|
1
|
Moreau ME, Garbacki N, Molinaro G, Brown
NJ, Marceau F and Adam A: The kallikrein-kinin system: Current and
future pharmacological targets. J Pharmacol Sci. 99:6–38. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kashuba E, Bailey J, Allsup D and Cawkwell
L: The kinin-kallikrein system: Physiological roles,
pathophysiology and its relationship to cancer biomarkers.
Biomarkers. 18:279–296. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bourdet B, Pécher C, Minville V, Jaafar A,
Allard J, Blaes N, Girolami JP and Tack I: Distribution and
expression of B2-kinin receptor on human leukocyte subsets in young
adults and elderly using flow cytometry. Neuropeptides. 44:155–161.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chao J, Bledsoe G, Yin H and Chao L: The
tissue kallikrein-kinin system protects against cardiovascular and
renal diseases and ischemic stroke independently of blood pressure
reduction. Biol Chem. 387:665–675. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Emami N and Diamandis EP: New insights
into the functional mechanisms and clinical applications of the
kallikrein-related peptidase family. Mol Oncol. 1:269–287. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bryant JW and Shariat-Madar Z: Human
plasma kallikrein-kinin system: Physiological and biochemical
parameters. Cardiovasc Hematol Agents Med Chem. 7:234–250. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hillmeister P and Persson PB: The
kallikrein-kinin system. Acta Physiol (Oxf). 206:215–219. 2012.
View Article : Google Scholar
|
|
8
|
Björkqvist J, Jämsä A and Renné T: Plasma
kallikrein: The bradykinin-producing enzyme. Thromb Haemost.
110:399–407. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Borgoño CA and Diamandis EP: The emerging
roles of human tissue kallikreins in cancer. Nat Rev Cancer.
4:876–890. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sotiropoulou G, Pampalakis G and Diamandis
EP: Functional roles of human kallikrein-related peptidases. J Biol
Chem. 284:32989–32994. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lee KD: Applications of mesenchymal stem
cells: An updated review. Chang Gung Med J. 31:228–236.
2008.PubMed/NCBI
|
|
12
|
Christodoulou I, Kolisis FN,
Papaevangeliou D and Zoumpourlis V: Comparative evaluation of human
mesenchymal stem cells of fetal (Wharton’s jelly) and adult
(adipose tissue) origin during prolonged in vitro expansion:
Considerations for cytotherapy. Stem Cells Int. 2013:2461342013.
View Article : Google Scholar
|
|
13
|
Shafei AE, Ali MA, Ghanem HG, Shehata AI,
Abdelgawad AA, Handal HR, Talaat KA, Ashaal AE and El-Shal AS:
Mesenchymal stem cells therapy: A promising cell based therapy for
treatment of myocardial infraction. J Gene Med. 19:e29952017.
View Article : Google Scholar
|
|
14
|
Rhee KJ, Lee JI and Eom YW: Mesenchymal
stem cell-mediated effects of tumor support or suppression. Int J
Mol Sci. 16:30015–30033. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop DJ and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The International Society for Cellular
Therapy position statement. Cytotherapy. 8:315–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Rehman J, Li J, Orschell CM and March KL:
Peripheral blood ‘endothelial progenitor cells’ are derived from
monocyte/macrophages and secrete angiogenic growth factors.
Circulation. 107:1164–1169. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hristov M and Weber C: Endothelial
progenitor cells: Characterization, pathophysiology, and possible
clinical relevance. J Cell Mol Med. 8:498–508. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kränkel N, Lüscher TF and Landmesser U:
‘Endothelial progenitor cells’ as a therapeutic strategy in
cardiovascular disease. Curr Vasc Pharmacol. 10:107–124. 2012.
View Article : Google Scholar
|
|
19
|
Fu SS, Li FJ, Wang YY, You AB, Qie YL,
Meng X, Li JR, Li BC, Zhang Y and Da Li Q: Kallikrein gene-modified
EPCs induce angiogenesis in rats with ischemic hindlimb and
correlate with integrin αvβ3 expression. PLoS One. 8:e730352013.
View Article : Google Scholar
|
|
20
|
Kamei N, Atesok K and Ochi M: The use of
endothelial progenitor cells for the regeneration of
musculoskeletal and neural tissues. Stem Cells Int.
2017:19608042017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hickson LJ, Eirin A and Lerman LO:
Challenges and opportunities for stem cell therapy in patients with
chronic kidney disease. Kidney Int. 89:767–778. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Liao S, Luo C, Cao B, Hu H, Wang S, Yue H,
Chen L and Zhou Z: Endothelial progenitor cells for ischemic
stroke: Update on basic research and application. Stem Cells Int.
