|
1
|
Hu LF, Yin C, Zhao F, Ali A, Ma J and Qian
A: Mesenchymal stem cells: Cell fate decision to osteoblast or
adipocyte and application in osteoporosis treatment. Int J Mol Sci.
19(360)2018.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Johnell O and Kanis JA: An estimate of the
worldwide prevalence and disability associated with osteoporotic
fractures. Osteoporos Int. 17:1726–1733. 2006.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Van Staa TP, Dennison EM, Leufkens HG and
Cooper C: Epidemiology of fractures in England and Wales. Bone.
29:517–522. 2001.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Hu X, Ma S, Yang C, Wang W and Chen L:
Relationship between senile osteoporosis and cardiovascular and
cerebrovascular diseases. Exp Ther Med. 17:4417–4420.
2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Tanko LB, Bagger YZ, Nielsen SB and
Christiansen C: Does serum cholesterol contribute to vertebral bone
loss in postmenopausal women? Bone. 32:8–14. 2003.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Trimpou P, Oden A, Simonsson T, Wilhelmsen
L and Landin-Wilhelmsen K: High serum total cholesterol is a
long-term cause of osteoporotic fracture. Osteoporos Int.
22:1615–1620. 2011.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Polyzos SA, Anastasilakis AD, Efstathiadou
ZA, Yavropoulou MP and Makras P: Postmenopausal osteoporosis
coexisting with other metabolic diseases: Treatment considerations.
Maturitas. 147:19–25. 2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Yin C, Tian Y, Hu L, Yu Y, Wu Z, Zhang Y,
Wang X, Miao Z and Qian A: MACF1 alleviates aging-related
osteoporosis via HES1. J Cell Mol Med. 25:6242–6257.
2021.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Kim SP, Li Z, Zoch ML, Frey JL, Bowman CE,
Kushwaha P, Ryan KA, Goh BC, Scafidi S, Pickett JE, et al: Fatty
acid oxidation by the osteoblast is required for normal bone
acquisition in a sex- and diet-dependent manner. JCI Insight.
2(e92704)2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Niemeier A, Niedzielska D, Secer R,
Schilling A, Merkel M, Enrich C, Rensen PCN and Heeren J: Uptake of
postprandial lipoproteins into bone in vivo: Impact on osteoblast
function. Bone. 43:230–237. 2008.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Choi AM, Ryter SW and Levine B: Autophagy
in human health and disease. N Engl J Med. 368:1845–1846.
2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Pierrefite-Carle V, Santucci-Darmanin S,
Breuil V, Camuzard O and Carle GF: Autophagy in bone: Self-eating
to stay in balance. Ageing Res Rev. 24:206–217. 2015.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Wang J, Zhang Y, Cao J, Wang Y, Anwar N,
Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L and Wang X: The role of
autophagy in bone metabolism and clinical significance. Autophagy.
19:2409–2427. 2023.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Shin DW: Lipophagy: Molecular mechanisms
and implications in metabolic disorders. Mol Cells. 43:686–693.
2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Singh R, Kaushik S, Wang Y, Xiang Y, Novak
I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates
lipid metabolism. Nature. 458:1131–1135. 2009.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Li W, He P, Huang Y, Li YF, Lu J, Li M,
Kurihara H, Luo Z, Meng T, Onishi M, et al: Selective autophagy of
intracellular organelles: Recent research advances. Theranostics.
11:222–256. 2021.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Schulze RJ, Sathyanarayan A and Mashek DG:
Breaking fat: The regulation and mechanisms of lipophagy. Biochim
Biophys Acta Mol Cell Biol Lipids. 1862:1178–1187. 2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Miao J, Zang X, Cui X and Zhang J:
Autophagy, hyperlipidemia, and atherosclerosis. Adv Exp Med Biol.
1207:237–264. 2020.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Barros JAS, Siqueira JAB, Cavalcanti JHF,
Araújo WL and Avin-Wittenberg T: Multifaceted roles of plant
autophagy in lipid and energy metabolism. Trends Plant Sci.
