Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2022 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
    • Supplementary_Data3.xlsx
    • Supplementary_Data4.xlsx
    • Supplementary_Data5.xlsx
    • Supplementary_Data6.xlsx
    • Supplementary_Data7.xlsx
    • Supplementary_Data8.xlsx
    • Supplementary_Data9.xlsx
Article Open Access

Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells

  • Authors:
    • Eberhard Korsching
    • Julian Matschke
    • Marc Hotfilder
  • View Affiliations / Copyright

    Affiliations: Institute of Bioinformatics, Faculty of Medicine, University of Münster, D‑48149 Münster, Germany, Department of Pediatric Hematology and Oncology, University Hospital Münster, D‑48149 Münster, Germany
    Copyright: © Korsching et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 39
    |
    Published online on: January 28, 2022
       https://doi.org/10.3892/ijmm.2022.5094
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ewing sarcoma is a challenging cancer entity, which, besides the characteristic presence of a fusion gene, is driven by multiple alternative splicing events. So far, splice variants in Ewing sarcoma cells were mainly analyzed for EWSR1‑FLI1. The present study provided a comprehensive alternative splicing study on CADO‑ES1, an Ewing model cell line for an EWSR1‑ERG fusion gene. Based on a well‑­characterized RNA‑sequencing dataset with extensive control mechanisms across all levels of analysis, the differential spliced genes in Ewing cancer stem cells were ATP13A3 and EPB41, while the main population was defined by ACADVL, NOP58 and TSPAN3. All alternatively spliced genes were further characterized by their Gene Ontology (GO) terms and by their membership in known protein complexes. These results confirm and extend previous studies towards a systematic whole‑transcriptome analysis. A highlight is the striking segregation of GO terms associated with five basic splice events. This mechanistic insight, together with a coherent integration of all observations with prior knowledge, indicates that EWSR1‑ERG is truly a close twin to EWSR1‑FLI1, but still exhibits certain individuality. Thus, the present study provided a measure of variability in Ewing sarcoma, whose understanding is essential both for clinical procedures and basic mechanistic insight.
View Figures
View References

1 

Sbaraglia M, Righi A, Gambarotti M and Dei Tos AP: Ewing sarcoma and Ewing-like tumors. Virchows Archiv. 476:109–119. 2020. View Article : Google Scholar

2 

Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P and Delattre O: Mesenchymal stem cell features of Ewing tumors. Cancer Cell. 11:421–429. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Riggi N, Suvà ML, Suvà D, Cironi L, Provero P, Tercier S, Joseph JM, Stehle JC, Baumer K, Kindler V, et al: EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 68:2176–2185. 2008. View Article : Google Scholar : PubMed/NCBI

4 

von Levetzow C, Jiang X, Gwye Y, von Levetzow G, Hung L, Cooper A, Hsu JHR and Lawlor ER: Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One. 6:e193052011. View Article : Google Scholar : PubMed/NCBI

5 

Jawad MU, Cheung MC, Min ES, Schneiderbauer MM, Koniaris LG and Scully SP: Ewing sarcoma demonstrates racial disparities in incidence-related and sex-related differences in outcome: An analysis of 1631 cases from the SEER database, 1973-2005. Cancer. 115:3526–3536. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Orr WS, Denbo JW, Billups CA, Wu J, Navid F, Rao BN, Davidoff AM and Krasin MJ: Analysis of prognostic factors in extraosseous Ewing sarcoma family of tumors: Review of St. Jude Children's research hospital experience. Ann Surg Oncol. 19:3816–3822. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, Sorensen PH, Delattre O and Dirksen U: Ewing sarcoma. Nat Rev Dis Primers. 4:52018. View Article : Google Scholar

8 

Sand LGL, Szuhai K and Hogendoorn PCW: Sequencing over- view of Ewing sarcoma: A journey across genomic, epigenomic and transcriptomic landscapes. Int J Mol Sci. 16:16176–16215. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Suvà ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM, Suvà D, Clément V, Provero P, Cironi L, et al: Identification of cancer stem cells in Ewing's sarcoma. Cancer Res. 69:1776–1781. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Yang M, Zhang R, Yan M, Ye Z, Liang W and Luo Z: Detection and characterization of side population in Ewing's sarcoma SK-ES-1 cells in vitro. Biochem Biophys Res Commun. 391:1062–1066. 2010. View Article : Google Scholar

