar | |
Arai M, Shibata Y, Pugdee K, Abiko Y and Ogata Y: Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life. 59:27–33. 2007.PubMed/NCBI View Article : Google Scholar | |
Li K, Xiu C, Zhou Q, Ni L, Du J, Gong T, Li M, Saijilafu Yang H and Chen J: A dual role of cholesterol in osteogenic differentiation of bone marrow stromal cells. J Cell Physiol. 234:2058–2066. 2019.PubMed/NCBI View Article : Google Scholar | |
Zhang M, Du Y, Lu R, Shu Y, Zhao W, Li Z, Zhang Y, Liu R, Yang T, Luo S, et al: Cholesterol retards senescence in bone marrow mesenchymal stem cells by modulating autophagy and ROS/p53/p21(Cip1/Waf1) pathway. Oxid Med Cell Longev. 2016(7524308)2016.PubMed/NCBI View Article : Google Scholar | |
Parhami F: Possible role of oxidized lipids in osteoporosis: Could hyperlipidemia be a risk factor? Prostaglandins Leukot Essent Fatty Acids. 68:373–378. 2003.PubMed/NCBI View Article : Google Scholar | |
Lim HY, Rutkowski JM, Helft J, Reddy ST, Swartz MA, Randolph GJ and Angeli V: Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration. Am J Pathol. 175:1328–1337. 2009.PubMed/NCBI View Article : Google Scholar | |
Soehnlein O and Swirski FK: Hypercholesterolemia links hematopoiesis with atherosclerosis. Trends Endocrinol Metab. 24:129–136. 2013.PubMed/NCBI View Article : Google Scholar | |
Gleissner CA, Leitinger N and Ley K: Effects of native and modified low-density lipoproteins on monocyte recruitment in atherosclerosis. Hypertension. 50:276–283. 2007.PubMed/NCBI View Article : Google Scholar | |
Gough AK, Lilley J, Eyre S, Holder RL and Emery P: Generalised bone loss in patients with early rheumatoid arthritis. Lancet. 344:23–27. 1994.PubMed/NCBI View Article : Google Scholar | |
Romas E: Bone loss in inflammatory arthritis: Mechanisms and therapeutic approaches with bisphosphonates. Best Pract Res Clin Rheumatol. 19:1065–1079. 2005.PubMed/NCBI View Article : Google Scholar | |
Roldan JF, Del Rincon I and Escalante A: Loss of cortical bone from the metacarpal diaphysis in patients with rheumatoid arthritis: Independent effects of systemic inflammation and glucocorticoids. J Rheumatol. 33:508–516. 2006.PubMed/NCBI | |
Redlich K, Gortz B, Hayer S, Zwerina J, Doerr N, Kostenuik P, Bergmeister H, Kollias G, Steiner G, Smolen JS and Schett G: Repair of local bone erosions and reversal of systemic bone loss upon therapy with anti-tumor necrosis factor in combination with osteoprotegerin or parathyroid hormone in tumor necrosis factor-mediated arthritis. Am J Pathol. 164:543–555. 2004.PubMed/NCBI View Article : Google Scholar | |
Gilbert L, He X, Farmer P, Rubin J, Drissi H, van Wijnen AJ, Lian JB, Stein GS and Nanes MS: Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem. 277:2695–2701. 2002.PubMed/NCBI View Article : Google Scholar | |
Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, Boyce BF and Xing L: Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem. 281:4326–4333. 2006.PubMed/NCBI View Article : Google Scholar | |
Takano M, Otsuka F, Matsumoto Y, Inagaki K, Takeda M, Nakamura E, Tsukamoto N, Miyoshi T, Sada KE and Makino H: Peroxisome proliferator-activated receptor activity is involved in the osteoblastic differentiation regulated by bone morphogenetic proteins and tumor necrosis factor-alpha. Mol Cell Endocrinol. 348:224–232. 2012.PubMed/NCBI View Article : Google Scholar | |
Ding J, Ghali O, Lencel P, Broux O, Chauveau C, Devedjian JC, Hardouin P and Magne D: TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci. 84:499–504. 2009.PubMed/NCBI View Article : Google Scholar | |
Hughes FJ and Howells GL: Interleukin-6 inhibits bone formation in vitro. Bone Miner. 21:21–28. 1993.PubMed/NCBI View Article : Google Scholar | |
Krum SA, Chang J, Miranda-Carboni G and Wang CY: Novel functions for NFκB: Inhibition of bone formation. Nat Rev Rheumatol. 6:607–611. 2010.PubMed/NCBI View Article : Google Scholar | |
Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE and Wu D: Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 280:19883–19887. 2005.PubMed/NCBI View Article : Google Scholar | |
Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, et al: Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 22:6267–6276. 2003.PubMed/NCBI View Article : Google Scholar | |
Mason JJ and Williams BO: SOST and DKK: Antagonists of LRP family signaling as targets for treating bone disease. J Osteoporos. 2010(460120)2010.PubMed/NCBI View Article : Google Scholar | |
Tanida I: Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal. 14:2201–2214. 2011.PubMed/NCBI View Article : Google Scholar | |
