
Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review)
- Authors:
- Fan Ding
- Qili Hu
- Yixing Wang
- Min Jiang
- Zhengyu Cui
- Run Guo
- Liping Liu
- Fang Chen
- Hai Hu
- Gang Zhao
-
Affiliations: Center of Gallbladder Disease, East Hospital of Tongji University, Shanghai 200120, P.R. China, Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, Anhui 230061, P.R. China, Department of Traditional Chinese Medicine, East Hospital of Tongji University, Shanghai 200120, P.R. China, Department of Ultrasonography, East Hospital of Tongji University, Shanghai 200120, P.R. China - Published online on: March 10, 2023 https://doi.org/10.3892/ijmm.2023.5236
- Article Number: 33
-
Copyright: © Ding et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Boyer J: Bile formation and secretion. Compr Physiol. 3:1035–1078. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lanzini A, Jazrawi RP and Northfield TC: Simultaneous quantitative measurements of absolute gallbladder storage and emptying during fasting and eating in humans. Gastroenterology. 92:852–861. 1987. View Article : Google Scholar | |
Torsoli A, Corazziari E, Habib FI and Cicala M: Pressure relationships within the human bile tract. Normal and abnormal physiology. Scand J Gastroenterol Suppl. 175:52–57. 1990. View Article : Google Scholar : PubMed/NCBI | |
Lammert F, Gurusamy K, Ko CW, Miquel JF, Méndez-Sánchez N, Portincasa P, van Erpecum KJ, van Laarhoven CJ and Wang DQ: Gallstones. Nat Rev Dis Primers. 2:160242016. View Article : Google Scholar : PubMed/NCBI | |
Gallaher J and Charles A: Acute cholecystitis: A review. JAMA. 327:965–975. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bronkhorst MWGA, Terpstra V and Bouwman LH: Polyp in the gallbladder. Gastroenterology. 141:e3–e4. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sanders KM, Koh S, Ro S and Ward SM: Regulation of gastrointestinal motility-insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol. 9:633–645. 2012. View Article : Google Scholar : PubMed/NCBI | |
Huizinga JD, Zarate N and Farrugia G: Physiology, injury, and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology. 137:1548–1556. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sanders KM, Koh SD and Ward SM: Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 68:307–343. 2006. View Article : Google Scholar : PubMed/NCBI | |
Horiguchi K and Komuro T: Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst. 80:142–147. 2000. View Article : Google Scholar : PubMed/NCBI | |
Klemm MF and Lang RJ: Distribution of Ca2+-activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea-pig. Clin Exp Pharmacol Physiol. 29:18–25. 2002. View Article : Google Scholar : PubMed/NCBI | |
Burnstock G: Autonomic neurotransmitters and trophic factors. J Auton Nerv Syst. 7:213–217. 1983. View Article : Google Scholar : PubMed/NCBI | |
Spencer NJ and Hu H: Enteric nervous system: Sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 17:338–351. 2020. View Article : Google Scholar : PubMed/NCBI | |
Obermayr F, Hotta R, Enomoto H and Young HM: Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol. 10:43–57. 2013. View Article : Google Scholar | |
Popescu LM and Faussone-Pellegrini MS: TELOCYTES-a case of serendipity: The winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med. 14:729–740. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L and Faussone-Pellegrini MS: Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med. 17:1099–1108. 2013. View Article : Google Scholar | |
Rasmussen H, Rumessen JJ, Hansen A, Smedts F and Horn T: Ultrastructure of Cajal-like interstitial cells in the human detrusor. Cell Tissue Res. 335:517–527. 2009. View Article : Google Scholar : PubMed/NCBI | |
Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME and Faussone-Pellegrini MS: Telocytes in human term placenta: Morphology and phenotype. Cells Tissues Organs. 192:325–339. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vannucchi MG, Traini C, Guasti D, Del Popolo G and Faussone-Pellegrini MS: Telocytes subtypes in human urinary bladder. J Cell Mol Med. 18:2000–2008. 2014. View Article : Google Scholar : PubMed/NCBI | |
Suciu LC, Popescu BO, Kostin S and Popescu LM: Platelet-derived growth factor receptor-β-positive telocytes in skeletal muscle interstitium. J Cell Mol Med. 16:701–707. 2012. View Article : Google Scholar | |
Pieri L, Vannucchi MG and Faussone-Pellegrini MS: Histochemical and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut. J Cell Mol Med. 12:1944–1955. 2008. View Article : Google Scholar | |
Chen L and Yu B: Telocytes and interstitial cells of Cajal in the biliary system. J Cell Mol Med. 22:3323–3329. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vannucchi MG: The telocytes: Ten years after their introduction in the scientific literature. An update on their morphology, distribution, and potential roles in the gut. Int J Mol Sci. 21:44782020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Jin M, Ma WH, Zhu Z and Wang X: The history of telocyte discovery and understanding. Adv Exp Med Biol. 913:1–21. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vannucchi MG and Faussone-Pellegrini MS: The telocyte subtypes. Adv Exp Med Biol. 913:115–126. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cretoiu SM and Popescu LM: Telocytes revisited. Biomol Concepts. 5:353–369. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Fu J, Song K, Xue N, Gong R, Sun D, Luo H, He W, Pan X, Shen B and Du J: The role of TRPP2 in agonist-induced gallbladder smooth muscle contraction. Sci China Life Sci. 59:409–416. 2016. View Article : Google Scholar | |
Morales S, Diez A, Puyet A, Camello PJ, Camello-Almaraz C, Bautista JM and Pozo MJ: Calcium controls smooth muscle TRPC gene transcription via the CaMK/calcineurin-dependent pathways. Am J Physiol Cell Physiol. 292:C553–C563. 2007. View Article : Google Scholar | |
McCarron JG, Olson ML, Rainbow RD, MacMillan D and Chalmers S: Ins(1,4,5)P3 receptor regulation during 'quantal' Ca2+ release in smooth muscle. Trends Pharmacol Sci. 28:271–279. 2007. View Article : Google Scholar : PubMed/NCBI | |