2017:21934322017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sage EK, Thakrar RM and Janes SM:
Genetically modified mesenchymal stromal cells in cancer therapy.
Cytotherapy. 18:1435–1445. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Uccelli A, Moretta L and Pistoia V:
Mesenchymal stem cells in health and disease. Nat Rev Immunol.
8:726–736. 2008. View Article : Google Scholar
|
|
25
|
Mishra PJ, Mishra PJ, Glod JW and Banerjee
D: Mesenchymal stem cells: Flip side of the coin. Cancer Res.
69:1255–1258. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ye Z, Wang Y, Xie HY and Zheng SS:
Immunosuppressive effects of rat mesenchymal stem cells:
Involvement of CD4+CD25+ regulatory T cells.
Hepatobiliary Pancreat Dis Int. 7:608–614. 2008.PubMed/NCBI
|
|
27
|
Borlongan CV: Bone marrow stem cell
mobilization in stroke: A ‘bonehead’ may be good after all!
Leukemia. 25:1674–1686. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kortesidis A, Zannettino A, Isenmann S,
Shi S, Lapidot T and Gronthos S: Stromal-derived factor-1 promotes
the growth, survival, and development of human bone marrow stromal
stem cells. Blood. 105:3793–3801. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fong CY, Richards M, Manasi N, Biswas A
and Bongso A: Comparative growth behaviour and characterization of
stem cells from human Wharton’s jelly. Reprod Biomed Online.
15:708–718. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Fong CY, Chak LL, Biswas A, Tan JH,
Gauthaman K, Chan WK and Bongso A: Human Wharton’s jelly stem cells
have unique transcriptome profiles compared to human embryonic stem
cells and other mesenchymal stem cells. Stem Cell Rev. 7:1–16.
2011. View Article : Google Scholar
|
|
31
|
Weiss ML, Anderson C, Medicetty S,
Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D and McIntosh KR:
Immune properties of human umbilical cord Wharton’s jelly-derived
cells. Stem Cells. 26:2865–2874. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Prasanna SJ and Jahnavi VS: Wharton’s
jelly mesenchymal stem cells as off-the-shelf cellular
therapeutics: A closer look into their regenerative and
immunomodulatory properties. Open Tissue Eng Regen Med J. 4:28–38.
2011. View Article : Google Scholar
|
|
33
|
Yoon J, Min BG, Kim Y-H, Shim WJ, Ro YM
and Lim D-S: Differentiation, engraftment and functional effects of
pre-treated mesenchymal stem cells in a rat myocardial infarct
model. Acta Cardiol. 60:277–284. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tang J, Xie Q, Pan G, Wang J and Wang M:
Mesenchymal stem cells participate in angiogenesis and improve
heart function in rat model of myocardial ischemia with
reperfusion. Eur J Cardiothorac Surg. 30:353–361. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wolf D, Reinhard A, Krause U, Seckinger A,
Katus HA, Kuecherer H and Hansen A: Stem cell therapy improves
myocardial perfusion and cardiac synchronicity: New application for
echocardiography. J Am Soc Echocardiogr. 20:512–520. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yang J, Zhou W, Zheng W, Ma Y, Lin L, Tang
T, Liu J, Yu J, Zhou X and Hu J: Effects of myocardial
transplantation of marrow mesenchymal stem cells transfected with
vascular endothelial growth factor for the improvement of heart
function and angiogenesis after myocardial infarction. Cardiology.
107:17–29. 2007. View Article : Google Scholar
|
|
37
|
Guo J, Lin GS, Bao CY, Hu ZM and Hu MY:
Anti-inflammation role for mesenchymal stem cells transplantation
in myocardial infarction. Inflammation. 30:97–104. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xu X, Xu Z, Xu Y and Cui G: Effects of
mesenchymal stem cell transplantation on extracellular matrix after
myocardial infarction in rats. Coron Artery Dis. 16:245–255. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gao L, Bledsoe G, Yin H, Shen B, Chao L
and Chao J: Tissue kallikrein-modified mesenchymal stem cells
provide enhanced protection against ischemic cardiac injury after
myocardial infarction. Circ J. 77:2134–2144. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Amado LC, Saliaris AP, Schuleri KH, St
John M, Xie JS, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart
G, et al: Cardiac repair with intramyocardial injection of
allogeneic mesenchymal stem cells after myocardial infarction. Proc
Natl Acad Sci USA. 102:11474–11479. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Goradel NH, Hoor FG, Negahdari B,
Malekshahi ZV, Hashemzehi M, Masoudifar A and Mirzaei H: Stem cell
therapy: A new therapeutic option for cardiovascular diseases. J
Cell Biochem. 119:95–104. 2018. View Article : Google Scholar
|
|
42
|
Chen XL, Zhang Q, Zhao R and Medford RM:
Superoxide, H2O2, and iron are required for
TNF-alpha-induced MCP-1 gene expression in endothelial cells: Role
of Rac1 and NADPH oxidase. Am J Physiol Heart Circ Physiol.
