Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2023 Volume 51 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2023 Volume 51 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review)

  • Authors:
    • Fan Ding
    • Qili Hu
    • Yixing Wang
    • Min Jiang
    • Zhengyu Cui
    • Run Guo
    • Liping Liu
    • Fang Chen
    • Hai Hu
    • Gang Zhao
  • View Affiliations / Copyright

    Affiliations: Center of Gallbladder Disease, East Hospital of Tongji University, Shanghai 200120, P.R. China, Department of Hepatobiliary Surgery, The First People's Hospital of Hefei, Hefei, Anhui 230061, P.R. China, Department of Traditional Chinese Medicine, East Hospital of Tongji University, Shanghai 200120, P.R. China, Department of Ultrasonography, East Hospital of Tongji University, Shanghai 200120, P.R. China
    Copyright: © Ding et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 33
    |
    Published online on: March 10, 2023
       https://doi.org/10.3892/ijmm.2023.5236
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The motility of the gallbladder (GB) involves the storage, concentration and delivery of bile. GB motor functions are controlled by multiple complex factors, such as extrinsic and intrinsic innervation, humoral factors and neuropeptides. GB emptying results from coordinated contractions of the muscular layers of the GB wall. Depolarization of GB smooth muscle (GBSM) depends on the activation of the regular depolarization‑repolarization potential, referred to as slow waves (SWs). These rhythmic SWs of GBSM contraction are mediated by several cell types, including smooth muscle cells (SMCs), GB neurons, telocytes (TC) and specialized pacemaker cells called interstitial cells of Cajal (ICC). The present article introduced a new GB motor unit, the SMC‑TC‑ICC‑neuron (STIN) syncytium. In GB, STIN cells provide pacemaker activity, propagation pathways for SWs, transduction of inputs from motor and sensory neurons and mechanosensitivity. The present review provided an overview of STIN cells, mechanisms generating GBSM contractile behavior and GB motility, and discussed alterations of STIN cell function under different disease conditions.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Boyer J: Bile formation and secretion. Compr Physiol. 3:1035–1078. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Lanzini A, Jazrawi RP and Northfield TC: Simultaneous quantitative measurements of absolute gallbladder storage and emptying during fasting and eating in humans. Gastroenterology. 92:852–861. 1987. View Article : Google Scholar

3 

Torsoli A, Corazziari E, Habib FI and Cicala M: Pressure relationships within the human bile tract. Normal and abnormal physiology. Scand J Gastroenterol Suppl. 175:52–57. 1990. View Article : Google Scholar : PubMed/NCBI

4 

Lammert F, Gurusamy K, Ko CW, Miquel JF, Méndez-Sánchez N, Portincasa P, van Erpecum KJ, van Laarhoven CJ and Wang DQ: Gallstones. Nat Rev Dis Primers. 2:160242016. View Article : Google Scholar : PubMed/NCBI

5 

Gallaher J and Charles A: Acute cholecystitis: A review. JAMA. 327:965–975. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Bronkhorst MWGA, Terpstra V and Bouwman LH: Polyp in the gallbladder. Gastroenterology. 141:e3–e4. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Sanders KM, Koh S, Ro S and Ward SM: Regulation of gastrointestinal motility-insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol. 9:633–645. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Huizinga JD, Zarate N and Farrugia G: Physiology, injury, and recovery of interstitial cells of Cajal: basic and clinical science. Gastroenterology. 137:1548–1556. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Sanders KM, Koh SD and Ward SM: Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 68:307–343. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Horiguchi K and Komuro T: Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst. 80:142–147. 2000. View Article : Google Scholar : PubMed/NCBI

11 

Klemm MF and Lang RJ: Distribution of Ca2+-activated K+ channel (SK2 and SK3) immunoreactivity in intestinal smooth muscles of the guinea-pig. Clin Exp Pharmacol Physiol. 29:18–25. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Burnstock G: Autonomic neurotransmitters and trophic factors. J Auton Nerv Syst. 7:213–217. 1983. View Article : Google Scholar : PubMed/NCBI

13 

Spencer NJ and Hu H: Enteric nervous system: Sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol. 17:338–351. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Obermayr F, Hotta R, Enomoto H and Young HM: Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol. 10:43–57. 2013. View Article : Google Scholar

15 

Popescu LM and Faussone-Pellegrini MS: TELOCYTES-a case of serendipity: The winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med. 14:729–740. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L and Faussone-Pellegrini MS: Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med. 17:1099–1108. 2013. View Article : Google Scholar

17 

Rasmussen H, Rumessen JJ, Hansen A, Smedts F and Horn T: Ultrastructure of Cajal-like interstitial cells in the human detrusor. Cell Tissue Res. 335:517–527. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME and Faussone-Pellegrini MS: Telocytes in human term placenta: Morphology and phenotype. Cells Tissues Organs. 192:325–339. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Vannucchi MG, Traini C, Guasti D, Del Popolo G and Faussone-Pellegrini MS: Telocytes subtypes in human urinary bladder. J Cell Mol Med. 18:2000–2008. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Suciu LC, Popescu BO, Kostin S and Popescu LM: Platelet-derived growth factor receptor-β-positive telocytes in skeletal muscle interstitium. J Cell Mol Med. 16:701–707. 2012. View Article : Google Scholar

21 

Pieri L, Vannucchi MG and Faussone-Pellegrini MS: Histochemical and ultrastructural characteristics of an interstitial cell type different from ICC and resident in the muscle coat of human gut. J Cell Mol Med. 12:1944–1955. 2008. View Article : Google Scholar

22 

Chen L and Yu B: Telocytes and interstitial cells of Cajal in the biliary system. J Cell Mol Med. 22:3323–3329. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Vannucchi MG: The telocytes: Ten years after their introduction in the scientific literature. An update on their morphology, distribution, and potential roles in the gut. Int J Mol Sci. 21:44782020. View Article : Google Scholar : PubMed/NCBI

24 

Wang J, Jin M, Ma WH, Zhu Z and Wang X: The history of telocyte discovery and understanding. Adv Exp Med Biol. 913:1–21. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Vannucchi MG and Faussone-Pellegrini MS: The telocyte subtypes. Adv Exp Med Biol. 913:115–126. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Cretoiu SM and Popescu LM: Telocytes revisited. Biomol Concepts. 5:353–369. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Zhong X, Fu J, Song K, Xue N, Gong R, Sun D, Luo H, He W, Pan X, Shen B and Du J: The role of TRPP2 in agonist-induced gallbladder smooth muscle contraction. Sci China Life Sci. 59:409–416. 2016. View Article : Google Scholar