Quinn T, Feighery R and Baird AW: Role of Rho-kinase in guinea-pig gallbladder smooth muscle contraction. Eur J Pharmacol. 534:210–217. 2006. View Article : Google Scholar : PubMed/NCBI | |
Balemba OB, Heppner TJ, Bonev AD, Nelson MT and Mawe GM: Calcium waves in intact guinea pig gallbladder smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 291:G717–G727. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tan YY, Ji ZL, Zhao G, Jiang JR, Wang D and Wang JM: Decreased SCF/c-kit signaling pathway contributes to loss of interstitial cells of Cajal in gallstone disease. Int J Clin Exp Med. 7:4099–4106. 2014. | |
Pasternak A, Gil K, Matyja A, Gajda M, Sztefko K, Walocha JA, Kulig J and Thor P: Loss of gallbladder interstitial Cajal-like cells in patients with cholelithiasis. Neurogastroenterol Motil. 25:e17–e24. 2013. View Article : Google Scholar | |
Liang J, Shao W, Liu Q, Lu Q, Gu A and Jiang Z: Single cell RNA-sequencing reveals a murine gallbladder cell transcriptome atlas during the process of cholesterol gallstone formation. Front Cell Dev Biol. 9:7142712021. View Article : Google Scholar : PubMed/NCBI | |
Cai WQ and Gabella G: The musculature of the gall bladder and biliary pathways in the guinea-pig. J Anat. 136:237–250. 1983.PubMed/NCBI | |
Horowitz A, Menice CB, Laporte R and Morgan KG: Mechanisms of smooth muscle contraction. Physiol Rev. 76:967–1003. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ota N, Hirose H, Kato H, Maeda H and Shiojiri N: Immunohistological analysis on distribution of smooth muscle tissues in livers of various vertebrates with attention to different liver architectures. Ann Anat. 233:1515942021. View Article : Google Scholar | |
Sanders KM: Chapter 1-Nerves, smooth muscle cells and interstitial cells in the GI tract: Molecular and cellular interactions. Clinical and Basic Neurogastroenterology and Motility. 3–16. 2020. View Article : Google Scholar | |
Sun X, Yu B, Xu L, Dong W and Luo H: Interstitial cells of Cajal in the murine gallbladder. Scand J Gastroenterol. 41:1218–1226. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ahmadi O, Nicholson Mde L, Gould ML, Mitchell A and Stringer MD: Interstitial cells of Cajal are present in human extrahepatic bile ducts. J Gastroenterol Hepatol. 25:277–285. 2010. View Article : Google Scholar | |
Hinescu ME, Ardeleanu C, Gherghiceanu M and Popescu LM: Interstitial Cajal-like cells in human gallbladder. J Mol Histol. 38:275–284. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pasternak A, Szura M, Gil K and Matyja A: Interstitial cells of Cajal-systematic review. Folia Morphol (Warsz). 75:281–286. 2016. View Article : Google Scholar | |
Lavoie B, Balemba OB, Nelson MT, Ward SM and Mawe GM: Morphological and physiological evidence for interstitial cell of Cajal-like cells in the guinea pig gallbladder. J Physiol. 579:487–501. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, Van de Rijn M, West RB, Sarr MG, Kendrick ML, et al: Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 296:G1370–G1381. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu MH, Sung TS, Kurahashi M, O'Kane LE, O'Driscoll K, Koh SD and Sanders KM: Na+-K+-Cl- cotransporter (NKCC) maintains the chloride gradient to sustain pacemaker activity in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol. 311:G1037–G1046. 2016. View Article : Google Scholar | |
Pasternak A, Gajda M, Gil K, Matyja A, Tomaszewski KA, Walocha JA, Kulig J and Thor P: Evidence of interstitial Cajal-like cells in human gallbladder. Folia Histochem Cytobiol. 50:581–585. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cantarero I, Luesma MJ, Alvarez-Dotu JM, Muñoz E and Junquera C: Transmission electron microscopy as key technique for the characterization of telocytes. Curr Stem Cell Res. 11:410–414. 2016. View Article : Google Scholar | |
Peri LE, Sanders KM and Mutafova-Yambolieva VN: Differential expression of genes related to purinergic signaling in smooth muscle cells, PDGFRα-positive cells, and interstitial cells of Cajal in the murine colon. Neurogastroenterol Motil. 25:e609–e620. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu C, Huang X, Lu HL, Liu SH, Zang JY, Li YJ, Chen J and Xu WX: Different distributions of interstitial cells of Cajal and platelet-derived growth factor receptor-α positive cells in colonic smooth muscle cell/interstitial cell of Cajal/platelet-derived growth factor receptor-α positive cell syncytium in mice. World J Gastroenterol. 24:4989–5004. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yeoh JW, Corrias A and Buist ML: A mechanistic model of a PDGFRα(+) cell. J Theor Biol. 408:127–136. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bolton TB, Prestwich SA, Zholos AV and Gordienko DV: Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol. 61:85–115. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Bonev AD, Nelson MT and Mawe GM: Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells. Am J Physiol. 265:C1552–C1561. 1993. View Article : Google Scholar : PubMed/NCBI | |
Shimada T: Voltage-dependent calcium channel current in isolated gallbladder smooth muscle cells of guinea pig. Am J Physiol. 264:G1066–G1076. 1993.PubMed/NCBI | |
Wu Z and Shen W: Progesterone inhibits L-type calcium currents in gallbladder smooth muscle cells. J Gastroenterol Hepatol. 25:1838–1843. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu ZX, Yu BP, Xia H and Xu L: Emodin increases Ca(2+) influx through L-type Ca(2+) channel in guinea pig gallbladder smooth muscle. Eur J Pharmacol. 595:95–99. 2008. View Article : Google Scholar : PubMed/NCBI | |
Petkov GV, Balemba OB, Nelson MT and Mawe GM: Identification of a spontaneously active, Na+-permeable channel in guinea pig gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol. 289:G501–G507. 2005. View Article : Google Scholar : PubMed/NCBI | |