286:H1001–H1007. 2004. View Article : Google Scholar
|
|
43
|
Caplan AI and Dennis JE: Mesenchymal stem
cells as trophic mediators. J Cell Biochem. 98:1076–1084. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Choi SH, Jung SY, Kwon SM and Baek SH:
Perspectives on stem cell therapy for cardiac regeneration.
Advances and challenges. Circ J. 76:1307–1312. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang W, Liu XC, Yang L, Zhu DL, Zhang YD,
Chen Y and Zhang HY: Wharton’s jelly-derived mesenchymal stem cells
promote myocardial regeneration and cardiac repair after miniswine
acute myocardial infarction. Coron Artery Dis. 24:549–558. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Deng J, Petersen BE, Steindler DA,
Jorgensen ML and Laywell ED: Mesenchymal stem cells spontaneously
express neural proteins in culture and are neurogenic after
transplantation. Stem Cells. 24:1054–1064. 2006. View Article : Google Scholar
|
|
47
|
Tropel P, Platet N, Platel JC, Noël D,
Albrieux M, Benabid AL and Berger F: Functional neuronal
differentiation of bone marrow-derived mesenchymal stem cells. Stem
Cells. 24:2868–2876. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tseng PY, Chen CJ, Sheu CC, Yu CW and
Huang YS: Spontaneous differentiation of adult rat marrow stromal
cells in a long-term culture. J Vet Med Sci. 69:95–102. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dezawa M, Hoshino M and Ide C: Treatment
of neurodegenerative diseases using adult bone marrow stromal
cell-derived neurons. Expert Opin Biol Ther. 5:427–435. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kim EJ, Kim N and Cho SG: The potential
use of mesenchymal stem cells in hematopoietic stem cell
transplantation. Exp Mol Med. 45:e22013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Aleynik A, Gernavage KM, Mourad YS,
Sherman LS, Liu K, Gubenko YA and Rameshwar P: Stem cell delivery
of therapies for brain disorders. Clin Transl Med. 3:242014.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nikolic WV, Hou H, Town T, Zhu Y, Giunta
B, Sanberg CD, Zeng J, Luo D, Ehrhart J, Mori T, et al:
Peripherally administered human umbilical cord blood cells reduce
parenchymal and vascular β-amyloid deposits in Alzheimer mice. Stem
Cells Dev. 17:423–439. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tanna T and Sachan V: Mesenchymal stem
cells: Potential in treatment of neurodegenerative diseases. Curr
Stem Cell Res Ther. 9:513–521. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Galieva LR, Mukhamedshina YO, Arkhipova SS
and Rizvanov AA: Human umbilical cord blood cell transplantation in
neuroregenerative strategies. Front Pharmacol. 8:6282017.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lee NK, Na DL and Chang JW: Killing two
birds with one stone: The multifunctional roles of mesenchymal stem
cells in the treatment of neurodegenerative and muscle diseases.
Histol Histopathol. Nov 30–2017.Epub ahead of print. PubMed/NCBI
|
|
56
|
Gärtner A, Pereira T, Gomes R, Luís AL,
França ML, Geuna S, Armada-da-Silva P and Maurício AC: Mesenchymal
stem cells from extra-embryonic tissues for tissue engineering -
regeneration of the peripheral nerve. Advances in Biomaterials
Science and Biomedical Applications. Pignatello R: InTech; 2013,
View Article : Google Scholar
|
|
57
|
Ribeiro J, Gartner A, Pereira T, Gomes R,
Lopes MA, Gonçalves C, Varejão A, Luís AL and Maurício AC:
Perspectives of employing mesenchymal stem cells from the Wharton’s
jelly of the umbilical cord for peripheral nerve repair. Int Rev
Neurobiol. 108:79–120. 2013. View Article : Google Scholar
|
|
58
|
Chambers BE and Wingert RA: Renal
progenitors: Roles in kidney disease and regeneration. World J Stem
Cells. 8:367–375. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Peired AJ, Sisti A and Romagnani P:
Mesenchymal stem cell-based therapy for kidney disease: A review of
clinical evidence. Stem Cells Int. 2016:47986392016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Aghajani Nargesi A, Lerman LO and Eirin A:
Mesenchymal stem cell-derived extracellular vesicles for kidney
repair: Current status and looming challenges. Stem Cell Res Ther.