28 

Morales S, Diez A, Puyet A, Camello PJ, Camello-Almaraz C, Bautista JM and Pozo MJ: Calcium controls smooth muscle TRPC gene transcription via the CaMK/calcineurin-dependent pathways. Am J Physiol Cell Physiol. 292:C553–C563. 2007. View Article : Google Scholar

29 

McCarron JG, Olson ML, Rainbow RD, MacMillan D and Chalmers S: Ins(1,4,5)P3 receptor regulation during 'quantal' Ca2+ release in smooth muscle. Trends Pharmacol Sci. 28:271–279. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Quinn T, Feighery R and Baird AW: Role of Rho-kinase in guinea-pig gallbladder smooth muscle contraction. Eur J Pharmacol. 534:210–217. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Balemba OB, Heppner TJ, Bonev AD, Nelson MT and Mawe GM: Calcium waves in intact guinea pig gallbladder smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 291:G717–G727. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Tan YY, Ji ZL, Zhao G, Jiang JR, Wang D and Wang JM: Decreased SCF/c-kit signaling pathway contributes to loss of interstitial cells of Cajal in gallstone disease. Int J Clin Exp Med. 7:4099–4106. 2014.

33 

Pasternak A, Gil K, Matyja A, Gajda M, Sztefko K, Walocha JA, Kulig J and Thor P: Loss of gallbladder interstitial Cajal-like cells in patients with cholelithiasis. Neurogastroenterol Motil. 25:e17–e24. 2013. View Article : Google Scholar

34 

Liang J, Shao W, Liu Q, Lu Q, Gu A and Jiang Z: Single cell RNA-sequencing reveals a murine gallbladder cell transcriptome atlas during the process of cholesterol gallstone formation. Front Cell Dev Biol. 9:7142712021. View Article : Google Scholar : PubMed/NCBI

35 

Cai WQ and Gabella G: The musculature of the gall bladder and biliary pathways in the guinea-pig. J Anat. 136:237–250. 1983.PubMed/NCBI

36 

Horowitz A, Menice CB, Laporte R and Morgan KG: Mechanisms of smooth muscle contraction. Physiol Rev. 76:967–1003. 1996. View Article : Google Scholar : PubMed/NCBI

37 

Ota N, Hirose H, Kato H, Maeda H and Shiojiri N: Immunohistological analysis on distribution of smooth muscle tissues in livers of various vertebrates with attention to different liver architectures. Ann Anat. 233:1515942021. View Article : Google Scholar

38 

Sanders KM: Chapter 1-Nerves, smooth muscle cells and interstitial cells in the GI tract: Molecular and cellular interactions. Clinical and Basic Neurogastroenterology and Motility. 3–16. 2020. View Article : Google Scholar

39 

Sun X, Yu B, Xu L, Dong W and Luo H: Interstitial cells of Cajal in the murine gallbladder. Scand J Gastroenterol. 41:1218–1226. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Ahmadi O, Nicholson Mde L, Gould ML, Mitchell A and Stringer MD: Interstitial cells of Cajal are present in human extrahepatic bile ducts. J Gastroenterol Hepatol. 25:277–285. 2010. View Article : Google Scholar

41 

Hinescu ME, Ardeleanu C, Gherghiceanu M and Popescu LM: Interstitial Cajal-like cells in human gallbladder. J Mol Histol. 38:275–284. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Pasternak A, Szura M, Gil K and Matyja A: Interstitial cells of Cajal-systematic review. Folia Morphol (Warsz). 75:281–286. 2016. View Article : Google Scholar

43 

Lavoie B, Balemba OB, Nelson MT, Ward SM and Mawe GM: Morphological and physiological evidence for interstitial cell of Cajal-like cells in the guinea pig gallbladder. J Physiol. 579:487–501. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, Van de Rijn M, West RB, Sarr MG, Kendrick ML, et al: Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 296:G1370–G1381. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Zhu MH, Sung TS, Kurahashi M, O'Kane LE, O'Driscoll K, Koh SD and Sanders KM: Na+-K+-Cl- cotransporter (NKCC) maintains the chloride gradient to sustain pacemaker activity in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol. 311:G1037–G1046. 2016. View Article : Google Scholar

46 

Pasternak A, Gajda M, Gil K, Matyja A, Tomaszewski KA, Walocha JA, Kulig J and Thor P: Evidence of interstitial Cajal-like cells in human gallbladder. Folia Histochem Cytobiol. 50:581–585. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Cantarero I, Luesma MJ, Alvarez-Dotu JM, Muñoz E and Junquera C: Transmission electron microscopy as key technique for the characterization of telocytes. Curr Stem Cell Res. 11:410–414. 2016. View Article : Google Scholar

48 

Peri LE, Sanders KM and Mutafova-Yambolieva VN: Differential expression of genes related to purinergic signaling in smooth muscle cells, PDGFRα-positive cells, and interstitial cells of Cajal in the murine colon. Neurogastroenterol Motil. 25:e609–e620. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Lu C, Huang X, Lu HL, Liu SH, Zang JY, Li YJ, Chen J and Xu WX: Different distributions of interstitial cells of Cajal and platelet-derived growth factor receptor-α positive cells in colonic smooth muscle cell/interstitial cell of Cajal/platelet-derived growth factor receptor-α positive cell syncytium in mice. World J Gastroenterol. 24:4989–5004. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Yeoh JW, Corrias A and Buist ML: A mechanistic model of a PDGFRα(+) cell. J Theor Biol. 408:127–136. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Bolton TB, Prestwich SA, Zholos AV and Gordienko DV: Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu Rev Physiol. 61:85–115. 1999. View Article : Google Scholar : PubMed/NCBI

52 

Zhang L, Bonev AD, Nelson MT and Mawe GM: Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells. Am J Physiol. 265:C1552–C1561. 1993. View Article : Google Scholar : PubMed/NCBI

53 

Shimada T: Voltage-dependent calcium channel current in isolated gallbladder smooth muscle cells of guinea pig. Am J Physiol. 264:G1066–G1076. 1993.PubMed/NCBI

54 

Wu Z and Shen W: Progesterone inhibits L-type calcium currents in gallbladder smooth muscle cells. J Gastroenterol Hepatol. 25:1838–1843. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Wu ZX, Yu BP, Xia H and Xu L: Emodin increases Ca(2+) influx through L-type Ca(2+) channel in guinea pig gallbladder smooth muscle. Eur J Pharmacol. 595:95–99. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Petkov GV, Balemba OB, Nelson MT and Mawe GM: Identification of a spontaneously active, Na+-permeable channel in guinea pig gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol. 289:G501–G507. 2005. View Article : Google Scholar : PubMed/NCBI