25:1141–1153. 2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Maan M, Peters JM, Dutta M and Patterson
AD: Lipid metabolism and lipophagy in cancer. Biochem Biophys Res
Commun. 504:582–589. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Liu Q, Wang YM and Gu HF: Lipophagy in
atherosclerosis. Clin Chim Acta. 511:208–214. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Ji C, Zhang Z, Xu X, Song D and Zhang D:
Hyperlipidemia impacts osteogenesis via lipophagy. Bone.
167(116643)2023.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Ohsaki Y, Kawai T, Yoshikawa Y, Cheng J,
Jokitalo E and Fujimoto T: PML isoform II plays a critical role in
nuclear lipid droplet formation. J Cell Biol. 212:29–38.
2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Greenberg AS, Coleman RA, Kraemer FB,
McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H and Mashek DG: The
role of lipid droplets in metabolic disease in rodents and humans.
J Clin Invest. 121:2102–2110. 2011.PubMed/NCBI View
Article : Google Scholar
|
|
25
|
Pirih F, Lu J, Ye F, Bezouglaia O, Atti E,
Ascenzi MG, Tetradis S, Demer L, Aghaloo T and Tintut Y: Adverse
effects of hyperlipidemia on bone regeneration and strength. J Bone
Miner Res. 27:309–318. 2012.PubMed/NCBI View
Article : Google Scholar
|
|
26
|
Almeida M, Ambrogini E, Han L, Manolagas
SC and Jilka RL: Increased lipid oxidation causes oxidative stress,
increased peroxisome proliferator-activated receptor-gamma
expression, and diminished pro-osteogenic Wnt signaling in the
skeleton. J Biol Chem. 284:27438–2748. 2009.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Pelton K, Krieder J, Joiner D, Freeman MR,
Goldstein SA and Solomon KR: Hypercholesterolemia promotes an
osteoporotic phenotype. Am J Pathol. 181:928–936. 2012.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Demigne C, Bloch-Faure M, Picard N, Sabboh
H, Besson C, Rémésy C, Geoffroy V, Gaston AT, Nicoletti A, Hagège
A, et al: Mice chronically fed a westernized experimental diet as a
model of obesity, metabolic syndrome and osteoporosis. Eur J Nutr.
45:298–306. 2006.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Parhami F, Tintut Y, Beamer WG, Gharavi N,
Goodman W and Demer LL: Atherogenic high-fat diet reduces bone
mineralization in mice. J Bone Miner Res. 16:182–188.
2001.PubMed/NCBI View Article : Google Scholar
|
|
30
|
You L, Sheng ZY, Tang CL, Chen L, Pan L
and Chen JY: High cholesterol diet increases osteoporosis risk via
inhibiting bone formation in rats. Acta Pharmacol Sin.
32:1498–1504. 2011.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Li F and Zhang H: Lysosomal acid lipase in
lipid metabolism and beyond. Arterioscler Thromb Vasc Biol.
39:850–856. 2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Du H, Heur M, Duanmu M, Grabowski GA, Hui
DY, Witte DP and Mishra J: Lysosomal acid lipase-deficient mice:
Depletion of white and brown fat, severe hepatosplenomegaly, and
shortened life span. J Lipid Res. 42:489–500. 2001.PubMed/NCBI
|
|
33
|
Helderman RC, Whitney DG, Duta-Mare M,
Akhmetshina A, Vujic N, Jayapalan S, Nyman JS, Misra BB, Rosen CJ,
Czech MP, et al: Loss of function of lysosomal acid lipase (LAL)
profoundly impacts osteoblastogenesis and increases fracture risk
in humans. Bone. 148(115946)2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Nakamichi R, Hayashi K and Itoh H: Effects
of high glucose and lipotoxicity on diabetic podocytes. Nutrients.
13(241)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Zhang B, Li X, Liu G, Zhang C, Zhang X,
Shen Q, Sun G and Sun X: Peroxiredomin-4 ameliorates
lipotoxicity-induced oxidative stress and apoptosis in diabetic
cardiomyopathy. Biomed Pharmacother. 141(111780)2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Singh L, Tyagi S, Myers D and Duque G:
Good, bad, or ugly: The biological roles of bone marrow fat. Curr
Osteoporos Rep. 16:130–137. 2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Veldhuis-Vlug AG and Rosen CJ: Clinical
implications of bone marrow adiposity. J Intern Med. 283:121–139.