8:2732017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tögel F, Hu Z, Weiss K, Isaac J, Lange C
and Westenfelder C: Administered mesenchymal stem cells protect
against ischemic acute renal failure through
differentiation-independent mechanisms. Am J Physiol Renal Physiol.
289:F31–F42. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lange C, Tögel F, Ittrich H, Clayton F,
Nolte-Ernsting C, Zander AR and Westenfelder C: Administered
mesenchymal stem cells enhance recovery from
ischemia/reperfusion-induced acute renal failure in rats. Kidney
Int. 68:1613–1617. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chao J, Bledsoe G and Chao L:
Kallikrein-kinin in stem cell therapy. World J Stem Cells.
6:448–457. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ezquer F, Ezquer M, Simon V, Pardo F,
Yañez A, Carpio D and Conget P: Endovenous administration of
bone-marrow-derived multipotent mesenchymal stromal cells prevents
renal failure in diabetic mice. Biol Blood Marrow Transplant.
15:1354–1365. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Fang Y, Tian X, Bai S, Fan J, Hou W, Tong
H and Li D: Autologous transplantation of adipose-derived
mesenchymal stem cells ameliorates streptozotocin-induced diabetic
nephropathy in rats by inhibiting oxidative stress,
pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int
J Mol Med. 30:85–92. 2012.PubMed/NCBI
|
|
66
|
Castiglione RC, Maron-Gutierrez T, Barbosa
CM, Ornellas FM, Barreira AL, Dibarros CB, Vasconcelos-dos-Santos
A, Paredes BD, Pascarelli BM, Diaz BL, et al: Bone marrow-derived
mononuclear cells promote improvement in glomerular function in
rats with early diabetic nephropathy. Cell Physiol Biochem.
32:699–718. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhu XY, Urbieta-Caceres V, Krier JD,
Textor SC, Lerman A and Lerman LO: Mesenchymal stem cells and
endothelial progenitor cells decrease renal injury in experimental
swine renal artery stenosis through different mechanisms. Stem
Cells. 31:117–125. 2013. View Article : Google Scholar
|
|
68
|
Eirin A, Zhu XY, Krier JD, Tang H, Jordan
KL, Grande JP, Lerman A, Textor SC and Lerman LO: Adipose
tissue-derived mesenchymal stem cells improve revascularization
outcomes to restore renal function in swine atherosclerotic renal
artery stenosis. Stem Cells. 30:1030–1041. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bussolati B, Bruno S, Grange C,
Buttiglieri S, Deregibus MC, Cantino D and Camussi G: Isolation of
renal progenitor cells from adult human kidney. Am J Pathol.
166:545–555. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Angelotti ML, Ronconi E, Ballerini L,
Peired A, Mazzinghi B, Sagrinati C, Parente E, Gacci M, Carini M,
Rotondi M, et al: Characterization of renal progenitors committed
toward tubular lineage and their regenerative potential in renal
tubular injury. Stem Cells. 30:1714–1725. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Papazova DA, Oosterhuis NR, Gremmels H,
van Koppen A, Joles JA and Verhaar MC: Cell-based therapies for
experimental chronic kidney disease: A systematic review and
meta-analysis. Dis Model Mech. 8:281–293. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ma H, Wu Y, Xu Y, Sun L and Zhang X: Human
umbilical mesenchymal stem cells attenuate the progression of focal
segmental glomerulosclerosis. Am J Med Sci. 346:486–493. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Belingheri M, Lazzari L, Parazzi V,
Groppali E, Biagi E, Gaipa G, Giordano R, Rastaldi MP, Croci D,
Biondi A, et al: Allogeneic mesenchymal stem cell infusion for the
stabilization of focal segmental glomerulosclerosis. Biologicals.