57 

Parr E, Pozo MJ, Horowitz B, Nelson MT and Mawe GM: ERG K+ channels modulate the electrical and contractile activities of gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol. 284:G392–G398. 2003. View Article : Google Scholar

58 

Wu ZX, Yu BP, Xu L and Xia H: Emodin inhibits voltage-dependent potassium current in guinea pig gallbladder smooth muscle. Basic Clin Pharmacol Toxicol. 105:167–172. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Jaggar JH, Mawe GM and Nelson MT: Voltage-dependent K+ currents in smooth muscle cells from mouse gallbladder. Am J Physiol. 274:G687–G693. 1998. View Article : Google Scholar : PubMed/NCBI

60 

Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y and Hill AP: hERG K(+) channels: structure, function, and clinical significance. Physiol Rev. 92:1393–1478. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Ashcroft SJ and Ashcroft FM: Properties and functions of ATP-sensitive K-channels. Cell Signal. 2:197–214. 1990. View Article : Google Scholar : PubMed/NCBI

62 

Zhang L, Bonev AD, Nelson MT and Mawe GM: Activation of ATP-sensitive potassium currents in guinea-pig gall-bladder smooth muscle by the neuropeptide CGRP. J Physiol. 478:483–491. 1994. View Article : Google Scholar : PubMed/NCBI

63 

Hemming JM, Guarraci FA, Firth TA, Jennings LJ, Nelson MT and Mawe GM: Actions of histamine on muscle and ganglia of the guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol. 279:G622–G630. 2000. View Article : Google Scholar : PubMed/NCBI

64 

Pozo MJ, Pérez GJ, Nelson MT and Mawe GM: Ca(2+) sparks and BK currents in gallbladder myocytes: Role in CCK-induced response. Am J Physiol Gastrointest Liver Physiol. 282:G165–G174. 2002. View Article : Google Scholar

65 

Dopico AM, Walsh JV Jr and Singer JJ: Natural bile acids and synthetic analogues modulate large conductance Ca2+-activated K+ (BKCa) channel activity in smooth muscle cells. J Gen Physiol. 119:251–273. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Song K, Zhong XG, Xia XM, Huang JH, Fan YF, Yuan RX, Xue NR, Du J, Han WX, Xu AM and Shen B: Orai1 forms a signal complex with SK3 channel in gallbladder smooth muscle. Biochem Biophys Res Commun. 466:456–462. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Kuo IY and Ehrlich BE: Signaling in muscle contraction. Cold Spring Harb Perspect Biol. 7:a0060232015. View Article : Google Scholar : PubMed/NCBI

68 

Wellman GC and Nelson MT: Signaling between SR and plasmalemma in smooth muscle: Sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium. 34:211–229. 2003. View Article : Google Scholar

69 

Putney JW: Capacitative calcium entry: From concept to molecules. Immunol Rev. 231:10–22. 2009. View Article : Google Scholar

70 

Berridge MJ: Capacitative calcium entry. Biochem J. 312:1–11. 1995. View Article : Google Scholar : PubMed/NCBI

71 

Quinn T, Molloy M, Smyth A and Baird AW: Capacitative calcium entry in guinea pig gallbladder smooth muscle in vitro. Life Sci. 74:1659–1669. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Morales S, Camello PJ, Rosado JA, Mawe GM and Pozo MJ: Disruption of the filamentous actin cytoskeleton is necessary for the activation of capacitative calcium entry in naive smooth muscle cells. Cell Signal. 17:635–645. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Albert AP and Large WA: Store-operated Ca2+-permeable non-selective cation channels in smooth muscle cells. Cell Calcium. 33:345–356. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Pan Z, Yang H and Reinach PS: Transient receptor potential (TRP) gene superfamily encoding cation channels. Hum Genomics. 5:108–116. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, et al: PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 272:1339–1342. 1996. View Article : Google Scholar

76 

González-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA and Cantiello HF: Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci USA. 98:1182–1187. 2001. View Article : Google Scholar

77 

Zhao R, Zhou M, Li J, Wang X, Su K, Hu J, Ye Y, Zhu J, Zhang G, Wang K, et al: Increased TRPP2 expression in vascular smooth muscle cells from high-salt intake hypertensive rats: The crucial role in vascular dysfunction. Mol Nutr Food Res. 59:365–372. 2015. View Article : Google Scholar

78 

Spirli C, Locatelli L, Fiorotto R, Morell CM, Fabris L, Pozzan T and Strazzabosco M: Altered store operated calcium entry increases cyclic 3′,5′-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology. 55:856–868. 2012. View Article : Google Scholar

79 

Balemba OB, Salter MJ, Heppner TJ, Bonev AD, Nelson MT and Mawe GM: Spontaneous electrical rhythmicity and the role of the sarcoplasmic reticulum in the excitability of guinea pig gallbladder smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 290:G655–G664. 2006. View Article : Google Scholar

80 

Ehrlich BE and Watras J: Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature. 336:583–586. 1988. View Article : Google Scholar : PubMed/NCBI

81 

Xu L, Lai FA, Cohn A, Etter E, Guerrero A, Fay FS and Meissner G: Evidence for a Ca(2+)-gated ryanodine-sensitive Ca2+ release channel in visceral smooth muscle. Proc Natl Acad Sci USA. 91:3294–3298. 1994. View Article : Google Scholar

82 

McCarron JG, Bradley KN, MacMillan D and Muir TC: Sarcolemma agonist-induced interactions between InsP3 and ryanodine receptors in Ca2+ oscillations and waves in smooth muscle. Biochem Soc Trans. 31:920–924. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Camello-Almaraz C, Macias B, Gomez-Pinilla PJ, Alcon S, Martin-Cano FE, Baba A, Matsuda T, Camello PJ and Pozo MJ: Developmental changes in Ca2+ homeostasis and contractility in gallbladder smooth muscle. Am J Physiol Cell Physiol. 296:C783–C791. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Somlyo AP and Somlyo AV: Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 83:1325–1358. 2003. View Article : Google Scholar : PubMed/NCBI

85 

Louie DS: Cholecystokinin-stimulated intracellular signal transduction pathways. J Nutr. 124(8 Suppl): 1315S–1320S. 1994. View Article : Google Scholar : PubMed/NCBI

86 

Yu P, Chen Q, Xiao Z, Harnett K, Biancani P and Behar J: Signal transduction pathways mediating CCK-induced gallbladder muscle contraction. Am J Physiol. 275:G203–G211. 1998.PubMed/NCBI

87 

Parkman HP, Pagano AP and Ryan JP: Subtypes of muscarinic receptors regulating gallbladder cholinergic contractions. Am J Physiol. 276:G1243–G1250. 1999.PubMed/NCBI

88 

Büyükafşar K, Akça T, Nalan Tiftik R, Sahan-Firat S and Aydin S: Contribution of Rho-kinase in human gallbladder contractions. Eur J Pharmacol. 540:162–167. 2006. View Article : Google Scholar

89 

Romański KW: Ovine model for clear-cut study on the role of cholecystokinin in antral, small intestinal and gallbladder motility. Pol J Pharmacol. 56:247–256. 2004.