Parr E, Pozo MJ, Horowitz B, Nelson MT and Mawe GM: ERG K+ channels modulate the electrical and contractile activities of gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol. 284:G392–G398. 2003. View Article : Google Scholar | |
Wu ZX, Yu BP, Xu L and Xia H: Emodin inhibits voltage-dependent potassium current in guinea pig gallbladder smooth muscle. Basic Clin Pharmacol Toxicol. 105:167–172. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jaggar JH, Mawe GM and Nelson MT: Voltage-dependent K+ currents in smooth muscle cells from mouse gallbladder. Am J Physiol. 274:G687–G693. 1998. View Article : Google Scholar : PubMed/NCBI | |
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y and Hill AP: hERG K(+) channels: structure, function, and clinical significance. Physiol Rev. 92:1393–1478. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ashcroft SJ and Ashcroft FM: Properties and functions of ATP-sensitive K-channels. Cell Signal. 2:197–214. 1990. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Bonev AD, Nelson MT and Mawe GM: Activation of ATP-sensitive potassium currents in guinea-pig gall-bladder smooth muscle by the neuropeptide CGRP. J Physiol. 478:483–491. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hemming JM, Guarraci FA, Firth TA, Jennings LJ, Nelson MT and Mawe GM: Actions of histamine on muscle and ganglia of the guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol. 279:G622–G630. 2000. View Article : Google Scholar : PubMed/NCBI | |
Pozo MJ, Pérez GJ, Nelson MT and Mawe GM: Ca(2+) sparks and BK currents in gallbladder myocytes: Role in CCK-induced response. Am J Physiol Gastrointest Liver Physiol. 282:G165–G174. 2002. View Article : Google Scholar | |
Dopico AM, Walsh JV Jr and Singer JJ: Natural bile acids and synthetic analogues modulate large conductance Ca2+-activated K+ (BKCa) channel activity in smooth muscle cells. J Gen Physiol. 119:251–273. 2002. View Article : Google Scholar : PubMed/NCBI | |
Song K, Zhong XG, Xia XM, Huang JH, Fan YF, Yuan RX, Xue NR, Du J, Han WX, Xu AM and Shen B: Orai1 forms a signal complex with SK3 channel in gallbladder smooth muscle. Biochem Biophys Res Commun. 466:456–462. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuo IY and Ehrlich BE: Signaling in muscle contraction. Cold Spring Harb Perspect Biol. 7:a0060232015. View Article : Google Scholar : PubMed/NCBI | |
Wellman GC and Nelson MT: Signaling between SR and plasmalemma in smooth muscle: Sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium. 34:211–229. 2003. View Article : Google Scholar | |
Putney JW: Capacitative calcium entry: From concept to molecules. Immunol Rev. 231:10–22. 2009. View Article : Google Scholar | |
Berridge MJ: Capacitative calcium entry. Biochem J. 312:1–11. 1995. View Article : Google Scholar : PubMed/NCBI | |
Quinn T, Molloy M, Smyth A and Baird AW: Capacitative calcium entry in guinea pig gallbladder smooth muscle in vitro. Life Sci. 74:1659–1669. 2004. View Article : Google Scholar : PubMed/NCBI | |
Morales S, Camello PJ, Rosado JA, Mawe GM and Pozo MJ: Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells. Cell Signal. 17:635–645. 2005. View Article : Google Scholar : PubMed/NCBI | |
Albert AP and Large WA: Store-operated Ca2+-permeable non-selective cation channels in smooth muscle cells. Cell Calcium. 33:345–356. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, Yang H and Reinach PS: Transient receptor potential (TRP) gene superfamily encoding cation channels. Hum Genomics. 5:108–116. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, et al: PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 272:1339–1342. 1996. View Article : Google Scholar | |
González-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA and Cantiello HF: Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA. 98:1182–1187. 2001. View Article : Google Scholar | |
Zhao R, Zhou M, Li J, Wang X, Su K, Hu J, Ye Y, Zhu J, Zhang G, Wang K, et al: Increased TRPP2 expression in vascular smooth muscle cells from high-salt intake hypertensive rats: The crucial role in vascular dysfunction. Mol Nutr Food Res. 59:365–372. 2015. View Article : Google Scholar | |
Spirli C, Locatelli L, Fiorotto R, Morell CM, Fabris L, Pozzan T and Strazzabosco M: Altered store operated calcium entry increases cyclic 3′,5′-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology. 55:856–868. 2012. View Article : Google Scholar | |
Balemba OB, Salter MJ, Heppner TJ, Bonev AD, Nelson MT and Mawe GM: Spontaneous electrical rhythmicity and the role of the sarcoplasmic reticulum in the excitability of guinea pig gallbladder smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 290:G655–G664. 2006. View Article : Google Scholar | |
Ehrlich BE and Watras J: Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature. 336:583–586. 1988. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Lai FA, Cohn A, Etter E, Guerrero A, Fay FS and Meissner G: Evidence for a Ca(2+)-gated ryanodine-sensitive Ca2+ release channel in visceral smooth muscle. Proc Natl Acad Sci USA. 91:3294–3298. 1994. View Article : Google Scholar | |
McCarron JG, Bradley KN, MacMillan D and Muir TC: Sarcolemma agonist-induced interactions between InsP3 and ryanodine receptors in Ca2+ oscillations and waves in smooth muscle. Biochem Soc Trans. 31:920–924. 2003. View Article : Google Scholar : PubMed/NCBI | |
Camello-Almaraz C, Macias B, Gomez-Pinilla PJ, Alcon S, Martin-Cano FE, Baba A, Matsuda T, Camello PJ and Pozo MJ: Developmental changes in Ca2+ homeostasis and contractility in gallbladder smooth muscle. Am J Physiol Cell Physiol. 296:C783–C791. 2009. View Article : Google Scholar : PubMed/NCBI | |
Somlyo AP and Somlyo AV: Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 83:1325–1358. 2003. View Article : Google Scholar : PubMed/NCBI | |
Louie DS: Cholecystokinin-stimulated intracellular signal transduction pathways. J Nutr. 124(8 Suppl): 1315S–1320S. 1994. View Article : Google Scholar : PubMed/NCBI | |