41:439–445. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sun L, Akiyama K, Zhang H, Yamaza T, Hou
Y, Zhao S, Xu T, Le A and Shi S: Mesenchymal stem cell
transplantation reverses multiorgan dysfunction in systemic lupus
erythematosus mice and humans. Stem Cells. 27:1421–1432. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sun L, Wang D, Liang J, Zhang H, Feng X,
Wang H, Hua B, Liu B, Ye S, Hu X, et al: Umbilical cord mesenchymal
stem cell transplantation in severe and refractory systemic lupus
erythematosus. Arthritis Rheum. 62:2467–2475. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Munir H and McGettrick HM: Mesenchymal
stem cell therapy for autoimmune disease: Risks and rewards. Stem
Cells Dev. 24:2091–2100. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Flores AI, Gómez-Gómez GJ, Masedo-González
Á and Martínez-Montiel MP: Stem cell therapy in inflammatory bowel
disease: A promising therapeutic strategy? World J Stem Cells.
7:343–351. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fang TC, Pang CY, Chiu SC, Ding DC and
Tsai RK: Renoprotective effect of human umbilical cord-derived
mesenchymal stem cells in immunodeficient mice suffering from acute
kidney injury. PLoS One. 7:e465042012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Werner N and Nickenig G: Endothelial
progenitor cells in health and atherosclerotic disease. Ann Med.
39:82–90. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jujo K, Ii M and Losordo DW: Endothelial
progenitor cells in neovascularization of infarcted myocardium. J
Mol Cell Cardiol. 45:530–544. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Choi JH, Kim KL, Huh W, Kim B, Byun J, Suh
W, Sung J, Jeon ES, Oh HY and Kim DK: Decreased number and impaired
angiogenic function of endothelial progenitor cells in patients
with chronic renal failure. Arterioscler Thromb Vasc Biol.
24:1246–1252. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Vasa M, Fichtlscherer S, Aicher A, Adler
K, Urbich C, Martin H, Zeiher AM and Dimmeler S: Number and
migratory activity of circulating endothelial progenitor cells
inversely correlate with risk factors for coronary artery disease.
Circ Res. 89:E1–E7. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Schuh A, Liehn EA, Sasse A, Hristov M,
Sobota R, Kelm M, Merx MW and Weber C: Transplantation of
endothelial progenitor cells improves neovascularization and left
ventricular function after myocardial infarction in a rat model.
Basic Res Cardiol. 103:69–77. 2008. View Article : Google Scholar
|
|
84
|
Umemura T and Higashi Y: Endothelial
progenitor cells: Therapeutic target for cardiovascular diseases. J
Pharmacol Sci. 108:1–6. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yao Y, Sheng Z, Li Y, Yan F, Fu C, Li Y,
Ma G, Liu N, Chao J and Chao L: Tissue kallikrein promotes cardiac
neovascularization by enhancing endothelial progenitor cell
functional capacity. Hum Gene Ther. 23:859–870. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Simard T, Jung RG, Motazedian P, Di Santo
P, Ramirez FD, Russo JJ, Labinaz A, Yousef A, Anantharam B,
Pourdjabbar A and Hibbert B: Progenitor cells for arterial repair:
Incremental advancements towards therapeutic reality. Stem Cells
Int. 2017:82704982017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kwon O, Miller S, Li N, Khan A, Kadry Z
and Uemura T: Bone marrow-derived endothelial progenitor cells and
endothelial cells may contribute to endothelial repair in the
kidney immediately after ischemia-reperfusion. J Histochem
Cytochem. 58:687–694. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Patschan D, Krupincza K, Patschan S, Zhang
Z, Hamby C and Goligorsky MS: Dynamics of mobilization and homing
of endothelial progenitor cells after acute renal ischemia:
Modulation by ischemic preconditioning. Am J Physiol Renal Physiol.
291:F176–F185. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Rosell A, Morancho A, Navarro-Sobrino M,
Martínez-Saez E, Hernández-Guillamon M, Lope-Piedrafita S, Barceló
V, Borrás F, Penalba A, García-Bonilla L and Montaner J: Factors
secreted by endothelial progenitor cells enhance neurorepair
responses after cerebral ischemia in mice. PLoS One. 8:e732442013.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li YF, Ren LN, Guo G, Cannella LA,
Chernaya V, Samuel S, Liu SX, Wang H and Yang XF: Endothelial
progenitor cells in ischemic stroke: An exploration from hypothesis
to therapy. J Hematol Oncol. 8:332015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mangi AA, Noiseux N, Kong D, He H, Rezvani
M, Ingwall JS and Dzau VJ: Mesenchymal stem cells modified with Akt
prevent remodeling and restore performance of infarcted hearts. Nat
Med. 9:1195–1201. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
92
|
Dzau VJ, Gnecchi M and Pachori AS:
Enhancing stem cell therapy through genetic modification. J Am Coll
Cardiol. 46:1351–1353. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mastri M, Lin H and Lee T: Enhancing the
efficacy of mesenchymal stem cell therapy. World J Stem Cells.