90 

Fleckenstein P, Bueno L, Fioramonti J and Ruckebusch Y: Minute rhythm of electrical spike bursts of the small intestine in different species. Am J Physiol. 242:G654–G659. 1982.

91 

Romański KW: Characteristics and cholinergic control of the 'minute rhythm' in ovine antrum, small bowel and gallbladder. J Vet Med A Physiol Pathol Clin Med. 49:313–320. 2002. View Article : Google Scholar

92 

Klein S, Seidler B, Kettenberger A, Sibaev A, Rohn M, Feil R, Allescher HD, Vanderwinden JM, Hofmann F, Schemann M, et al: Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun. 4:16302013. View Article : Google Scholar : PubMed/NCBI

93 

Fan Y, Wu S, Fu B, Weng C and Wang X: The role of interstitial Cajal-like cells in the formation of cholesterol stones in guinea pig gallbladder. Hepatol Int. 9:612–620. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Sanders KM, Ward SM and Koh SD: Interstitial cells: Regulators of smooth muscle function. Physiol Rev. 94:859–907. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Hwang SJ, Blair PJ, Britton FC, O'Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM and Ward SM: Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 587:4887–4904. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD and Sanders KM: A Ca(2+)-activated Cl(-) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol. 587:4905–4918. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Pappas A and Wellman GC: Setting the pace for GI motility: Ryanodine receptors and IP3 receptors within interstitial cells of Cajal. Focus on 'intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal'. Am J Physiol Cell Physiol. 308:C606–C607. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Koh SD, Sanders KM and Ward SM: Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J Physiol. 513:203–213. 1998. View Article : Google Scholar

99 

Koh SD, Jun JY, Kim TW and Sanders KM: A Ca(2+)-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J Physiol. 540:803–814. 2002. View Article : Google Scholar

100 

Baker SA, Leigh WA, Del Valle G, De Yturriaga IF, Ward SM, Cobine CA, Drumm BT and Sanders KM: Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon. Elife. 10:e640992021. View Article : Google Scholar

101 

Sanders KM: Spontaneous electrical activity and rhythmicity in gastrointestinal smooth muscles. Adv Exp Med Biol. 1124:3–46. 2019. View Article : Google Scholar

102 

Huang X, Lee SH, Lu H, Sanders KM and Koh SD: Molecular and functional characterization of inwardly rectifying K+ currents in murine proximal colon. J Physiol. 596:379–391. 2018. View Article : Google Scholar

103 

Kito Y, Mitsui R, Ward SM and Sanders KM: Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine. Am J Physiol Gastrointest Liver Physiol. 308:G378–G388. 2015. View Article : Google Scholar :

104 

Youm JB, Zheng H, Koh SD and Sanders KM: Na-K-2Cl cotransporter and store-operated Ca2+ entry in pacemaking by interstitial cells of Cajal. Biophys J. 117:767–779. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Wouters M, De Laet A, Donck LV, Delpire E, van Bogaert PP, Timmermans JP, de Kerchove d'Exaerde A, Smans K and Vanderwinden JM: Subtractive hybridization unravels a role for the ion cotransporter NKCC1 in the murine intestinal pacemaker. Am J Physiol Gastrointest Liver Physiol. 290:G1219–G1227. 2006. View Article : Google Scholar

106 

Balemba OB, Bartoo AC, Nelson MT and Mawe GM: Role of mitochondria in spontaneous rhythmic activity and intracellular calcium waves in the guinea pig gallbladder smooth muscle. Am J Physiol Gastrointest Liver Physiol. 294:G467–G476. 2008. View Article : Google Scholar

107 

Blaustein MP and Lederer WJ: Sodium/calcium exchange: Its physiological implications. Physiol Rev. 79:763–854. 1999. View Article : Google Scholar : PubMed/NCBI

108 

Zheng H, Drumm BT, Zhu MH, Xie Y, O'Driscoll KE, Baker SA, Perrino BA, Koh SD and Sanders KM: Na(+)/Ca(2 +) exchange and pacemaker activity of interstitial cells of Cajal. Front Physiol. 11:2302020. View Article : Google Scholar : PubMed/NCBI

109 

Vanderwinden JM, Rumessen JJ, de Kerchove d'Exaerde A Jr, Gillard K, Panthier JJ, de Laet MH and Schiffmann SN: Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Cell Tissue Res. 310:349–358. 2002. View Article : Google Scholar : PubMed/NCBI

110 

Gallego D, Hernández P, Clavé P and Jiménez M: P2Y1 receptors mediate inhibitory purinergic neuromuscular transmission in the human colon. Am J Physiol Gastrointest Liver Physiol. 291:G584–G594. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Kurahashi M, Zheng H, Dwyer L, Ward SM, Koh SD and Sanders KM: A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles. J Physiol. 589:697–710. 2011. View Article : Google Scholar

112 

Gallego D, Gil V, Martínez-Cutillas M, Mañé N, Martín MT and Jiménez M: Purinergic neuromuscular transmission is absent in the colon of P2Y(1) knocked out mice. J Physiol. 590:1943–1956. 2012. View Article : Google Scholar : PubMed/NCBI

113 

Vogalis F and Goyal RK: Activation of small conductance Ca(2+)-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum. J Physiol. 502:497–508. 1997. View Article : Google Scholar : PubMed/NCBI

114 

Kurahashi M, Mutafova-Yambolieva V, Koh SD and Sanders KM: Platelet-derived growth factor receptor-α-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am J Physiol Cell Physiol. 307:C561–C570. 2014. View Article : Google Scholar

115 

Baker SA, Hennig GW, Ward SM and Sanders KM: Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon. J Physiol. 593:1945–1963. 2015. View Article : Google Scholar :