2018.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Al Saedi A, Bermeo S, Plotkin L, Myers DE
and Duque G: Mechanisms of palmitate-induced lipotoxicity in
osteocytes. Bone. 127:353–359. 2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Parhami F, Jackson SM, Tintut Y, Le V,
Balucan JP, Territo M and Demer LL: Atherogenic diet and minimally
oxidized low density lipoprotein inhibit osteogenic and promote
adipogenic differentiation of marrow stromal cells. J Bone Miner
Res. 14:2067–2078. 1999.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Yin W, Li Z and Zhang W: Modulation of
bone and marrow niche by cholesterol. Nutrients.
11(1394)2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Arai M, Shibata Y, Pugdee K, Abiko Y and
Ogata Y: Effects of reactive oxygen species (ROS) on antioxidant
system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB
Life. 59:27–33. 2007.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Li K, Xiu C, Zhou Q, Ni L, Du J, Gong T,
Li M, Saijilafu Yang H and Chen J: A dual role of cholesterol in
osteogenic differentiation of bone marrow stromal cells. J Cell
Physiol. 234:2058–2066. 2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhang M, Du Y, Lu R, Shu Y, Zhao W, Li Z,
Zhang Y, Liu R, Yang T, Luo S, et al: Cholesterol retards
senescence in bone marrow mesenchymal stem cells by modulating
autophagy and ROS/p53/p21(Cip1/Waf1) pathway. Oxid Med Cell Longev.
2016(7524308)2016.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Parhami F: Possible role of oxidized
lipids in osteoporosis: Could hyperlipidemia be a risk factor?
Prostaglandins Leukot Essent Fatty Acids. 68:373–378.
2003.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Lim HY, Rutkowski JM, Helft J, Reddy ST,
Swartz MA, Randolph GJ and Angeli V: Hypercholesterolemic mice
exhibit lymphatic vessel dysfunction and degeneration. Am J Pathol.
175:1328–1337. 2009.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Soehnlein O and Swirski FK:
Hypercholesterolemia links hematopoiesis with atherosclerosis.
Trends Endocrinol Metab. 24:129–136. 2013.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Gleissner CA, Leitinger N and Ley K:
Effects of native and modified low-density lipoproteins on monocyte
recruitment in atherosclerosis. Hypertension. 50:276–283.
2007.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Gough AK, Lilley J, Eyre S, Holder RL and
Emery P: Generalised bone loss in patients with early rheumatoid
arthritis. Lancet. 344:23–27. 1994.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Romas E: Bone loss in inflammatory
arthritis: Mechanisms and therapeutic approaches with
bisphosphonates. Best Pract Res Clin Rheumatol. 19:1065–1079.
2005.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Roldan JF, Del Rincon I and Escalante A:
Loss of cortical bone from the metacarpal diaphysis in patients
with rheumatoid arthritis: Independent effects of systemic
inflammation and glucocorticoids. J Rheumatol. 33:508–516.
2006.PubMed/NCBI
|
|
51
|
Redlich K, Gortz B, Hayer S, Zwerina J,
Doerr N, Kostenuik P, Bergmeister H, Kollias G, Steiner G, Smolen
JS and Schett G: Repair of local bone erosions and reversal of
systemic bone loss upon therapy with anti-tumor necrosis factor in
combination with osteoprotegerin or parathyroid hormone in tumor
necrosis factor-mediated arthritis. Am J Pathol. 164:543–555.
2004.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Gilbert L, He X, Farmer P, Rubin J, Drissi
H, van Wijnen AJ, Lian JB, Stein GS and Nanes MS: Expression of the
osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A)
is inhibited by tumor necrosis factor-alpha. J Biol Chem.
277:2695–2701. 2002.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Kaneki H, Guo R, Chen D, Yao Z, Schwarz
EM, Zhang YE, Boyce BF and Xing L: Tumor necrosis factor promotes
Runx2 degradation through up-regulation of Smurf1 and Smurf2 in
osteoblasts. J Biol Chem. 281:4326–4333. 2006.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Takano M, Otsuka F, Matsumoto Y, Inagaki
K, Takeda M, Nakamura E, Tsukamoto N, Miyoshi T, Sada KE and Makino
H: Peroxisome proliferator-activated receptor activity is involved
in the osteoblastic differentiation regulated by bone morphogenetic
proteins and tumor necrosis factor-alpha. Mol Cell Endocrinol.