6:82–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Park JS, Suryaprakash S, Lao YH and Leong
KW: Engineering mesenchymal stem cells for regenerative medicine
and drug delivery. Methods. 84:3–16. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Moradian Tehrani R, Verdi J, Noureddini M,
Salehi R, Salarinia R, Mosalaei M, Simonian M, Alani B, Ghiasi MR,
Jaafari MR, et al: Mesenchymal stem cells: A new platform for
targeting suicide genes in cancer. J Cell Physiol. July
13–2017.Epub ahead of print. PubMed/NCBI
|
|
96
|
Tang YL, Tang Y, Zhang YC, Qian K, Shen L
and Phillips MI: Improved graft mesenchymal stem cell survival in
ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J
Am Coll Cardiol. 46:1339–1350. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Matsumoto R, Omura T, Yoshiyama M, Hayashi
T, Inamoto S, Koh KR, Ohta K, Izumi Y, Nakamura Y, Akioka K, et al:
Vascular endothelial growth factor-expressing mesenchymal stem cell
transplantation for the treatment of acute myocardial infarction.
Arterioscler Thromb Vasc Biol. 25:1168–1173. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Gnecchi M, He H, Melo LG, Noiseaux N,
Morello F, de Boer RA, Zhang L, Pratt RE, Dzau VJ and Ingwall JS:
Early beneficial effects of bone marrow-derived mesenchymal stem
cells overexpressing Akt on cardiac metabolism after myocardial
infarction. Stem Cells. 27:971–979. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chen Y, Qian H, Zhu W, Zhang X, Yan Y, Ye
S, Peng X, Li W and Xu W: Hepatocyte growth factor modification
promotes the amelioration effects of human umbilical cord
mesenchymal stem cells on rat acute kidney injury. Stem Cells Dev.
20:103–113. 2011. View Article : Google Scholar
|
|
100
|
Yuan L, Wu MJ, Sun HY, Xiong J, Zhang Y,
Liu CY, Fu LL, Liu DM, Liu HQ and Mei CL: VEGF-modified human
embryonic mesenchymal stem cell implantation enhances protection
against cisplatin-induced acute kidney injury. Am J Physiol Renal
Physiol. 300:F207–F218. 2011. View Article : Google Scholar
|
|
101
|
Regoli D, Plante GE and Gobeil F Jr:
Impact of kinins in the treatment of cardiovascular diseases.
Pharmacol Ther. 135:94–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Xiong W, Chen LM, Woodley-Miller C, Simson
JA and Chao J: Identification, purification, and localization of
tissue kallikrein in rat heart. Biochem J. 267:639–646. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Nolly H, Carbini LA, Scicli G, Carretero
OA and Scicli AG: A local kallikrein-kinin system is present in rat
hearts. Hypertension. 23:919–923. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wolf WC, Harley RA, Sluce D, Chao L and
Chao J: Localization and expression of tissue kallikrein and
kallistatin in human blood vessels. J Histochem Cytochem.
47:221–228. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Agata J, Chao L and Chao J: Kallikrein
gene delivery improves cardiac reserve and attenuates remodeling
after myocardial infarction. Hypertension. 40:653–659. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yao YY, Yin H, Shen B, Chao L and Chao J:
Tissue kallikrein infusion prevents cardiomyocyte apoptosis,
inflammation and ventricular remodeling after myocardial
infarction. Regul Pept. 140:12–20. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yao YY, Yin H, Shen B, Smith RS Jr, Liu Y,
Gao L, Chao L and Chao J: Tissue kallikrein promotes
neovascularization and improves cardiac function by the
Akt-glycogen synthase kinase-3beta pathway. Cardiovasc Res.