116 

Furness J: The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 9:286–294. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Furness JB, Callaghan BP, Rivera LR and Cho HJ: The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol. 817:39–71. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Balemba OB, Salter MJ and Mawe GM: Innervation of the extrahepatic biliary tract. Anat Rec A Discov Mol Cell Evol Biol. 280:836–847. 2004. View Article : Google Scholar

119 

Keast JR, Furness JB and Costa M: Distribution of certain peptide-containing nerve fibres and endocrine cells in the gastrointestinal mucosa in five mammalian species. J Comp Neurol. 236:403–422. 1985. View Article : Google Scholar

120 

Cai WQ and Gabella G: Innervation of the gall bladder and biliary pathways in the guinea-pig. J Anat. 136:97–109. 1983.PubMed/NCBI

121 

Talmage EK, Pouliot WA, Schemann M and Mawe GM: Structure and chemical coding of human, canine and opossum gallbladder ganglia. Cell Tissue Res. 284:289–302. 1996. View Article : Google Scholar

122 

Gilloteaux J, Pomerants B and Kelly TR: Human gallbladder mucosa ultrastructure: Evidence of intraepithelial nerve structures. Am J Anat. 184:321–333. 1989. View Article : Google Scholar : PubMed/NCBI

123 

De Giorgio R, Zittel TT, Parodi JE, Becker JM, Brunicardi FC, Go VL, Brecha NC and Sternini C: Peptide immunoreactivities in the ganglionated plexuses and nerve fibers innervating the human gallbladder. J Auton Nerv Syst. 51:37–47. 1995. View Article : Google Scholar : PubMed/NCBI

124 

De Giorgio R, Parodi JE, Brecha NC, Brunicardi FC, Becker JM, Go VL and Sternini C: Nitric oxide producing neurons in the monkey and human digestive system. J Comp Neurol. 342:619–627. 1994. View Article : Google Scholar : PubMed/NCBI

125 

Mawe GM and Ellis LM: Chemical coding of intrinsic and extrinsic nerves in the guinea pig gallbladder: Distributions of PACAP and orphanin FQ. Anat Rec. 262:101–109. 2001. View Article : Google Scholar : PubMed/NCBI

126 

Talmage EK, Pouliot WA, Cornbrooks EB and Mawe GM: Transmitter diversity in ganglion cells of the guinea pig gallbladder: An immunohistochemical study. J Comp Neurol. 317:45–56. 1992. View Article : Google Scholar : PubMed/NCBI

127 

Sundler F, Alumets J, Håkanson R, Ingemansson S, Fahrenkrug J and Schaffalitzky de Muckadell O: VIP innervation of the gallbladder. Gastroenterology. 72:1375–1377. 1977. View Article : Google Scholar : PubMed/NCBI

128 

Uemura S, Pompolo S, Furness JB and Hardy KJ: Nitric oxide synthase in neurons of the human gall-bladder and its colocalization with neuropeptides. J Gastroenterol Hepatol. 12:257–265. 1997. View Article : Google Scholar : PubMed/NCBI

129 

Hopton DS: The influence of the vagus nerves on the biliary system. Br J Surg. 60:216–218. 1973. View Article : Google Scholar : PubMed/NCBI

130 

Mawe GM, Moses PL, Saccone GTP and Pozo MJ: Motility of the Biliary Tract. Textbook of Gastroenterology. 264–283. 2008. View Article : Google Scholar

131 

Schjoldager B, Molero X and Miller LJ: Functional and biochemical characterization of the human gallbladder muscularis cholecystokinin receptor. Gastroenterology. 96:1119–1125. 1989. View Article : Google Scholar : PubMed/NCBI

132 

Xu D, Yu BP, Luo HS and Chen LD: Control of gallbladder contractions by cholecystokinin through cholecystokinin-a receptors on gallbladder interstitial cells of Cajal. World J Gastroenterol. 14:2882–2887. 2008. View Article : Google Scholar

133 

Mawe GM, Gokin AP and Wells DG: Actions of cholecystokinin and norepinephrine on vagal inputs to ganglion cells in guinea pig gallbladder. Am J Physiol. 267:G1146–G1151. 1994.PubMed/NCBI

134 

Behar J and Biancani P: Pharmacologic characterization of excitatory and inhibitory cholecystokinin receptors of the cat gallbladder and sphincter of Oddi. Gastroenterology. 92:764–770. 1987. View Article : Google Scholar : PubMed/NCBI

135 

Stengel PW and Cohen ML: Muscarinic receptor knockout mice: Role of muscarinic acetylcholine receptors M(2), M(3), and M(4) in carbamylcholine-induced gallbladder contractility. J Pharmacol Exp Ther. 301:643–650. 2002. View Article : Google Scholar : PubMed/NCBI

136 

Takahashi T, Kurosawa S and Owyang C: Regulation of PI hydrolysis and cAMP formation by muscarinic M3 receptor in guinea pig gallbladder. Am J Physiol. 267:G523–G528. 1994.PubMed/NCBI

137 

Lee MC, Yang YC, Chen YC and Huang SC: Muscarinic receptor M3 mediates human gallbladder contraction through voltage-gated Ca2+ channels and Rho kinase. Scand J Gastroenterol. 48:205–212. 2013. View Article : Google Scholar

138 

Patacchini R and Maggi CA: Effect of newly developed tachykinin agonist and antagonists on the guinea pig isolated gallbladder. J Pharmacol Exp Ther. 261:191–194. 1992.PubMed/NCBI

139 

Yau WM: Mode of stimulation of gallbladder contraction by substance K. Am J Physiol. 259:G838–G841. 1990.PubMed/NCBI

140 

O'Riordan AM, Quinn T and Baird AW: Role of prostaglandin E(2) and Ca(2+) in bradykinin induced contractions of guinea-pig gallbladder in vitro. Eur J Pharmacol. 431:245–252. 2001. View Article : Google Scholar : PubMed/NCBI

141 

Trevisani M, Amadesi S, Schmidlin F, Poblete MT, Bardella E, Maggiore B, Harrison S, Figueroa CD, Tognetto M, Navarra G, et al: Bradykinin B2 receptors mediate contraction in the normal and inflamed human gallbladder in vitro. Gastroenterology. 125:126–135. 2003. View Article : Google Scholar

142 

Andre E, Gazzieri D, Bardella E, Ferreira J, Mori MA, Saul VV, Bader M, Calixto JB, De Giorgio R, Corinaldesi R, et al: Expression and functional pharmacology of the bradykinin B1 receptor in the normal and inflamed human gallbladder. Gut. 57:628–633. 2008. View Article : Google Scholar