11 

Helman LJ and Meltzer P: Mechanisms of sarcoma development. Nat Rev Cancer. 3:685–694. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Hotfilder M, Mallela N, Seggewiß J, Dirksen U and Korsching E: Defining a characteristic gene expression set responsible for cancer stem cell-like features in a sub-population of ewing sarcoma cells CADO-ES1. Int J Mol Sci. 19:39082018. View Article : Google Scholar

13 

Tanabe A and Sahara H: The metabolic heterogeneity and flexibility of cancer stem cells. Cancers (Basel). 12:27802020. View Article : Google Scholar

14 

Park E, Pan Z, Zhang Z, Lin L and Xing Y: The expanding landscape of alternative splicing variation in human populations. Am J Hum Genet. 102:11–26. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Xu B, Meng Y and Jin Y: RNA structures in alternative splicing and back-splicing. Wiley Interdiscip Rev RNA. 12. pp. e16262021, View Article : Google Scholar

16 

Oltean S and Bates DO: Hallmarks of alternative splicing in cancer. Oncogene. 33:5311–5318. 2014. View Article : Google Scholar

17 

Patócs B, Németh K, Garami M, Arató G, Kovalszky I, Szendrői M and Fekete G: Multiple splice variants of EWSR1-ETS fusion transcripts co-existing in the Ewing sarcoma family of tumors. Cell Oncol (Dordr). 36:191–200. 2013. View Article : Google Scholar

18 

Sand LGL, Jochemsen AG, Beletkaia E, Schmidt T, Hogendoorn PCW and Szuhai K: Novel splice variants of CXCR4 identified by transcriptome sequencing. Biochem Biophys Res Commun. 466:89–94. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Selvanathan SP, Graham GT, Grego AR, Baker TM, Hogg JR, Simpson M, Batish M, Crompton B, Stegmaier K, Tomazou EM, et al: EWS-FLI1 modulated alternative splicing of ARID1A reveals novel oncogenic function through the BAF complex. Nucleic Acids Res. 47:9619–9636. 2019.PubMed/NCBI

20 

Bartys N, Kierzek R and Lisowiec-Wachnicka J: The regulation properties of RNA secondary structure in alternative splicing. Biochim Biophys Acta Gene Regul Mech. 1862:1944012019. View Article : Google Scholar : PubMed/NCBI

21 

Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, Zhou Q and Xing Y: rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci USA. 111:E5593–E5601. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Ding L, Rath E and Bai Y: Comparison of alternative splicing junction detection tools using RNA-Seq data. Curr Genomics. 18:268–277. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Mehmood A, Laiho A, Venäläinen MS, McGlinchey AJ, Wang N and Elo LL: Systematic evaluation of differential splicing tools for RNA-seq studies. Brief Bioinform. 21:2052–2065. 2020. View Article : Google Scholar :

24 

Kodama K, Doi O, Higashiyama M, Mori Y, Horai T, Tateishi R, Aoki Y and Misawa S: Establishment and characterization of a new Ewing's sarcoma cell line. Cancer Genet Cytogenet. 57:19–30. 1991. View Article : Google Scholar : PubMed/NCBI

25 

Leuchte K, Altvater B, Hoffschlag S, Potratz J, Meltzer J, Clemens D, Luecke A, Hardes J, Dirksen U, Juergens H, et al: Anchorage-independent growth of Ewing sarcoma cells under serum-free conditions is not associated with stem-cell like phenotype and function. Oncol Rep. 32:845–852. 2014. View Article : Google Scholar

26 

Amaral AT, Manara MC, Berghuis D, Ordóñez JL, Biscuola M, Lopez-García MA, Osuna D, Lucarelli E, Alviano F, Lankester A, et al: Characterization of human mesenchymal stem cells from ewing sarcoma patients. Pathogenetic implications. PLoS One. 9:e858142014. View Article : Google Scholar : PubMed/NCBI