80:354–364. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yin H, Chao L and Chao J: Kallikrein/kinin
protects against myocardial apoptosis after ischemia/reperfusion
via Akt-glycogen synthase kinase-3 and Akt-Bad.14-3-3 signaling
pathways. J Biol Chem. 280:8022–8030. 2005. View Article : Google Scholar
|
|
109
|
Westermann D, Schultheiss HP and Tschöpe
C: New perspective on the tissue kallikrein-kinin system in
myocardial infarction: Role of angiogenesis and cardiac
regeneration. Int Immunopharmacol. 8:148–154. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yin H, Chao L and Chao J: Nitric oxide
mediates cardiac protection of tissue kallikrein by reducing
inflammation and ventricular remodeling after myocardial
ischemia/reperfusion. Life Sci. 82:156–165. 2008. View Article : Google Scholar
|
|
111
|
Yayama K, Wang C, Chao L and Chao J:
Kallikrein gene delivery attenuates hypertension and cardiac
hypertrophy and enhances renal function in Goldblatt hypertensive
rats. Hypertension. 31:1104–1110. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wolf WC, Yoshida H, Agata J, Chao L and
Chao J: Human tissue kallikrein gene delivery attenuates
hypertension, renal injury, and cardiac remodeling in chronic renal
failure. Kidney Int. 58:730–739. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Bledsoe G, Chao L and Chao J: Kallikrein
gene delivery attenuates cardiac remodeling and promotes
neovascularization in spontaneously hypertensive rats. Am J Physiol
Heart Circ Physiol. 285:H1479–H1488. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chao J, Shen B, Gao L, Xia CF, Bledsoe G
and Chao L: Tissue kallikrein in cardiovascular, cerebrovascular
and renal diseases and skin wound healing. Biol Chem. 391:345–355.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Spillmann F, Graiani G, Van Linthout S,
Meloni M, Campesi I, Lagrasta C, Westermann D, Tschöpe C, Quaini F,
Emanueli C and Madeddu P: Regional and global protective effects of
tissue kallikrein gene delivery to the peri-infarct myocardium.
Regen Med. 1:235–254. 2006. View Article : Google Scholar
|
|
116
|
Emanueli C, Minasi A, Zacheo A, Chao J,
Chao L, Salis MB, Straino S, Tozzi MG, Smith R, Gaspa L, et al:
Local delivery of human tissue kallikrein gene accelerates
spontaneous angiogenesis in mouse model of hindlimb ischemia.
Circulation. 103:125–132. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Emanueli C and Madeddu P: Angiogenesis
therapy with human tissue kallikrein for the treatment of ischemic
diseases. Arch Mal Coeur Vaiss. 97:679–687. 2004.PubMed/NCBI
|
|
118
|
Murakami H, Miao RQ, Chao L and Chao J:
Adenovirus-mediated kallikrein gene transfer inhibits neointima
formation via increased production of nitric oxide in rat artery.
Immunopharmacology. 44:137–143. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Murakami H, Yayama K, Miao RQ, Wang C,
Chao L and Chao J: Kallikrein gene delivery inhibits vascular
smooth muscle cell growth and neointima formation in the rat artery
after balloon angioplasty. Hypertension. 34:164–170. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Hagiwara M, Shen B, Chao L and Chao J:
Kallikrein-modified mesenchymal stem cell implantation provides
enhanced protection against acute ischemic kidney injury by
inhibiting apoptosis and inflammation. Hum Gene Ther. 19:807–819.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
González A, Ravassa S, Beaumont J, López B
and Díez J: New targets to treat the structural remodeling of the
myocardium. J Am Coll Cardiol. 58:1833–1843. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Tschöpe C, Walther T, Königer J, Spillmann
F, Westermann D, Escher F, Pauschinger M, Pesquero JB, Bader M,
Schultheiss HP and Noutsias M: Prevention of cardiac fibrosis and
left ventricular dysfunction in diabetic cardiomyopathy in rats by
transgenic expression of the human tissue kallikrein gene. FASEB J.
18:828–835. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yao Y, Sheng Z, Li Y, Fu C, Ma G, Liu N,
Chao J and Chao L: Tissue kallikrein-modified human endothelial
progenitor cell implantation improves cardiac function via enhanced
activation of akt and increased angiogenesis. Lab Invest.
93:577–591. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Naicker S, Naidoo S, Ramsaroop R, Moodley
D and Bhoola K: Tissue kallikrein and kinins in renal disease.
Immunopharmacology. 44:183–192. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Katori M and Majima M: A missing link
between a high salt intake and blood pressure increase. J Pharmacol
Sci. 100:370–390. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Sharma JN and Narayanan P: The
kallikrein-kinin pathways in hypertension and diabetes. Prog Drug
Res. 69:15–36. 2014.PubMed/NCBI
|
|
127
|
Uehara Y, Hirawa N, Kawabata Y, Suzuki T,
Ohshima N, Oka K, Ikeda T, Goto A, Toyo-oka T and Kizuki K:
Long-term infusion of kallikrein attenuates renal injury in Dahl
salt-sensitive rats. Hypertension. 24:770–778. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Chao J, Zhang JJ, Lin KF and Chao L:
Adenovirus-mediated kallikrein gene delivery reverses salt-induced
renal injury in Dahl salt-sensitive rats. Kidney Int. 54:1250–1260.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Hirawa N, Uehara Y, Suzuki T, Kawabata Y,
Numabe A, Gomi T, Lkeda T, Kizuki K and Omata M: Regression of
glomerular injury by kallikrein infusion in Dahl salt-sensitive
rats is a bradykinin B2-receptor-mediated event. Nephron.