143 

Takahashi T, Kusunoki M, Ishikawa Y, Kantoh M, Yamamura T and Utsunomiya J: Adenosine 5′-triphosphate release evoked by electrical nerve stimulation from the guinea-pig gallbladder. Eur J Pharmacol. 134:77–82. 1987. View Article : Google Scholar : PubMed/NCBI

144 

Puchałowicz K, Tarnowski M, Baranowska-Bosiacka I, Chlubek D and Dziedziejko V: P2X and P2Y receptors-role in the pathophysiology of the nervous system. Int J Mol Sci. 15:23672–23704. 2014. View Article : Google Scholar

145 

Bartoo AC, Nelson MT and Mawe GM: ATP induces guinea pig gallbladder smooth muscle excitability via the P2Y4 receptor and COX-1 activity. Am J Physiol Gastrointest Liver Physiol. 294:G1362–G1368. 2008. View Article : Google Scholar : PubMed/NCBI

146 

Ruan HZ and Burnstock G: P2X2 and P2X3 receptor expression in the gallbladder of the guinea pig. Auton Neurosci. 111:89–96. 2004. View Article : Google Scholar : PubMed/NCBI

147 

Rasmussen TN, Harling H, Rehfeld JF and Holst JJ: Calcitonin gene-related peptide (CGRP), a potent regulator of biliary flow. Neurogastroenterol Motil. 9:215–220. 1997. View Article : Google Scholar

148 

Kline LW and Pang PK: Cyclic AMP modulates part of the relaxant action of calcitonin gene-related peptide in guinea pig gallbladder strips. Regul Pept. 72:55–59. 1997. View Article : Google Scholar : PubMed/NCBI

149 

Kline LW and Pang PK: Nitric oxide modulates the calcitonin gene-related peptide-induced relaxation in guinea pig gallbladder strips in vitro. Regul Pept. 50:207–212. 1994. View Article : Google Scholar : PubMed/NCBI

150 

Gultekin H, Erdem SR, Emre-Aydingoz S and Tuncer M: The role of nitric oxide in the electrical field stimulation-induced contractions of sphincter of oddi and gallbladder strips in Guinea pigs. J Pharmacol Sci. 101:240–244. 2006. View Article : Google Scholar : PubMed/NCBI

151 

Alcón S, Morales S, Camello PJ, Salido GM, Miller SM and Pozo MJ: Relaxation of canine gallbladder to nerve stimulation involves adrenergic and non-adrenergic non-cholinergic mechanisms. Neurogastroenterol Motil. 13:555–566. 2001. View Article : Google Scholar

152 

Xue L, Farrugia G, Miller SM, Ferris CD, Snyder SH and Szurszewski JH: Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: Evidence from genomic deletion of biosynthetic enzymes. Proc Natl Acad Sci USA. 97:1851–1855. 2000. View Article : Google Scholar : PubMed/NCBI

153 

Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA and Said SI: Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol. 166:4–17. 2012. View Article : Google Scholar :

154 

Pálvölgyi A, Sári R, Németh J, Szabolcs A, Nagy I, Hegyi P, Lonovics J and Szilvássy Z: Interplay between nitric oxide and VIP in CCK-8-induced phasic contractile activity in the rabbit sphincter of Oddi. World J Gastroenterol. 11:3264–3266. 2005. View Article : Google Scholar

155 

Pang PK and Kline LW: Protein kinase C mediates the contractile actions of pituitary adenylate cyclase activating polypeptide in guinea pig gallbladder strips. Regul Pept. 77:63–67. 1998. View Article : Google Scholar : PubMed/NCBI

156 

Greaves RR, O'Donnell LJ, Battistini B, Forget MA and Farthing MJ: The differential effect of VIP and PACAP on guinea pig gallbladder in vitro. Eur J Gastroenterol Hepatol. 12:1181–1184. 2000. View Article : Google Scholar : PubMed/NCBI

157 

Parkman HP, Pagano AP and Ryan JP: Dual effects of PACAP on guinea pig gallbladder muscle via PACAP-preferring and VIP/PACAP-preferring receptors. Am J Physiol. 272:G1433–G1438. 1997.PubMed/NCBI

158 

Fisher RS, Rock E, Levin G and Malmud L: Effects of somatostatin on gallbladder emptying. Gastroenterology. 92:885–890. 1987. View Article : Google Scholar : PubMed/NCBI

159 

Greenberg GR, McCloy RF, Adrian TE, Chadwick VS, Baron JH and Bloom SR: Inhibition of pancreas and gallbladder by pancreatic polypeptide. Lancet. 2:1280–1282. 1978. View Article : Google Scholar : PubMed/NCBI

160 

Walker JP, Khalil T, Wiener I, Fagan CJ, Townsend CM Jr, Greeley GH Jr and Thompson JC: The role of neurotensin in human gallbladder motility. Ann Surg. 201:678–683. 1985. View Article : Google Scholar : PubMed/NCBI

161 

Holzer P, Reichmann F and Farzi A: Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides. 46:261–274. 2012. View Article : Google Scholar : PubMed/NCBI

162 

Chen Q, Lee K, Xiao Z, Biancani P and Behar J: Mechanism of gallbladder relaxation in the cat: Role of norepinephrine. J Pharmacol Exp Ther. 285:475–479. 1998.PubMed/NCBI

163 

McGowan BMC and Bloom SR: Peptide YY and appetite control. Curr Opin Pharmacol. 4:583–588. 2004. View Article : Google Scholar : PubMed/NCBI

164 

Hoentjen F, Hopman WP and Jansen JB: Effect of circulating peptide YY on gallbladder emptying in humans. Scand J Gastroenterol. 36:1086–1091. 2001. View Article : Google Scholar

165 

Hazelwood RL: The pancreatic polypeptide (PP-fold) family: Gastrointestinal, vascular, and feeding behavioral implications. Proc Soc Exp Biol Med. 202:44–63. 1993. View Article : Google Scholar : PubMed/NCBI

166 

Kojima S, Ueno N, Asakawa A, Sagiyama K, Naruo T, Mizuno S and Inui A: A role for pancreatic polypeptide in feeding and body weight regulation. Peptides. 28:459–463. 2007. View Article : Google Scholar : PubMed/NCBI

167 

Vu MK, Van Oostayen JA, Biemond I and Masclee AA: Effect of somatostatin on postprandial gallbladder relaxation. Clin Physiol. 21:25–31. 2001. View Article : Google Scholar : PubMed/NCBI