Yu P, Chen Q, Xiao Z, Harnett K, Biancani P and Behar J: Signal transduction pathways mediating CCK-induced gallbladder muscle contraction. Am J Physiol. 275:G203–G211. 1998.PubMed/NCBI | |
Parkman HP, Pagano AP and Ryan JP: Subtypes of muscarinic receptors regulating gallbladder cholinergic contractions. Am J Physiol. 276:G1243–G1250. 1999.PubMed/NCBI | |
Büyükafşar K, Akça T, Nalan Tiftik R, Sahan-Firat S and Aydin S: Contribution of Rho-kinase in human gallbladder contractions. Eur J Pharmacol. 540:162–167. 2006. View Article : Google Scholar | |
Romański KW: Ovine model for clear-cut study on the role of cholecystokinin in antral, small intestinal and gallbladder motility. Pol J Pharmacol. 56:247–256. 2004. | |
Fleckenstein P, Bueno L, Fioramonti J and Ruckebusch Y: Minute rhythm of electrical spike bursts of the small intestine in different species. Am J Physiol. 242:G654–G659. 1982. | |
Romański KW: Characteristics and cholinergic control of the 'minute rhythm' in ovine antrum, small bowel and gallbladder. J Vet Med A Physiol Pathol Clin Med. 49:313–320. 2002. View Article : Google Scholar | |
Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R, Allescher HD, Vanderwinden JM, Hofmann F, Schemann M, et al: Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun. 4:16302013. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Wu S, Fu B, Weng C and Wang X: The role of interstitial Cajal-like cells in the formation of cholesterol stones in guinea pig gallbladder. Hepatol Int. 9:612–620. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sanders KM, Ward SM and Koh SD: Interstitial cells: Regulators of smooth muscle function. Physiol Rev. 94:859–907. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hwang SJ, Blair PJ, Britton FC, O'Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM and Ward SM: Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 587:4887–4904. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD and Sanders KM: A Ca(2+)-activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol. 587:4905–4918. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pappas A and Wellman GC: Setting the pace for GI motility: Ryanodine receptors and IP3 receptors within interstitial cells of Cajal. Focus on 'intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal'. Am J Physiol Cell Physiol. 308:C606–C607. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koh SD, Sanders KM and Ward SM: Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J Physiol. 513:203–213. 1998. View Article : Google Scholar | |
Koh SD, Jun JY, Kim TW and Sanders KM: A Ca(2+)-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J Physiol. 540:803–814. 2002. View Article : Google Scholar | |
Baker SA, Leigh WA, Del Valle G, De Yturriaga IF, Ward SM, Cobine CA, Drumm BT and Sanders KM: Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon. Elife. 10:e640992021. View Article : Google Scholar | |
Sanders KM: Spontaneous electrical activity and rhythmicity in gastrointestinal smooth muscles. Adv Exp Med Biol. 1124:3–46. 2019. View Article : Google Scholar | |
Huang X, Lee SH, Lu H, Sanders KM and Koh SD: Molecular and functional characterization of inwardly rectifying K+ currents in murine proximal colon. J Physiol. 596:379–391. 2018. View Article : Google Scholar | |
Kito Y, Mitsui R, Ward SM and Sanders KM: Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine. Am J Physiol Gastrointest Liver Physiol. 308:G378–G388. 2015. View Article : Google Scholar : | |
Youm JB, Zheng H, Koh SD and Sanders KM: Na-K-2Cl cotransporter and store-operated Ca2+ entry in pacemaking by interstitial cells of Cajal. Biophys J. 117:767–779. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wouters M, De Laet A, Donck LV, Delpire E, van Bogaert PP, Timmermans JP, de Kerchove d'Exaerde A, Smans K and Vanderwinden JM: Subtractive hybridization unravels a role for the ion cotransporter NKCC1 in the murine intestinal pacemaker. Am J Physiol Gastrointest Liver Physiol. 290:G1219–G1227. 2006. View Article : Google Scholar | |
Balemba OB, Bartoo AC, Nelson MT and Mawe GM: Role of mitochondria in spontaneous rhythmic activity and intracellular calcium waves in the guinea pig gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol. 294:G467–G476. 2008. View Article : Google Scholar | |
Blaustein MP and Lederer WJ: Sodium/calcium exchange: Its physiological implications. Physiol Rev. 79:763–854. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Drumm BT, Zhu MH, Xie Y, O'Driscoll KE, Baker SA, Perrino BA, Koh SD and Sanders KM: Na(+)/Ca(2 +) exchange and pacemaker activity of interstitial cells of Cajal. Front Physiol. 11:2302020. View Article : Google Scholar : PubMed/NCBI | |
Vanderwinden JM, Rumessen JJ, de Kerchove d'Exaerde A Jr, Gillard K, Panthier JJ, de Laet MH and Schiffmann SN: Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res. 310:349–358. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gallego D, Hernández P, Clavé P and Jiménez M: P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. Am J Physiol Gastrointest Liver Physiol. 291:G584–G594. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kurahashi M, Zheng H, Dwyer L, Ward SM, Koh SD and Sanders KM: A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles. J Physiol. 589:697–710. 2011. View Article : Google Scholar | |
Gallego D, Gil V, Martínez-Cutillas M, Mañé N, Martín MT and Jiménez M: Purinergic neuromuscular transmission is absent in the colon of P2Y(1) knocked out mice. J Physiol. 590:1943–1956. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vogalis F and Goyal RK: Activation of small conductance Ca(2+)-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum. J Physiol. 502:497–508. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kurahashi M, Mutafova-Yambolieva V, Koh SD and Sanders KM: Platelet-derived growth factor receptor-α-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am J Physiol Cell Physiol. 307:C561–C570. 2014. View Article : Google Scholar | |
Baker SA, Hennig GW, Ward SM and Sanders KM: Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon. J Physiol. 593:1945–1963. 2015. View Article : Google Scholar : | |