27 

Unland R, Clemens D, Heinicke U, Potratz JC, Hotfilder M, Fulda S, Wardelmann E, Frühwald MC and Dirksen U: Suberoylanilide hydroxamic acid synergistically enhances the antitumor activity of etoposide in Ewing sarcoma cell lines. Anticancer Drugs. 26:843–851. 2015. View Article : Google Scholar

28 

Kailayangiri S, Altvater B, Lesch S, Balbach S, Göttlich C, Kühnemundt J, Mikesch JH, Schelhaas S, Jamitzky S, Meltzer J, et al: EZH2 inhibition in Ewing sarcoma upregulates G D2 expression for targeting with gene-modified T cells. Mol Ther. 27:933–946. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Villegas J and McPhaul M: Establishment and culture of human skin fibroblasts. Curr Protoc Mol Biol. 28:Unit 28.3. 2005.

30 

Schmid F, Glaus E, Barthelmes D, Fliegauf M, Gaspar H, Nürnberg G, Nürnberg P, Omran H, Berger W and Neidhardt J: U1 snRNA-mediated gene therapeutic correction of splice defects caused by an exceptionally mild BBS mutation. Hum Mutat. 32:815–824. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Haas BJ, Dobin A, Li B, Stransky N, Pochet N and Regev A: Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 20:2132019. View Article : Google Scholar : PubMed/NCBI

32 

Knoop LL and Baker SJ: The splicing factor U1C represses EWS/FLI-mediated transactivation. J Biol Chem. 275:24865–24871. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Shen S, Park JW, Huang J, Dittmar KA, Lu Zx, Zhou Q, Carstens RP and Xing Y: MATS: A Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Res. 40:e612012. View Article : Google Scholar :

34 

Bürger H, de Boer M, van Diest PJ and Korsching E: Chromosome 16q loss-a genetic key to the understanding of breast carcinogenesis. Histol Histopathol. 28:311–320. 2013.

35 

Sánchez L, Gutierrez-Aranda I, Ligero G, Rubio R, Muñoz-López M, García-Pérez JL, Ramos V, Real PJ, Bueno C, Rodríguez R, et al: Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells. 29:251–262. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Li X, McGee-Lawrence ME, Decker M and Westendorf JJ: The Ewing's sarcoma fusion protein, EWS-FLI, binds Runx2 and blocks osteoblast differentiation. J Cell Biochem. 111:933–943. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Kubo H, Shimizu M, Taya Y, Kawamoto T, Michida M, Kaneko E, Igarashi A, Nishimura M, Segoshi K, Shimazu Y, et al: Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes Cells. 14:407–424. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Pelekanos RA, Li J, Gongora M, Chandrakanthan V, Scown J, Suhaimi N, Brooke G, Christensen ME, Doan T, Rice AM, et al: Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res. 8:58–73. 2012. View Article : Google Scholar

39 

Chen M, Xiao J, Zhang Z, Liu J, Wu J and Yu J: Identification of human HK genes and gene expression regulation study in cancer from transcriptomics data analysis. PLoS One. 8:e540822013. View Article : Google Scholar : PubMed/NCBI

40 

Rau A, Gallopin M, Celeux G and Jaffrézic F: Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics. 29:2146–2152. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szczesniak MW, Gaffney DJ, Elo LL, Zhang X and Mortazavi A: A survey of best practices for RNA-seq data analysis. Genome Biol. 17:132016. View Article : Google Scholar :

42 

Shen M, Haggblom C, Vogt M, Hunter T and Lu KP: Characterization and cell cycle regulation of the related human telomeric proteins Pin2 and TRF1 suggest a role in mitosis. Proc Natl Acad Sci USA. 94:13618–13623. 1997. View Article : Google Scholar

43 

Ogawa F, Malavasi EL, Crummie DK, Eykelenboom JE, Soares DC, Mackie S, Porteous DJ and Millar JK: DISC1 complexes with TRAK1 and miro1 to modulate anterograde axonal mitochondrial trafficking. Hum Mol Genet. 23:906–919. 2014. View Article : Google Scholar :