168 

Maselli MA, Piepoli AL, Pezzolla F, Caruso ML and Lorusso D: Effect of somatostatin on human gallbladder motility: An in vitro study. Neurogastroenterol Motil. 11:47–53. 1999. View Article : Google Scholar : PubMed/NCBI

169 

Milenov K, Vassileva M, Marinova D and Kalfin R: Effect of neurotensin on the canine gallbladder motility: In vivo and in vitro experiments. Neuropeptides. 25:233–239. 1993. View Article : Google Scholar : PubMed/NCBI

170 

Yamasato T and Nakayama S: Effects of neurotensin on the motility of the isolated gallbladder, bile duct and ampulla in guinea-pigs. Eur J Pharmacol. 148:101–106. 1988. View Article : Google Scholar : PubMed/NCBI

171 

Feeley TM, Clanachan AS and Scott GW: Contractility of human gallbladder muscle in vitro. Aliment Pharmacol Ther. 1:607–616. 1987. View Article : Google Scholar : PubMed/NCBI

172 

Lavoie B, Balemba OB, Godfrey C, Watson CA, Vassileva G, Corvera CU, Nelson MT and Mawe GM: Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. J Physiol. 588:3295–3305. 2010. View Article : Google Scholar : PubMed/NCBI

173 

Jain AK, Stoll B, Burrin DG, Holst JJ and Moore DD: Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am J Physiol Gastrointest Liver Physiol. 302:G218–G224. 2012. View Article : Google Scholar :

174 

Yusta B, Matthews D, Flock GB, Ussher JR, Lavoie B, Mawe GM and Drucker DJ: Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway. Mol Metab. 6:503–511. 2017. View Article : Google Scholar : PubMed/NCBI

175 

Kliewer SA and Mangelsdorf DJ: Bile acids as hormones: The FXR-FGF15/19 pathway. Dig Dis. 33:327–331. 2015. View Article : Google Scholar : PubMed/NCBI

176 

Everhart JE and Ruhl CE: Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas. Gastroenterology. 136:1134–1144. 2009. View Article : Google Scholar : PubMed/NCBI

177 

Cai JS, Qiang S and Bao-Bing Y: Advances of recurrent risk factors and management of choledocholithiasis. Scand J Gastroenterol. 52:34–43. 2017. View Article : Google Scholar

178 

Behar J, Lee KY, Thompson WR and Biancani P: Gallbladder contraction in patients with pigment and cholesterol stones. Gastroenterology. 97:1479–1484. 1989. View Article : Google Scholar

179 

Carey MC and Small DM: The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest. 61:998–1026. 1978. View Article : Google Scholar : PubMed/NCBI

180 

Zheng Y, Xu M, Heianza Y, Ma W, Wang T, Sun D, Albert CM, Hu FB, Rexrode KM, Manson JE and Qi L: Gallstone disease and increased risk of mortality: Two large prospective studies in US men and women. J Gastroenterol Hepatol. 33:1925–1931. 2018. View Article : Google Scholar : PubMed/NCBI

181 

Huang L, Ding C and Si X: Changes in the interstitial cells of Cajal in the gallbladder of guinea pigs fed a lithogenic diet. Exp Ther Med. 22:8232021. View Article : Google Scholar : PubMed/NCBI

182 

Xiao ZL, Chen Q, Amaral J, Biancani P and Behar J: Defect of receptor-G protein coupling in human gallbladder with cholesterol stones. Am J Physiol Gastrointest Liver Physiol. 278:G251–G258. 2000. View Article : Google Scholar : PubMed/NCBI

183 

Gao G, Ding ZQ and Zou SQ: The changes of vasoactive intestinal polypeptide and VIPR expression in the patients with cholesterol gallstone. J Clinc Surg. 12:224–226. 2004.

184 

Wang HH, Portincasa P and Wang DQH: Update on the molecular mechanisms underlying the effect of cholecystokinin and cholecystokinin-1 receptor on the formation of cholesterol gallstones. Curr Med Chem. 26:3407–3423. 2019. View Article : Google Scholar

185 

Tan YY: Studies on the role of Cajal interstitial cell in cholecystolithiasis and surgical methodology of endoscopic minimal invasive cholecystolithotomy. Dongnan Daxue. 58–91. 2015.

186 

Fu BB, Xu JH, Wu SD and Fan Y: Effect of cholesterol on in vitro cultured interstitial Cajal-like cells isolated from guinea pig gallbladders. World J Gastrointest Surg. 12:226–235. 2020. View Article : Google Scholar : PubMed/NCBI

187 

Lavoie B, Nausch B, Zane EA, Leonard MR, Balemba OB, Bartoo AC, Wilcox R, Nelson MT, Carey MC and Mawe GM: Disruption of gallbladder smooth muscle function is an early feature in the development of cholesterol gallstone disease. Neurogastroenterol Motil. 24. pp. e313–e324. 2012, View Article : Google Scholar

188 

Chen Q, Amaral J, Biancani P and Behar J: Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology. 116:678–685. 1999. View Article : Google Scholar : PubMed/NCBI

189 

Wang B, Ding YM, Wang CT and Wang WX: Role of ROCK expression in gallbladder smooth muscle contraction. Mol Med Rep. 12:2907–2911. 2015. View Article : Google Scholar : PubMed/NCBI

190 

Xu QW, Freedman SM and Shaffer EA: Inhibitory effect of bile salts on gallbladder smooth muscle contractility in the guinea pig in vitro. Gastroenterology. 112:1699–1706. 1997. View Article : Google Scholar : PubMed/NCBI

191 

Rutishauser SC: Effects of bile salts on the motor activity of the guinea-pig gall-bladder in vitro. Q J Exp Physiol Cogn Med Sci. 63:265–276. 1978.