Furness J: The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 9:286–294. 2012. View Article : Google Scholar : PubMed/NCBI | |
Furness JB, Callaghan BP, Rivera LR and Cho HJ: The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 817:39–71. 2014. View Article : Google Scholar : PubMed/NCBI | |
Balemba OB, Salter MJ and Mawe GM: Innervation of the extrahepatic biliary tract. Anat Rec A Discov Mol Cell Evol Biol. 280:836–847. 2004. View Article : Google Scholar | |
Keast JR, Furness JB and Costa M: Distribution of certain peptide-containing nerve fibres and endocrine cells in the gastrointestinal mucosa in five mammalian species. J Comp Neurol. 236:403–422. 1985. View Article : Google Scholar | |
Cai WQ and Gabella G: Innervation of the gall bladder and biliary pathways in the guinea-pig. J Anat. 136:97–109. 1983.PubMed/NCBI | |
Talmage EK, Pouliot WA, Schemann M and Mawe GM: Structure and chemical coding of human, canine and opossum gallbladder ganglia. Cell Tissue Res. 284:289–302. 1996. View Article : Google Scholar | |
Gilloteaux J, Pomerants B and Kelly TR: Human gallbladder mucosa ultrastructure: Evidence of intraepithelial nerve structures. Am J Anat. 184:321–333. 1989. View Article : Google Scholar : PubMed/NCBI | |
De Giorgio R, Zittel TT, Parodi JE, Becker JM, Brunicardi FC, Go VL, Brecha NC and Sternini C: Peptide immunoreactivities in the ganglionated plexuses and nerve fibers innervating the human gallbladder. J Auton Nerv Syst. 51:37–47. 1995. View Article : Google Scholar : PubMed/NCBI | |
De Giorgio R, Parodi JE, Brecha NC, Brunicardi FC, Becker JM, Go VL and Sternini C: Nitric oxide producing neurons in the monkey and human digestive system. J Comp Neurol. 342:619–627. 1994. View Article : Google Scholar : PubMed/NCBI | |
Mawe GM and Ellis LM: Chemical coding of intrinsic and extrinsic nerves in the guinea pig gallbladder: Distributions of PACAP and orphanin FQ. Anat Rec. 262:101–109. 2001. View Article : Google Scholar : PubMed/NCBI | |
Talmage EK, Pouliot WA, Cornbrooks EB and Mawe GM: Transmitter diversity in ganglion cells of the guinea pig gallbladder: An immunohistochemical study. J Comp Neurol. 317:45–56. 1992. View Article : Google Scholar : PubMed/NCBI | |
Sundler F, Alumets J, Håkanson R, Ingemansson S, Fahrenkrug J and Schaffalitzky de Muckadell O: VIP innervation of the gallbladder. Gastroenterology. 72:1375–1377. 1977. View Article : Google Scholar : PubMed/NCBI | |
Uemura S, Pompolo S, Furness JB and Hardy KJ: Nitric oxide synthase in neurons of the human gall-bladder and its colocalization with neuropeptides. J Gastroenterol Hepatol. 12:257–265. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hopton DS: The influence of the vagus nerves on the biliary system. Br J Surg. 60:216–218. 1973. View Article : Google Scholar : PubMed/NCBI | |
Mawe GM, Moses PL, Saccone GTP and Pozo MJ: Motility of the Biliary Tract. Textbook of Gastroenterology. 264–283. 2008. View Article : Google Scholar | |
Schjoldager B, Molero X and Miller LJ: Functional and biochemical characterization of the human gallbladder muscularis cholecystokinin receptor. Gastroenterology. 96:1119–1125. 1989. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Yu BP, Luo HS and Chen LD: Control of gallbladder contractions by cholecystokinin through cholecystokinin-a receptors on gallbladder interstitial cells of Cajal. World J Gastroenterol. 14:2882–2887. 2008. View Article : Google Scholar | |
Mawe GM, Gokin AP and Wells DG: Actions of cholecystokinin and norepinephrine on vagal inputs to ganglion cells in guinea pig gallbladder. Am J Physiol. 267:G1146–G1151. 1994.PubMed/NCBI | |
Behar J and Biancani P: Pharmacologic characterization of excitatory and inhibitory cholecystokinin receptors of the cat gallbladder and sphincter of Oddi. Gastroenterology. 92:764–770. 1987. View Article : Google Scholar : PubMed/NCBI | |
Stengel PW and Cohen ML: Muscarinic receptor knockout mice: Role of muscarinic acetylcholine receptors M(2), M(3), and M(4) in carbamylcholine-induced gallbladder contractility. J Pharmacol Exp Ther. 301:643–650. 2002. View Article : Google Scholar : PubMed/NCBI | |
Takahashi T, Kurosawa S and Owyang C: Regulation of PI hydrolysis and cAMP formation by muscarinic M3 receptor in guinea pig gallbladder. Am J Physiol. 267:G523–G528. 1994.PubMed/NCBI | |
Lee MC, Yang YC, Chen YC and Huang SC: Muscarinic receptor M3 mediates human gallbladder contraction through voltage-gated Ca2+ channels and Rho kinase. Scand J Gastroenterol. 48:205–212. 2013. View Article : Google Scholar | |
Patacchini R and Maggi CA: Effect of newly developed tachykinin agonist and antagonists on the guinea pig isolated gallbladder. J Pharmacol Exp Ther. 261:191–194. 1992.PubMed/NCBI | |
Yau WM: Mode of stimulation of gallbladder contraction by substance K. Am J Physiol. 259:G838–G841. 1990.PubMed/NCBI | |
O'Riordan AM, Quinn T and Baird AW: Role of prostaglandin E(2) and Ca(2+) in bradykinin induced contractions of guinea-pig gallbladder in vitro. Eur J Pharmacol. 431:245–252. 2001. View Article : Google Scholar : PubMed/NCBI | |
Trevisani M, Amadesi S, Schmidlin F, Poblete MT, Bardella E, Maggiore B, Harrison S, Figueroa CD, Tognetto M, Navarra G, et al: Bradykinin B2 receptors mediate contraction in the normal and inflamed human gallbladder in vitro. Gastroenterology. 125:126–135. 2003. View Article : Google Scholar | |
Andre E, Gazzieri D, Bardella E, Ferreira J, Mori MA, Saul VV, Bader M, Calixto JB, De Giorgio R, Corinaldesi R, et al: Expression and functional pharmacology of the bradykinin B1 receptor in the normal and inflamed human gallbladder. Gut. 57:628–633. 2008. View Article : Google Scholar | |
Takahashi T, Kusunoki M, Ishikawa Y, Kantoh M, Yamamura T and Utsunomiya J: Adenosine 5′-triphosphate release evoked by electrical nerve stimulation from the guinea-pig gallbladder. Eur J Pharmacol. 134:77–82. 1987. View Article : Google Scholar : PubMed/NCBI | |