348:224–232. 2012.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Ding J, Ghali O, Lencel P, Broux O,
Chauveau C, Devedjian JC, Hardouin P and Magne D: TNF-alpha and
IL-1beta inhibit RUNX2 and collagen expression but increase
alkaline phosphatase activity and mineralization in human
mesenchymal stem cells. Life Sci. 84:499–504. 2009.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Hughes FJ and Howells GL: Interleukin-6
inhibits bone formation in vitro. Bone Miner. 21:21–28.
1993.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Krum SA, Chang J, Miranda-Carboni G and
Wang CY: Novel functions for NFκB: Inhibition of bone formation.
Nat Rev Rheumatol. 6:607–611. 2010.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang
J, Harris SE and Wu D: Sclerostin binds to LRP5/6 and antagonizes
canonical Wnt signaling. J Biol Chem. 280:19883–19887.
2005.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Winkler DG, Sutherland MK, Geoghegan JC,
Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR,
Staehling-Hampton K, et al: Osteocyte control of bone formation via
sclerostin, a novel BMP antagonist. EMBO J. 22:6267–6276.
2003.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Mason JJ and Williams BO: SOST and DKK:
Antagonists of LRP family signaling as targets for treating bone
disease. J Osteoporos. 2010(460120)2010.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Tanida I: Autophagosome formation and
molecular mechanism of autophagy. Antioxid Redox Signal.
14:2201–2214. 2011.PubMed/NCBI View Article : Google Scholar
|
|
62
|
He C and Klionsky DJ: Regulation
mechanisms and signaling pathways of autophagy. Annu Rev Genet.
43:67–93. 2009.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Parzych KR and Klionsky DJ: An overview of
autophagy: Morphology, mechanism, and regulation. Antioxid Redox
Signal. 20:460–473. 2014.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Guan JL, Simon AK, Prescott M, Menendez
JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A and Zhang
J: Autophagy in stem cells. Autophagy. 9:830–849. 2013.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mizushima N and Levine B: Autophagy in
mammalian development and differentiation. Nat Cell Biol.
12:823–830. 2010.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Mizushima N and Komatsu M: Autophagy:
Renovation of cells and tissues. Cell. 147:728–741. 2011.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Rubinsztein DC, Marino G and Kroemer G:
Autophagy and aging. Cell. 146:682–695. 2011.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Rubinsztein DC: The roles of intracellular
protein-degradation pathways in neurodegeneration. Nature.
443:780–786. 2006.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Ciechanover A: Intracellular protein
degradation: From a vague idea thru the lysosome and the
ubiquitin-proteasome system and onto human diseases and drug
targeting. Cell Death Differ. 12:1178–1190. 2005.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Mizushima N and Klionsky DJ: Protein
turnover via autophagy: Implications for metabolism. Annu Rev Nutr.
27:19–40. 2007.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Wei H, Wei S, Gan B, Peng X, Zou W and
Guan JL: Suppression of autophagy by FIP200 deletion inhibits
mammary tumorigenesis. Genes Dev. 25:1510–1527. 2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Kimmelman AC: The dynamic nature of
autophagy in cancer. Genes Dev. 25:1999–2010. 2011.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Wang Z, Deng Z, Gan J, Zhou G, Shi T, Wang
Z, Huang Z, Qian H, Bao N, Guo T, et al: TiAl (6)V(4) particles
promote osteoclast formation via autophagy-mediated downregulation
of interferon-beta in osteocytes. Acta Biomater. 48:489–498.
2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang
Z, Shi T, He W, Wang L, Guo T, et al: Autophagy mediated CoCrMo
particle-induced peri-implant osteolysis by promoting osteoblast
apoptosis. Autophagy. 11:2358–2369. 2015.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Piemontese M, Onal M, Xiong J, Han L,
Thostenson JD, Almeida M and O'Brien CA: Low bone mass and changes
in the osteocyte network in mice lacking autophagy in the
osteoblast lineage. Sci Rep. 6(24262)2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Kanda N and Watanabe S: 17-beta-estradiol
inhibits oxidative stress induced apoptosis in keratinocytes by
promoting Bcl-2 expression. J Invest Dermatol. 121:1500–1509.