81:183–193. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Bledsoe G, Shen B, Yao Y, Zhang JJ, Chao L
and Chao J: Reversal of renal fibrosis, inflammation, and
glomerular hypertrophy by kallikrein gene delivery. Hum Gene Ther.
17:545–555. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zhang JJ, Bledsoe G, Kato K, Chao L and
Chao J: Tissue kallikrein attenuates salt-induced renal fibrosis by
inhibition of oxidative stress. Kidney Int. 66:722–732. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Liu Y, Bledsoe G, Hagiwara M, Yang ZR,
Shen B, Chao L and Chao J: Blockade of endogenous tissue kallikrein
aggravates renal injury by enhancing oxidative stress and
inhibiting matrix degradation. Am J Physiol Renal Physiol.
298:F1033–F1040. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Xia CF, Bledsoe G, Chao L and Chao J:
Kallikrein gene transfer reduces renal fibrosis, hypertrophy, and
proliferation in DOCA-salt hypertensive rats. Am J Physiol Renal
Physiol. 289:F622–F631. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Schanstra JP, Neau E, Drogoz P, Arevalo
Gomez MA, Lopez Novoa JM, Calise D, Pecher C, Bader M, Girolami JP
and Bascands JL: In vivo bradykinin B2 receptor activation reduces
renal fibrosis. J Clin Invest. 110:371–379. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Bledsoe G, Shen B, Yao YY, Hagiwara M,
Mizell B, Teuton M, Grass D, Chao L and Chao J: Role of tissue
kallikrein in prevention and recovery of gentamicin-induced renal
injury. Toxicol Sci. 102:433–443. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Dellalibera-Joviliano R, Reis ML and
Donadi EA: Kinin system in lupus nephritis. Int Immunopharmacol.
1:1889–1896. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Liu K, Li QZ, Delgado-Vega AM, Abelson AK,
Sánchez E, Kelly JA, Li L, Liu Y, Zhou J, Yan M, et al Profile
Study Group; Italian Collaborative Group; German Collaborative
Group; Spanish Collaborative Group; Argentinian Collaborative
Group; SLEGEN Consortium: Kallikrein genes are associated with
lupus and glomerular basement membrane-specific antibody-induced
nephritis in mice and humans. J Clin Invest. 119:911–923. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Li Y, Raman I, Du Y, Yan M, Min S, Yang J,
Fang X, Li W, Lu J, Zhou XJ, et al: Kallikrein transduced
mesenchymal stem cells protect against anti-GBM disease and lupus
nephritis by ameliorating inflammation and oxidative stress. PLoS
One. 8:e677902013. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Xia CF, Yin H, Borlongan CV, Chao L and
Chao J: Kallikrein gene transfer protects against ischemic stroke
by promoting glial cell migration and inhibiting apoptosis.
Hypertension. 43:452–459. 2004. View Article : Google Scholar
|
|
140
|
Zhang JJ, Chao L, Chao J, Chu Y and
Heistad DD: Adenovirus-mediated kallikrein gene delivery reduces
aortic thickening and stroke-induced death rate in Dahl
salt-sensitive rats. Stroke. 30:1925–1931; discussion 1931-1932.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Xia CF, Yin H, Yao YY, Borlongan CV, Chao
L and Chao J: Kallikrein protects against ischemic stroke by
inhibiting apoptosis and inflammation and promoting angiogenesis
and neurogenesis. Hum Gene Ther. 17:206–219. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Chao J and Chao L: Experimental therapy
with tissue kallikrein against cerebral ischemia. Front Biosci.
11:1323–1327. 2006. View
Article : Google Scholar
|
|
143
|
Kizuki K, Iwadate H and Ookubo R:
Growth-stimulating effect of kallikrein on rat neural stem cells -
II. Immunocytochemical analysis and specificity of the enzyme for
neural stem cells. Yakugaku Zasshi. 127:919–922. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Liu L, Liu H, Yang F, Chen G, Zhou H, Tang
M, Zhang R and Dong Q: Tissue kallikrein protects cortical neurons
against hypoxia/reoxygenation injury via the ERK1/2 pathway.
Biochem Biophys Res Commun. 407:283–287. 2011. View Article : Google Scholar : PubMed/NCBI
|