Puchałowicz K, Tarnowski M, Baranowska-Bosiacka I, Chlubek D and Dziedziejko V: P2X and P2Y receptors-role in the pathophysiology of the nervous system. Int J Mol Sci. 15:23672–23704. 2014. View Article : Google Scholar | |
Bartoo AC, Nelson MT and Mawe GM: ATP induces guinea pig gallbladder smooth muscle excitability via the P2Y4 receptor and COX-1 activity. Am J Physiol Gastrointest Liver Physiol. 294:G1362–G1368. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ruan HZ and Burnstock G: P2X2 and P2X3 receptor expression in the gallbladder of the guinea pig. Auton Neurosci. 111:89–96. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rasmussen TN, Harling H, Rehfeld JF and Holst JJ: Calcitonin gene-related peptide (CGRP), a potent regulator of biliary flow. Neurogastroenterol Motil. 9:215–220. 1997. View Article : Google Scholar | |
Kline LW and Pang PK: Cyclic AMP modulates part of the relaxant action of calcitonin gene-related peptide in guinea pig gallbladder strips. Regul Pept. 72:55–59. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kline LW and Pang PK: Nitric oxide modulates the calcitonin gene-related peptide-induced relaxation in guinea pig gallbladder strips in vitro. Regul Pept. 50:207–212. 1994. View Article : Google Scholar : PubMed/NCBI | |
Gultekin H, Erdem SR, Emre-Aydingoz S and Tuncer M: The role of nitric oxide in the electrical field stimulation-induced contractions of sphincter of oddi and gallbladder strips in Guinea pigs. J Pharmacol Sci. 101:240–244. 2006. View Article : Google Scholar : PubMed/NCBI | |
Alcón S, Morales S, Camello PJ, Salido GM, Miller SM and Pozo MJ: Relaxation of canine gallbladder to nerve stimulation involves adrenergic and non-adrenergic non-cholinergic mechanisms. Neurogastroenterol Motil. 13:555–566. 2001. View Article : Google Scholar | |
Xue L, Farrugia G, Miller SM, Ferris CD, Snyder SH and Szurszewski JH: Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: Evidence from genomic deletion of biosynthetic enzymes. Proc Natl Acad Sci USA. 97:1851–1855. 2000. View Article : Google Scholar : PubMed/NCBI | |
Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA and Said SI: Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol. 166:4–17. 2012. View Article : Google Scholar : | |
Pálvölgyi A, Sári R, Németh J, Szabolcs A, Nagy I, Hegyi P, Lonovics J and Szilvássy Z: Interplay between nitric oxide and VIP in CCK-8-induced phasic contractile activity in the rabbit sphincter of Oddi. World J Gastroenterol. 11:3264–3266. 2005. View Article : Google Scholar | |
Pang PK and Kline LW: Protein kinase C mediates the contractile actions of pituitary adenylate cyclase activating polypeptide in guinea pig gallbladder strips. Regul Pept. 77:63–67. 1998. View Article : Google Scholar : PubMed/NCBI | |
Greaves RR, O'Donnell LJ, Battistini B, Forget MA and Farthing MJ: The differential effect of VIP and PACAP on guinea pig gallbladder in vitro. Eur J Gastroenterol Hepatol. 12:1181–1184. 2000. View Article : Google Scholar : PubMed/NCBI | |
Parkman HP, Pagano AP and Ryan JP: Dual effects of PACAP on guinea pig gallbladder muscle via PACAP-preferring and VIP/PACAP-preferring receptors. Am J Physiol. 272:G1433–G1438. 1997.PubMed/NCBI | |
Fisher RS, Rock E, Levin G and Malmud L: Effects of somatostatin on gallbladder emptying. Gastroenterology. 92:885–890. 1987. View Article : Google Scholar : PubMed/NCBI | |
Greenberg GR, McCloy RF, Adrian TE, Chadwick VS, Baron JH and Bloom SR: Inhibition of pancreas and gallbladder by pancreatic polypeptide. Lancet. 2:1280–1282. 1978. View Article : Google Scholar : PubMed/NCBI | |
Walker JP, Khalil T, Wiener I, Fagan CJ, Townsend CM Jr, Greeley GH Jr and Thompson JC: The role of neurotensin in human gallbladder motility. Ann Surg. 201:678–683. 1985. View Article : Google Scholar : PubMed/NCBI | |
Holzer P, Reichmann F and Farzi A: Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides. 46:261–274. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Lee K, Xiao Z, Biancani P and Behar J: Mechanism of gallbladder relaxation in the cat: Role of norepinephrine. J Pharmacol Exp Ther. 285:475–479. 1998.PubMed/NCBI | |
McGowan BMC and Bloom SR: Peptide YY and appetite control. Curr Opin Pharmacol. 4:583–588. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hoentjen F, Hopman WP and Jansen JB: Effect of circulating peptide YY on gallbladder emptying in humans. Scand J Gastroenterol. 36:1086–1091. 2001. View Article : Google Scholar | |
Hazelwood RL: The pancreatic polypeptide (PP-fold) family: Gastrointestinal, vascular, and feeding behavioral implications. Proc Soc Exp Biol Med. 202:44–63. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kojima S, Ueno N, Asakawa A, Sagiyama K, Naruo T, Mizuno S and Inui A: A role for pancreatic polypeptide in feeding and body weight regulation. Peptides. 28:459–463. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vu MK, Van Oostayen JA, Biemond I and Masclee AA: Effect of somatostatin on postprandial gallbladder relaxation. Clin Physiol. 21:25–31. 2001. View Article : Google Scholar : PubMed/NCBI | |
Maselli MA, Piepoli AL, Pezzolla F, Caruso ML and Lorusso D: Effect of somatostatin on human gallbladder motility: An in vitro study. Neurogastroenterol Motil. 11:47–53. 1999. View Article : Google Scholar : PubMed/NCBI | |
Milenov K, Vassileva M, Marinova D and Kalfin R: Effect of neurotensin on the canine gallbladder motility: In vivo and in vitro experiments. Neuropeptides. 25:233–239. 1993. View Article : Google Scholar : PubMed/NCBI | |
Yamasato T and Nakayama S: Effects of neurotensin on the motility of the isolated gallbladder, bile duct and ampulla in guinea-pigs. Eur J Pharmacol. 148:101–106. 1988. View Article : Google Scholar : PubMed/NCBI | |
Feeley TM, Clanachan AS and Scott GW: Contractility of human gallbladder muscle in vitro. Aliment Pharmacol Ther. 1:607–616. 1987. View Article : Google Scholar : PubMed/NCBI | |