44 

Sbodio JI and Chi NW: Identification of a tankyrase-binding motif shared by IRAP, TAB182, and human TRF1 but not mouse TRF1. NuMA contains this RXXPDG motif and is a novel tankyrase partner. J Biol Chem. 277:31887–31892. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Kraft C, Vodermaier HC, Maurer-Stroh S, Eisenhaber F and Peters JM: The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol Cell. 18:543–553. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Costessi A, Mahrour N, Sharma V, Stunnenberg R, Stoel MA, Tijchon E, Conaway JW, Conaway RC and Stunnenberg HG: The human EKC/KEOPS complex is recruited to Cullin2 ubiquitin ligases by the human tumour antigen PRAME. PLoS One. 7:e428222012. View Article : Google Scholar :

47 

Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, Gribouval O, Boyer O, Revy P, Jobst-Schwan T, et al: Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet. 49:1529–1538. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Liu D, Safari A, O'Connor MS, Chan DW, Laegeler A, Qin J and Songyang Z: PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol. 6:673–680. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Zhang Y, LeRoy G, Seelig HP, Lane WS and Reinberg D: The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell. 95:279–289. 1998. View Article : Google Scholar : PubMed/NCBI

50 

Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P and Reinberg D: Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33 (ING1). Mol Cell Biol. 22:835–848. 2002. View Article : Google Scholar : PubMed/NCBI

51 

Fang W, Goldberg ML, Pohl NM, Bi X, Tong C, Xiong B, Koh TJ, Diamond AM and Yang W: Functional and physical interaction between the selenium-binding protein 1 (SBP1) and the glutathione peroxidase 1 selenoprotein. Carcinogenesis. 31:1360–1366. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Fu J, Qin L, He T, Qin J, Hong J, Wong J, Liao L and Xu J: The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res. 21:275–289. 2011. View Article : Google Scholar

53 

Nakao A, Yoshihama M and Kenmochi N: RPG: The ribosomal protein gene database. Nucleic Acids Res. 32(Database issue): D168–D170. 2004. View Article : Google Scholar :

54 

Zeqiraj E, Filippi BM, Deak M, Alessi DR and van Aalten DM: Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science. 326:1707–1711. 2009. View Article : Google Scholar

55 

Inoue D, Fujino T, Sheridan P, Zhang YZ, Nagase R, Horikawa S, Li Z, Matsui H, Kanai A, Saika M, et al: A novel ASXL1-OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies. Leukemia. 32:1327–1337. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Macaluso M, Cinti C, Russo G, Russo A and Giordano A: p R b2 / p13 0 - E 2 F 4 /5 - H DAC1- S U V39 H1- p3 00 an d pRb2/p130-E2F4/5HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-alpha in breast cancer. Oncogene. 22:3511–3517. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Xue Y, Canman JC, Lee CS, Nie Z, Yang D, Moreno GT, Young MK, Salmon ED and Wang W: The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Proc Natl Acad Sci USA. 97:13015–13020. 2000. View Article : Google Scholar : PubMed/NCBI

58 

Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M and Dubiel W: A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J. 12:469–478. 1998. View Article : Google Scholar : PubMed/NCBI

59 

Groisman R, Polanowska J, Kuraoka I, Sawada Ji, Saijo M, Drapkin R, Kisselev AF, Tanaka K and Nakatani Y: The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 113:357–367. 2003. View Article : Google Scholar : PubMed/NCBI

60 

Iyer SP, Akimoto Y and Hart GW: Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J Biol Chem. 278:5399–5409. 2003. View Article : Google Scholar

61 

van Nuland R, Smits AH, Pallaki P, Jansen PW, Vermeulen M and Timmers HT: Quantitative dissection and stoichiometry determination of the human SET1/MLL histone methyltransferase complexes. Mol Cell Biol. 33:2067–2077. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Ding X, Jiang W, Zhou P, Liu L, Wan X, Yuan X, Wang X, Chen M, Chen J, Yang J, et al: Mixed lineage leukemia 5 (MLL5) protein stability is cooperatively regulated by O-GlcNac transferase (OGT) and ubiquitin specific protease 7 (USP7). PLoS One. 10:e01450232015. View Article : Google Scholar : PubMed/NCBI