He C and Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 43:67–93. 2009.PubMed/NCBI View Article : Google Scholar | |
Parzych KR and Klionsky DJ: An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. 2014.PubMed/NCBI View Article : Google Scholar | |
Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A and Zhang J: Autophagy in stem cells. Autophagy. 9:830–849. 2013.PubMed/NCBI View Article : Google Scholar | |
Mizushima N and Levine B: Autophagy in mammalian development and differentiation. Nat Cell Biol. 12:823–830. 2010.PubMed/NCBI View Article : Google Scholar | |
Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011.PubMed/NCBI View Article : Google Scholar | |
Rubinsztein DC, Marino G and Kroemer G: Autophagy and aging. Cell. 146:682–695. 2011.PubMed/NCBI View Article : Google Scholar | |
Rubinsztein DC: The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 443:780–786. 2006.PubMed/NCBI View Article : Google Scholar | |
Ciechanover A: Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ. 12:1178–1190. 2005.PubMed/NCBI View Article : Google Scholar | |
Mizushima N and Klionsky DJ: Protein turnover via autophagy: Implications for metabolism. Annu Rev Nutr. 27:19–40. 2007.PubMed/NCBI View Article : Google Scholar | |
Wei H, Wei S, Gan B, Peng X, Zou W and Guan JL: Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 25:1510–1527. 2011.PubMed/NCBI View Article : Google Scholar | |
Kimmelman AC: The dynamic nature of autophagy in cancer. Genes Dev. 25:1999–2010. 2011.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Deng Z, Gan J, Zhou G, Shi T, Wang Z, Huang Z, Qian H, Bao N, Guo T, et al: TiAl (6)V(4) particles promote osteoclast formation via autophagy-mediated downregulation of interferon-beta in osteocytes. Acta Biomater. 48:489–498. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang Z, Shi T, He W, Wang L, Guo T, et al: Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis. Autophagy. 11:2358–2369. 2015.PubMed/NCBI View Article : Google Scholar | |
Piemontese M, Onal M, Xiong J, Han L, Thostenson JD, Almeida M and O'Brien CA: Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage. Sci Rep. 6(24262)2016.PubMed/NCBI View Article : Google Scholar | |
Kanda N and Watanabe S: 17-beta-estradiol inhibits oxidative stress induced apoptosis in keratinocytes by promoting Bcl-2 expression. J Invest Dermatol. 121:1500–1509. 2003.PubMed/NCBI View Article : Google Scholar | |
Sun X, Yang X, Zhao Y, Li Y and Guo L: Effects of 17β-estradiol on mitophagy in the murine MC3T3-E1 osteoblast cell line is mediated via g protein-coupled estrogen receptor and the ERK1/2 signaling pathway. Med Sci Monit. 24:903–911. 2018.PubMed/NCBI View Article : Google Scholar | |
Bartolome A, Lopez-Herradon A, Portal-Nunez S, García-Aguilar A, Esbrit P, Benito M and Guillén C: Autophagy impairment aggravates the inhibitory effects of high glucose on osteoblast viability and function. Biochem J. 455:329–337. 2013.PubMed/NCBI View Article : Google Scholar | |
Qi M, Zhang L, Ma Y, Shuai Y, Li L, Luo K, Liu W and Jin Y: Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis. Theranostics. 7:4498–4516. 2017.PubMed/NCBI View Article : Google Scholar | |
Nollet M, Santucci-Darmanin S, Breuil V, Al-Sahlanee R, Cros C, Topi M, Momier D, Samson M, Pagnotta S, Cailleteau L, et al: Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy. 10:1965–1977. 2014.PubMed/NCBI View Article : Google Scholar | |
Li H, Li D, Ma Z, Qian Z, Kang X, Jin X, Li F, Wang X, Chen Q, Sun H and Wu S: Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy. 14:1726–1741. 2018.PubMed/NCBI View Article : Google Scholar | |
Li W, Zhang S, Liu J, Liu Y and Liang Q: Vitamin K2 stimulates MC3T3-E1 osteoblast differentiation and mineralization through autophagy induction. Mol Med Rep. 19:3676–3684. 2019.PubMed/NCBI View Article : Google Scholar | |
Vidoni C, Ferraresi A, Secomandi E, Vallino L, Gardin C, Zavan B, Mortellaro C and Isidoro C: Autophagy drives osteogenic differentiation of human gingival mesenchymal stem cells. Cell Commun Signal. 17(98)2019.PubMed/NCBI View Article : Google Scholar | |
Al Saedi A, Myers DE, Stupka N and Duque G: 1,25(OH)2D3 ameliorates palmitate-induced lipotoxicity in human primary osteoblasts leading to improved viability and function. Bone. 141(115672)2020.PubMed/NCBI View Article : Google Scholar | |
Singh R and Cuervo AM: Lipophagy: Connecting autophagy and lipid metabolism. Int J Cell Biol. 2012(282041)2012.PubMed/NCBI View Article : Google Scholar | |
Wang CW: Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta. 1861:793–805. 2016.PubMed/NCBI View Article : Google Scholar | |