Lavoie B, Balemba OB, Godfrey C, Watson CA, Vassileva G, Corvera CU, Nelson MT and Mawe GM: Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. J Physiol. 588:3295–3305. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jain AK, Stoll B, Burrin DG, Holst JJ and Moore DD: Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am J Physiol Gastrointest Liver Physiol. 302:G218–G224. 2012. View Article : Google Scholar : | |
Yusta B, Matthews D, Flock GB, Ussher JR, Lavoie B, Mawe GM and Drucker DJ: Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway. Mol Metab. 6:503–511. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kliewer SA and Mangelsdorf DJ: Bile acids as hormones: The FXR-FGF15/19 pathway. Dig Dis. 33:327–331. 2015. View Article : Google Scholar : PubMed/NCBI | |
Everhart JE and Ruhl CE: Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas. Gastroenterology. 136:1134–1144. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cai JS, Qiang S and Bao-Bing Y: Advances of recurrent risk factors and management of choledocholithiasis. Scand J Gastroenterol. 52:34–43. 2017. View Article : Google Scholar | |
Behar J, Lee KY, Thompson WR and Biancani P: Gallbladder contraction in patients with pigment and cholesterol stones. Gastroenterology. 97:1479–1484. 1989. View Article : Google Scholar | |
Carey MC and Small DM: The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest. 61:998–1026. 1978. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Xu M, Heianza Y, Ma W, Wang T, Sun D, Albert CM, Hu FB, Rexrode KM, Manson JE and Qi L: Gallstone disease and increased risk of mortality: Two large prospective studies in US men and women. J Gastroenterol Hepatol. 33:1925–1931. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Ding C and Si X: Changes in the interstitial cells of Cajal in the gallbladder of guinea pigs fed a lithogenic diet. Exp Ther Med. 22:8232021. View Article : Google Scholar : PubMed/NCBI | |
Xiao ZL, Chen Q, Amaral J, Biancani P and Behar J: Defect of receptor-G protein coupling in human gallbladder with cholesterol stones. Am J Physiol Gastrointest Liver Physiol. 278:G251–G258. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gao G, Ding ZQ and Zou SQ: The changes of vasoactive intestinal polypeptide and VIPR expression in the patients with cholesterol gallstone. J Clinc Surg. 12:224–226. 2004. | |
Wang HH, Portincasa P and Wang DQH: Update on the molecular mechanisms underlying the effect of cholecystokinin and cholecystokinin-1 receptor on the formation of cholesterol gallstones. Curr Med Chem. 26:3407–3423. 2019. View Article : Google Scholar | |
Tan YY: Studies on the role of Cajal interstitial cell in cholecystolithiasis and surgical methodology of endoscopic minimal invasive cholecystolithotomy. Dongnan Daxue. 58–91. 2015. | |
Fu BB, Xu JH, Wu SD and Fan Y: Effect of cholesterol on in vitro cultured interstitial Cajal-like cells isolated from guinea pig gallbladders. World J Gastrointest Surg. 12:226–235. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lavoie B, Nausch B, Zane EA, Leonard MR, Balemba OB, Bartoo AC, Wilcox R, Nelson MT, Carey MC and Mawe GM: Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease. Neurogastroenterol Motil. 24. pp. e313–e324. 2012, View Article : Google Scholar | |
Chen Q, Amaral J, Biancani P and Behar J: Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology. 116:678–685. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Ding YM, Wang CT and Wang WX: Role of ROCK expression in gallbladder smooth muscle contraction. Mol Med Rep. 12:2907–2911. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu QW, Freedman SM and Shaffer EA: Inhibitory effect of bile salts on gallbladder smooth muscle contractility in the guinea pig in vitro. Gastroenterology. 112:1699–1706. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rutishauser SC: Effects of bile salts on the motor activity of the guinea-pig gall-bladder in vitro. Q J Exp Physiol Cogn Med Sci. 63:265–276. 1978. | |
Pasternak A, Matyja A, Gil K, Gajda M, Tomaszewski KA, Gajda M, Tomaszewski KA, Matyja M, Walocha JA and Kulig J: Interstitial cajal-like cells and bile lithogenicity in the pathogenesis of gall-stone disease. Pol Przegl Chir. 85:311–316. 2013. View Article : Google Scholar | |
Villanacci V, Del Sordo R, Salemme M, Cadei M, Sidoni A and Bassotti G: The enteric nervous system in patients with calculous and acalculous gallbladder. Dig Liver Dis. 48:792–795. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Pang L, Dai W, Wu S and Kong J: Advances in the study of acute acalculous cholecystitis: A comprehensive review. Dig Dis. 40:468–478. 2022. View Article : Google Scholar | |
Cong P, Xiao ZL, Biancani P and Behar J: Prostaglandins mediate tonic contraction of the guinea pig and human gallbladder. Am J Physiol Gastrointest Liver Physiol. 292:G409–G418. 2007. View Article : Google Scholar | |
Xiao ZL, Amaral J, Biancani P and Behar J: Impaired cytoprotective function of muscle in human gallbladders with cholesterol stones. Am J Physiol Gastrointest Liver Physiol. 288:G525–G532. 2005. View Article : Google Scholar | |
Myers SI, Bartula LL, Colvin MP, Parkman HP, Braverman AA and Ruggieri MR: Bile duct ligation induced acute inflammation up-regulates cyclooxygenase-2 content and PGE2 release in guinea pig gallbladder smooth muscle cell cultures. Prostaglandins Leukot Essent Fatty Acids. 72:327–333. 2005. View Article : Google Scholar | |
Parkman HP, James AN, Thomas RM, Bartula LL, Ryan JP and Myers SI: Effect of indomethacin on gallbladder inflammation and contractility during acute cholecystitis. J Surg Res. 96:135–142. 2001. View Article : Google Scholar | |
Jennings LJ and Mawe GM: PGE2 hyperpolarizes gallbladder neurons and inhibits synaptic potentials in gallbladder ganglia. Am J Physiol. 274:G493–G502. 1998. | |
Parkman HP, James AN, Bogar LJ, Bartula LL, Thomas RM, Ryan JP and Myers SI: Effect of acalculous cholecystitis on gallbladder neuromuscular transmission and contractility. J Surg Res. 88:186–192. 2000. View Article : Google Scholar | |