63 

Yan Z, Cui K, Murray DM, Ling C, Xue Y, Gerstein A, Parsons R, Zhao K and Wang W: PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. Genes Dev. 19:1662–1667. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Holaska JM and Wilson KL: An emerin 'proteome': Purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry. 46:8897–8908. 2007. View Article : Google Scholar

65 

Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, Haudenschild CD, Beckman KB, Shi J, Mei R, et al: Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 24:14–24. 2014. View Article : Google Scholar :

66 

Consortium G. Human genomics: The genotype-tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 348:648–660. 2015. View Article : Google Scholar

67 

Pala M, Zappala Z, Marongiu M, Li X, Davis JR, Cusano R, Crobu F, Kukurba KR, Gloudemans MJ, Reinier F, et al: Population- and individual-specific regulatory variation in Sardinia. Nat Genet. 49:700–707. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Sammeth M, Foissac S and Guigó R: A general definition and nomenclature for alternative splicing events. PLoS Comput Biol. 4:e10001472008. View Article : Google Scholar : PubMed/NCBI

69 

Lau E, Han Y, Williams DR, Thomas CT, Shrestha R, Wu JC and Lam MPY: Splice-junction-based mapping of alternative isoforms in the human proteome. Cell Rep. 29:3751–3765.e5. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Monteuuis G, Wong JJL, Bailey CG, Schmitz U and Rasko JEJ: The changing paradigm of intron retention: Regulation, ramifications and recipes. Nucleic Acids Res. 47:11497–11513. 2019.PubMed/NCBI

71 

Tress ML, Abascal F and Valencia A: Alternative splicing may not be the key to proteome complexity. Trends Biochem Sci. 42:98–110. 2017. View Article : Google Scholar

72 

Blencowe BJ: The relationship between alternative splicing and proteomic complexity. Trends Biochem Sci. 42:407–408. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Huang H, Tong TT, Yau LF, Wang JR, Lai MH, Zhang CR, Wen XH, Li SN, Li KY, Liu JQ, et al: Chemerin isoform analysis in human biofluids using an LC/MRM-MS-based targeted proteomics approach with stable isotope-labeled standard. Anal Chim Acta. 1139:79–87. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Hamouda NN, Van den Haute C, Vanhoutte R, Sannerud R, Azfar M, Mayer R, Calabuig ÁC, Swinnen JV, Agostinis P, Baekelandt V, et al: ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. J Biol Chem. 296:1001822021. View Article : Google Scholar :

75 

Yuan J, Xing H, Li Y, Song Y, Zhang N, Xie M, Liu J, Xu Y, Shen Y, Wang B, et al: EPB41 suppresses the Wnt/β-catenin signaling in non-small cell lung cancer by sponging ALDOC. Cancer Lett. 499:255–264. 2021. View Article : Google Scholar

76 

Zhao X, Qin W, Jiang Y, Yang Z, Yuan B, Dai R, Shen H, Chen Y, Fu J and Wang H: ACADL plays a tumor-suppressor role by targeting Hippo/YAP signaling in hepatocellular carcinoma. NPJ Precis Oncol. 4:72020. View Article : Google Scholar : PubMed/NCBI

77 

Yu G, Zhao Y and Li H: The multistructural forms of box C/D ribonucleoprotein particles. RNA. 24:1625–1633. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Yang YG, Sari IN, Zia MF, Lee SR, Song SJ and Kwon HY: Tetraspanins: Spanning from solid tumors to hematologic malignancies. Exp Hematol. 44:322–328. 2016. View Article : Google Scholar

79 

Zhang Y, Qian J, Gu C and Yang Y: Alternative splicing and cancer: A systematic review. Signal Transduct Target Ther. 6:782021. View Article : Google Scholar : PubMed/NCBI

80 

Selvanathan SP, Graham GT, Erkizan HV, Dirksen U, Natarajan TG, Dakic A, Yu S, Liu X, Paulsen MT, Ljungman ME, et al: Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing. Proc Natl Acad Sci USA. 112:E1307–E1316. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Boulay G, Sandoval GJ, Riggi N, Iyer S, Buisson R, Naigles B, Awad ME, Rengarajan S, Volorio A, McBride MJ, et al: Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell. 171:163–178.e19. 2017. View Article : Google Scholar