Sathyanarayan A, Mashek MT and Mashek DG: ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Rep. 19:1–9. 2017.PubMed/NCBI View Article : Google Scholar | |
Kiss RS and Nilsson T: Rab proteins implicated in lipid storage and mobilization. J Biomed Res. 28:169–177. 2014.PubMed/NCBI View Article : Google Scholar | |
Lizaso A, Tan KT and Lee YH: β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy. 9:1228–1243. 2013.PubMed/NCBI View Article : Google Scholar | |
Schroeder B, Schulze RJ, Weller SG, Sletten AC, Casey CA and McNiven MA: The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology. 61:1896–1907. 2015.PubMed/NCBI View Article : Google Scholar | |
Li Z, Schulze RJ, Weller SG, Krueger EW, Schott MB, Zhang X, Casey CA, Liu J, Stöckli J, James DE and McNiven MA: A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci Adv. 2(e1601470)2016.PubMed/NCBI View Article : Google Scholar | |
Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas A, Weigert R, Robenek H, Proikas-Cezanne T and Deretic V: Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol. 24:609–620. 2014.PubMed/NCBI View Article : Google Scholar | |
Shpilka T, Welter E, Borovsky N, Amar N, Mari M, Reggiori F and Elazar Z: Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 34:2117–2131. 2015.PubMed/NCBI View Article : Google Scholar | |
Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, Sarkar S and Korolchuk VI: Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta. 1861:269–284. 2016.PubMed/NCBI View Article : Google Scholar | |
Kim KY, Jang HJ, Yang YR, Park KI, Seo J, Shin IW, Jeon TI, Ahn SC, Suh PG, Osborne TF and Seo YK: Corrigendum: SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci Rep. 6(37794)2016.PubMed/NCBI View Article : Google Scholar | |
Negoita F, Blomdahl J, Wasserstrom S, Winberg ME, Osmark P, Larsson S, Stenkula KG, Ekstedt M, Kechagias S, Holm C and Jones HA: PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes. J Cell Biochem. 120:343–356. 2019.PubMed/NCBI View Article : Google Scholar | |
Kaushik S and Cuervo AM: Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol. 17:759–770. 2015.PubMed/NCBI View Article : Google Scholar | |
Li Y, Yang P, Zhao L, Chen Y, Zhang X, Zeng S, Wei L, Varghese Z, Moorhead JF, Chen Y and Ruan XZ: CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. J Lipid Res. 60:844–855. 2019.PubMed/NCBI View Article : Google Scholar | |
Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, et al: Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 516:108–111. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Yan S, Khambu B, Ma F, Li Y, Chen X, Martina JA, Puertollano R, Li Y, Chalasani N and Yin XM: Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy. 14:1779–1795. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhang Z, Yao Z, Chen Y, Qian L, Jiang S, Zhou J, Shao J, Chen A, Zhang F and Zheng S: Lipophagy and liver disease: New perspectives to better understanding and therapy. Biomed Pharmacother. 97:339–348. 2018.PubMed/NCBI View Article : Google Scholar | |
Grumet L, Eichmann TO, Taschler U, Zierler KA, Leopold C, Moustafa T, Radovic B, Romauch M, Yan C, Du H, et al: Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover. J Biol Chem. 291:17977–17987. 2016.PubMed/NCBI View Article : Google Scholar | |
Zechner R, Madeo F and Kratky D: Cytosolic lipolysis and lipophagy: Two sides of the same coin. Nat Rev Mol Cell Biol. 18:671–684. 2017.PubMed/NCBI View Article : Google Scholar | |
Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ, et al: TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol. 15:647–558. 2013.PubMed/NCBI View Article : Google Scholar | |
Barbato DL, Tatulli G, Aquilano K and Ciriolo MR: FoxO1 controls lysosomal acid lipase in adipocytes: Implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 4(e861)2013.PubMed/NCBI View Article : Google Scholar | |
Chung J, Park J, Lai ZW, Lambert TJ, Richards RC, Zhang J, Walther TC and Farese RV Jr: The Troyer syndrome protein spartin mediates selective autophagy of lipid droplets. Nat Cell Biol. 25:1101–1110. 2023.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Evans TD, Jeong SJ and Razani B: Classical and alternative roles for autophagy in lipid metabolism. Curr Opin Lipidol. 29:203–211. 2018.PubMed/NCBI View Article : Google Scholar | |
Nguyen TB and Olzmann JA: Lipid droplets and lipotoxicity during autophagy. Autophagy. 13:2002–2003. 2017.PubMed/NCBI View Article : Google Scholar | |
Gunaratnam K, Vidal C, Boadle R, Thekkedam C and Duque G: Mechanisms of palmitate-induced cell death in human osteoblasts. Biol Open. 2:1382–1389. 2013.PubMed/NCBI View Article : Google Scholar |