Xiao ZL, Andrada MJ, Biancani P and Behar J: Reactive oxygen species (H(2)O(2)): Effects on the gallbladder muscle of guinea pigs. Am J Physiol Gastrointest Liver Physiol. 282:G300–G306. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cullen JJ, Conklin JL, Ephgrave KS and Oberley LW: The role of antioxidant enzymes in the control of opossum gallbladder motility. J Surg Res. 86:155–161. 1999. View Article : Google Scholar | |
Pozo MJ, Camello PJ and Mawe GM: Chemical mediators of gallbladder dysmotility. Curr Med Chem. 11:1801–1812. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jennings LJ, Salido GM, Pozo MJ, Davison JS, Sharkey KA, Lea RW and Singh J: The source and action of histamine in the isolated guinea-pig gallbladder. Inflamm Res. 44:447–453. 1995. View Article : Google Scholar | |
Al-Jiffry BO, Shaffer EA, Woods CM, Menadue M, Young F, Oliver J, Thomas AC, Toouli J and Saccone GT: Endogenous endothelin increases gallbladder tone and leads to acute cholecystitis in the Australian possum. Neurogastroenterol Motil. 16:125–133. 2004. View Article : Google Scholar : PubMed/NCBI | |
Huang SC, Lee MC, Wei CK and Huang SM: Endothelin receptors in human and guinea-pig gallbladder muscle. Regul Pept. 98:145–153. 2001. View Article : Google Scholar | |
Huang ZP, Qiu H, Yang Y and Yu BP: Effect of neutrophils on gallbladder interstitial cajal-like cells in guinea pig model of acute cholecystitis. Cell Physiol Biochem. 39:2033–2043. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin MJ, Chen L, Huang ZP, Qiu H and Yu BP: Neutrophils injure gallbladder interstitial Cajal-like cells in a guinea pig model of acute cholecystitis. J Cell Physiol. 234:4291–4301. 2019. View Article : Google Scholar | |
Burns AJ, Herbert TM, Ward SM and Sanders KM: Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res. 290:11–20. 1997. View Article : Google Scholar : PubMed/NCBI | |
Christensen J: A commentary on the morphological identification of interstitial cells of Cajal in the gut. J Auton Nerv Syst. 37:75–88. 1992. View Article : Google Scholar : PubMed/NCBI | |
Ward SM, Burke EP and Sanders KM: Use of rhodamine 123 to label and lesion interstitial cells of Cajal in canine colonic circular muscle. Anat Embryol (Berl). 182:215–224. 1990. View Article : Google Scholar : PubMed/NCBI | |
Mikkelsen HB, Thuneberg L and Wittrup IH: Selective double staining of interstitial cells of Cajal and macrophage-like cells in small intestine by an improved supravital methylene blue technique combined with FITC-dextran uptake. Anat Embryol (Berl). 178:191–195. 1988. View Article : Google Scholar : PubMed/NCBI | |
Xue C, Ward SM, Shuttleworth CW and Sanders KM: Identification of interstitial cells in canine proximal colon using NADH diaphorase histochemistry. Histochemistry. 99:373–384. 1993. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Mei F, Yu B, Zhang HJ, Han J, Jiang ZY and Zhou DS: Distribution of the interstitial Cajal-like cells in the gallbladder and extrahepatic biliary duct of the guinea-pig. Acta Histochem. 111:157–165. 2009. View Article : Google Scholar | |
Vannucchi MG and Traini C: Interstitial cells of Cajal and telocytes in the gut: Twins, related or simply neighbor cells? Biomol Concepts. 7:93–102. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sugai M: Morphological studies of human gallbladder. Nihon Heikatsukin Gakkai Zasshi. 21:119–138. 1985.In Japanese. View Article : Google Scholar | |
Hartshorne DJ, Ito M and Erdödi F: Myosin light chain phosphatase: Subunit composition, interactions and regulation. J Muscle Res Cell Motil. 19:325–341. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mnh: Histologie du système nerveux de l'homme et des vertébrés. J Neuropathol Exp Neurol. 57:8831998. View Article : Google Scholar | |
Cawston EE and Miller LJ: Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol. 159:1009–1021. 2010. View Article : Google Scholar | |
Zhang L, Bonev AD, Mawe GM and Nelson MT: Protein kinase A mediates activation of ATP-sensitive K+ currents by CGRP in gallbladder smooth muscle. Am J Physiol. 267:G494–G499. 1994.PubMed/NCBI | |
Luman W, Ardill JE, Armstrong E, Smith GD, Brett L, Lessells AM, Haynes WG, Gray GA, Mickley EJ, Webb DJ and Palmer KR: Nitric oxide and gall-bladder motor function. Aliment Pharmacol Ther. 12:425–432. 1998. View Article : Google Scholar : PubMed/NCBI | |
Farrugia G, Miller SM, Rich A, Liu X, Maines MD, Rae JL and Szurszewski JH: Distribution of heme oxygenase and effects of exogenous carbon monoxide in canine jejunum. Am J Physiol. 274:G350–G358. 1998.PubMed/NCBI | |
Zhang ZH, Qin CK, Wu SD, Xu J, Cui XP, Wang ZY and Xian GZ: Roles of sphincter of Oddi motility and serum vasoactive intestinal peptide, gastrin and cholecystokinin octapeptide. World J Gastroenterol. 20:4730–4736. 2014. View Article : Google Scholar : PubMed/NCBI | |
Morales S, Camello PJ, Mawe GM and Pozo MJ: Cyclic AMP-mediated inhibition of gallbladder contractility: Role of K+ channel activation and Ca2+ signaling. Br J Pharmacol. 143:994–1005. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bitar KN and Makhlouf GM: Relaxation of isolated gastric smooth muscle cells by vasoactive intestinal peptide. Science. 216:531–533. 1982. View Article : Google Scholar : PubMed/NCBI | |
Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, Suino-Powell K, Xu HE, Richardson JA, Gerard RD, et al: Identification of a hormonal basis for gallbladder filling. Nat Med. 12:1253–1255. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yamasaki T, Chijiiwa K and Chijiiwa Y: Somatostatin inhibits cholecystokinin-induced contraction of isolated gallbladder smooth muscle cells. J Surg Res. 59:743–746. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kaczmarek P, Singh V, Cashen DE, Yang L, Berk S, Pasternak A, Xiong Y, Shen DM, Hutchins SM, Chapman K, et al: Somatostatin receptor subtypes 2 and 5 mediate inhibition of egg yolk-induced gall bladder emptying in mice. Neurogastroenterol Motil. 22:204–209.e66. 2010. View Article : Google Scholar |