2003.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Sun X, Yang X, Zhao Y, Li Y and Guo L:
Effects of 17β-estradiol on mitophagy in the murine MC3T3-E1
osteoblast cell line is mediated via g protein-coupled estrogen
receptor and the ERK1/2 signaling pathway. Med Sci Monit.
24:903–911. 2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Bartolome A, Lopez-Herradon A,
Portal-Nunez S, García-Aguilar A, Esbrit P, Benito M and Guillén C:
Autophagy impairment aggravates the inhibitory effects of high
glucose on osteoblast viability and function. Biochem J.
455:329–337. 2013.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Qi M, Zhang L, Ma Y, Shuai Y, Li L, Luo K,
Liu W and Jin Y: Autophagy maintains the function of bone marrow
mesenchymal stem cells to prevent estrogen deficiency-induced
osteoporosis. Theranostics. 7:4498–4516. 2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Nollet M, Santucci-Darmanin S, Breuil V,
Al-Sahlanee R, Cros C, Topi M, Momier D, Samson M, Pagnotta S,
Cailleteau L, et al: Autophagy in osteoblasts is involved in
mineralization and bone homeostasis. Autophagy. 10:1965–1977.
2014.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Li H, Li D, Ma Z, Qian Z, Kang X, Jin X,
Li F, Wang X, Chen Q, Sun H and Wu S: Defective autophagy in
osteoblasts induces endoplasmic reticulum stress and causes
remarkable bone loss. Autophagy. 14:1726–1741. 2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Li W, Zhang S, Liu J, Liu Y and Liang Q:
Vitamin K2 stimulates MC3T3-E1 osteoblast differentiation and
mineralization through autophagy induction. Mol Med Rep.
19:3676–3684. 2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Vidoni C, Ferraresi A, Secomandi E,
Vallino L, Gardin C, Zavan B, Mortellaro C and Isidoro C: Autophagy
drives osteogenic differentiation of human gingival mesenchymal
stem cells. Cell Commun Signal. 17(98)2019.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Al Saedi A, Myers DE, Stupka N and Duque
G: 1,25(OH)2D3 ameliorates palmitate-induced
lipotoxicity in human primary osteoblasts leading to improved
viability and function. Bone. 141(115672)2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Singh R and Cuervo AM: Lipophagy:
Connecting autophagy and lipid metabolism. Int J Cell Biol.
2012(282041)2012.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Wang CW: Lipid droplets, lipophagy, and
beyond. Biochim Biophys Acta. 1861:793–805. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Sathyanarayan A, Mashek MT and Mashek DG:
ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic
lipid droplet catabolism. Cell Rep. 19:1–9. 2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Kiss RS and Nilsson T: Rab proteins
implicated in lipid storage and mobilization. J Biomed Res.
28:169–177. 2014.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Lizaso A, Tan KT and Lee YH: β-adrenergic
receptor-stimulated lipolysis requires the RAB7-mediated
autolysosomal lipid degradation. Autophagy. 9:1228–1243.
2013.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Schroeder B, Schulze RJ, Weller SG,
Sletten AC, Casey CA and McNiven MA: The small GTPase Rab7 as a
central regulator of hepatocellular lipophagy. Hepatology.
61:1896–1907. 2015.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Li Z, Schulze RJ, Weller SG, Krueger EW,
Schott MB, Zhang X, Casey CA, Liu J, Stöckli J, James DE and
McNiven MA: A novel Rab10-EHBP1-EHD2 complex essential for the
autophagic engulfment of lipid droplets. Sci Adv.
2(e1601470)2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Dupont N, Chauhan S, Arko-Mensah J,
Castillo EF, Masedunskas A, Weigert R, Robenek H, Proikas-Cezanne T
and Deretic V: Neutral lipid stores and lipase PNPLA5 contribute to
autophagosome biogenesis. Curr Biol. 24:609–620. 2014.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Shpilka T, Welter E, Borovsky N, Amar N,
Mari M, Reggiori F and Elazar Z: Lipid droplets and their component
triglycerides and steryl esters regulate autophagosome biogenesis.