82 

Spahn L, Siligan C, Bachmaier R, Schmid JA, Aryee DNT and Kovar H: Homotypic and heterotypic interactions of EWS, FLI1 and their oncogenic fusion protein. Oncogene. 22:6819–6829. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Lee MJ and Yaffe MB: Protein regulation in signal transduction. Cold Spring Harb Perspect Biol. 8:a0059182016. View Article : Google Scholar : PubMed/NCBI

84 

Dvinge H: Regulation of alternative mRNA splicing: Old players and new perspectives. FEBS Lett. 592:2987–3006. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Knoop LL and Baker SJ: EWS/FLI alters 5′-splice site selection. J Biol Chem. 276:22317–22322. 2001. View Article : Google Scholar : PubMed/NCBI

86 

Sanchez G, Bittencourt D, Laud K, Barbier J, Delattre O, Auboeuf D and Dutertre M: Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer. Proc Natl Acad Sci USA. 105:6004–6009. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Zhu X, Lan B, Yi X, He C, Dang L, Zhou X, Lu Y, Sun Y, Liu Z, Bai X, et al: HRP2-DPF3a-BAF complex coordinates histone modification and chromatin remodeling to regulate myogenic gene transcription. Nucleic Acids Res. 48:6563–6582. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Nguyen H, Sokpor G, Pham L, Rosenbusch J, Stoykova A, Staiger JF and Tuoc T: Epigenetic regulation by BAF (mSWI/SNF) chromatin remodeling complexes is indispensable for embryonic development. Cell Cycle. 15:1317–1324. 2016. View Article : Google Scholar :

89 

Nguyen H, Kerimoglu C, Pirouz M, Pham L, Kiszka KA, Sokpor G, Sakib MS, Rosenbusch J, Teichmann U, Seong RH, et al: Epigenetic regulation by BAF complexes limits neural stem cell proliferation by suppressing wnt signaling in late embryonic development. Stem Cell Reports. 10:1734–1750. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Grote P and Herrmann BG: The long non-coding RNAFendrrlinks epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol. 10:1579–1585. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Innis SM and Cabot B: GBAF, a small BAF sub-complex with big implications: A systematic review. Epigenetics Chromatin. 13:482020. View Article : Google Scholar : PubMed/NCBI

92 

Sveen A, Kilpinen S, Ruusulehto A, Lothe RA and Skotheim RI: Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene. 35:2413–2427. 2016. View Article : Google Scholar

93 

El Marabti E and Younis I: The cancer spliceome: Reprograming of alternative splicing in cancer. Front Mol Biosci. 5:802018. View Article : Google Scholar : PubMed/NCBI

94 

Hu-Lieskovan S, Zhang J, Wu L, Shimada H, Schofield DE and Triche TJ: EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors. Cancer Res. 65:4633–4644. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Korsching E, Matschke J and Hotfilder M: Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells. Int J Mol Med 49: 39, 2022.
APA
Korsching, E., Matschke, J., & Hotfilder, M. (2022). Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells. International Journal of Molecular Medicine, 49, 39. https://doi.org/10.3892/ijmm.2022.5094
MLA
Korsching, E., Matschke, J., Hotfilder, M."Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells". International Journal of Molecular Medicine 49.3 (2022): 39.
Chicago
Korsching, E., Matschke, J., Hotfilder, M."Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells". International Journal of Molecular Medicine 49, no. 3 (2022): 39. https://doi.org/10.3892/ijmm.2022.5094
Copy and paste a formatted citation
x
Spandidos Publications style
Korsching E, Matschke J and Hotfilder M: Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells. Int J Mol Med 49: 39, 2022.
APA
Korsching, E., Matschke, J., & Hotfilder, M. (2022). Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells. International Journal of Molecular Medicine, 49, 39. https://doi.org/10.3892/ijmm.2022.5094
MLA
Korsching, E., Matschke, J., Hotfilder, M."Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells". International Journal of Molecular Medicine 49.3 (2022): 39.
Chicago
Korsching, E., Matschke, J., Hotfilder, M."Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells". International Journal of Molecular Medicine 49, no. 3 (2022): 39. https://doi.org/10.3892/ijmm.2022.5094
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team