EMBO J. 34:2117–2131. 2015.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Ward C, Martinez-Lopez N, Otten EG,
Carroll B, Maetzel D, Singh R, Sarkar S and Korolchuk VI:
Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim
Biophys Acta. 1861:269–284. 2016.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Kim KY, Jang HJ, Yang YR, Park KI, Seo J,
Shin IW, Jeon TI, Ahn SC, Suh PG, Osborne TF and Seo YK:
Corrigendum: SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver
disease through activation of autophagy. Sci Rep.
6(37794)2016.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Negoita F, Blomdahl J, Wasserstrom S,
Winberg ME, Osmark P, Larsson S, Stenkula KG, Ekstedt M, Kechagias
S, Holm C and Jones HA: PNPLA3 variant M148 causes resistance to
starvation-mediated lipid droplet autophagy in human hepatocytes. J
Cell Biochem. 120:343–356. 2019.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Kaushik S and Cuervo AM: Degradation of
lipid droplet-associated proteins by chaperone-mediated autophagy
facilitates lipolysis. Nat Cell Biol. 17:759–770. 2015.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Li Y, Yang P, Zhao L, Chen Y, Zhang X,
Zeng S, Wei L, Varghese Z, Moorhead JF, Chen Y and Ruan XZ: CD36
plays a negative role in the regulation of lipophagy in hepatocytes
through an AMPK-dependent pathway. J Lipid Res. 60:844–855.
2019.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar
S, Sun X, Yoon G, Kang Y, Zhong W, et al: Transcriptional
regulation of autophagy by an FXR-CREB axis. Nature. 516:108–111.
2014.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Zhang H, Yan S, Khambu B, Ma F, Li Y, Chen
X, Martina JA, Puertollano R, Li Y, Chalasani N and Yin XM: Dynamic
MTORC1-TFEB feedback signaling regulates hepatic autophagy,
steatosis and liver injury in long-term nutrient oversupply.
Autophagy. 14:1779–1795. 2018.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Zhang Z, Yao Z, Chen Y, Qian L, Jiang S,
Zhou J, Shao J, Chen A, Zhang F and Zheng S: Lipophagy and liver
disease: New perspectives to better understanding and therapy.
Biomed Pharmacother. 97:339–348. 2018.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Grumet L, Eichmann TO, Taschler U, Zierler
KA, Leopold C, Moustafa T, Radovic B, Romauch M, Yan C, Du H, et
al: Lysosomal acid lipase hydrolyzes retinyl ester and affects
retinoid turnover. J Biol Chem. 291:17977–17987. 2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Zechner R, Madeo F and Kratky D: Cytosolic
lipolysis and lipophagy: Two sides of the same coin. Nat Rev Mol
Cell Biol. 18:671–684. 2017.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Settembre C, De Cegli R, Mansueto G, Saha
PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch
TJ, et al: TFEB controls cellular lipid metabolism through a
starvation-induced autoregulatory loop. Nat Cell Biol. 15:647–558.
2013.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Barbato DL, Tatulli G, Aquilano K and
Ciriolo MR: FoxO1 controls lysosomal acid lipase in adipocytes:
Implication of lipophagy during nutrient restriction and metformin
treatment. Cell Death Dis. 4(e861)2013.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Chung J, Park J, Lai ZW, Lambert TJ,
Richards RC, Zhang J, Walther TC and Farese RV Jr: The Troyer
syndrome protein spartin mediates selective autophagy of lipid
droplets. Nat Cell Biol. 25:1101–1110. 2023.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Zhang X, Evans TD, Jeong SJ and Razani B:
Classical and alternative roles for autophagy in lipid metabolism.
Curr Opin Lipidol. 29:203–211. 2018.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Nguyen TB and Olzmann JA: Lipid droplets
and lipotoxicity during autophagy. Autophagy. 13:2002–2003.
2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Gunaratnam K, Vidal C, Boadle R, Thekkedam
C and Duque G: Mechanisms of palmitate-induced cell death in human
osteoblasts. Biol Open. 2:1382–1389. 2013.PubMed/NCBI View Article : Google Scholar
|