192 

Pasternak A, Matyja A, Gil K, Gajda M, Tomaszewski KA, Gajda M, Tomaszewski KA, Matyja M, Walocha JA and Kulig J: Interstitial cajal-like cells and bile lithogenicity in the pathogenesis of gall-stone disease. Pol Przegl Chir. 85:311–316. 2013. View Article : Google Scholar

193 

Villanacci V, Del Sordo R, Salemme M, Cadei M, Sidoni A and Bassotti G: The enteric nervous system in patients with calculous and acalculous gallbladder. Dig Liver Dis. 48:792–795. 2016. View Article : Google Scholar : PubMed/NCBI

194 

Fu Y, Pang L, Dai W, Wu S and Kong J: Advances in the study of acute acalculous cholecystitis: A comprehensive review. Dig Dis. 40:468–478. 2022. View Article : Google Scholar

195 

Cong P, Xiao ZL, Biancani P and Behar J: Prostaglandins mediate tonic contraction of the guinea pig and human gallbladder. Am J Physiol Gastrointest Liver Physiol. 292:G409–G418. 2007. View Article : Google Scholar

196 

Xiao ZL, Amaral J, Biancani P and Behar J: Impaired cytoprotective function of muscle in human gallbladders with cholesterol stones. Am J Physiol Gastrointest Liver Physiol. 288:G525–G532. 2005. View Article : Google Scholar

197 

Myers SI, Bartula LL, Colvin MP, Parkman HP, Braverman AA and Ruggieri MR: Bile duct ligation induced acute inflammation up-regulates cyclooxygenase-2 content and PGE2 release in guinea pig gallbladder smooth muscle cell cultures. Prostaglandins Leukot Essent Fatty Acids. 72:327–333. 2005. View Article : Google Scholar

198 

Parkman HP, James AN, Thomas RM, Bartula LL, Ryan JP and Myers SI: Effect of indomethacin on gallbladder inflammation and contractility during acute cholecystitis. J Surg Res. 96:135–142. 2001. View Article : Google Scholar

199 

Jennings LJ and Mawe GM: PGE2 hyperpolarizes gallbladder neurons and inhibits synaptic potentials in gallbladder ganglia. Am J Physiol. 274:G493–G502. 1998.

200 

Parkman HP, James AN, Bogar LJ, Bartula LL, Thomas RM, Ryan JP and Myers SI: Effect of acalculous cholecystitis on gallbladder neuromuscular transmission and contractility. J Surg Res. 88:186–192. 2000. View Article : Google Scholar

201 

Xiao ZL, Andrada MJ, Biancani P and Behar J: Reactive oxygen species (H(2)O(2)): Effects on the gallbladder muscle of guinea pigs. Am J Physiol Gastrointest Liver Physiol. 282:G300–G306. 2002. View Article : Google Scholar : PubMed/NCBI

202 

Cullen JJ, Conklin JL, Ephgrave KS and Oberley LW: The role of antioxidant enzymes in the control of opossum gallbladder motility. J Surg Res. 86:155–161. 1999. View Article : Google Scholar

203 

Pozo MJ, Camello PJ and Mawe GM: Chemical mediators of gallbladder dysmotility. Curr Med Chem. 11:1801–1812. 2004. View Article : Google Scholar : PubMed/NCBI

204 

Jennings LJ, Salido GM, Pozo MJ, Davison JS, Sharkey KA, Lea RW and Singh J: The source and action of histamine in the isolated guinea-pig gallbladder. Inflamm Res. 44:447–453. 1995. View Article : Google Scholar

205 

Al-Jiffry BO, Shaffer EA, Woods CM, Menadue M, Young F, Oliver J, Thomas AC, Toouli J and Saccone GT: Endogenous endothelin increases gallbladder tone and leads to acute cholecystitis in the Australian possum. Neurogastroenterol Motil. 16:125–133. 2004. View Article : Google Scholar : PubMed/NCBI

206 

Huang SC, Lee MC, Wei CK and Huang SM: Endothelin receptors in human and guinea-pig gallbladder muscle. Regul Pept. 98:145–153. 2001. View Article : Google Scholar

207 

Huang ZP, Qiu H, Yang Y and Yu BP: Effect of neutrophils on gallbladder interstitial cajal-like cells in guinea pig model of acute cholecystitis. Cell Physiol Biochem. 39:2033–2043. 2016. View Article : Google Scholar : PubMed/NCBI

208 

Lin MJ, Chen L, Huang ZP, Qiu H and Yu BP: Neutrophils injure gallbladder interstitial Cajal-like cells in a guinea pig model of acute cholecystitis. J Cell Physiol. 234:4291–4301. 2019. View Article : Google Scholar

209 

Burns AJ, Herbert TM, Ward SM and Sanders KM: Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry. Cell Tissue Res. 290:11–20. 1997. View Article : Google Scholar : PubMed/NCBI

210 

Christensen J: A commentary on the morphological identification of interstitial cells of Cajal in the gut. J Auton Nerv Syst. 37:75–88. 1992. View Article : Google Scholar : PubMed/NCBI

211 

Ward SM, Burke EP and Sanders KM: Use of rhodamine 123 to label and lesion interstitial cells of Cajal in canine colonic circular muscle. Anat Embryol (Berl). 182:215–224. 1990. View Article : Google Scholar : PubMed/NCBI

212 

Mikkelsen HB, Thuneberg L and Wittrup IH: Selective double staining of interstitial cells of Cajal and macrophage-like cells in small intestine by an improved supravital methylene blue technique combined with FITC-dextran uptake. Anat Embryol (Berl). 178:191–195. 1988. View Article : Google Scholar : PubMed/NCBI

213 

Xue C, Ward SM, Shuttleworth CW and Sanders KM: Identification of interstitial cells in canine proximal colon using NADH diaphorase histochemistry. Histochemistry. 99:373–384. 1993. View Article : Google Scholar : PubMed/NCBI

214 

Huang Y, Mei F, Yu B, Zhang HJ, Han J, Jiang ZY and Zhou DS: Distribution of the interstitial Cajal-like cells in the gallbladder and extrahepatic biliary duct of the guinea-pig. Acta Histochem. 111:157–165. 2009. View Article : Google Scholar

215 

Vannucchi MG and Traini C: Interstitial cells of Cajal and telocytes in the gut: Twins, related or simply neighbor cells? Biomol Concepts. 7:93–102. 2016. View Article : Google Scholar : PubMed/NCBI

216 

Sugai M: Morphological studies of human gallbladder. Nihon Heikatsukin Gakkai Zasshi. 21:119–138. 1985.In Japanese. View Article : Google Scholar

217 

Hartshorne DJ, Ito M and Erdödi F: Myosin light chain phosphatase: Subunit composition, interactions and regulation. J Muscle Res Cell Motil. 19:325–341. 1998. View Article : Google Scholar : PubMed/NCBI

218 

Mnh: Histologie du système nerveux de l'homme et des vertébrés. J Neuropathol Exp Neurol. 57:8831998. View Article : Google Scholar

219 

Cawston EE and Miller LJ: Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol. 159:1009–1021. 2010. View Article : Google Scholar

220 

Zhang L, Bonev AD, Mawe GM and Nelson MT: Protein kinase A mediates activation of ATP-sensitive K+ currents by CGRP in gallbladder smooth muscle. Am J Physiol. 267:G494–G499. 1994.PubMed/NCBI

221 

Luman W, Ardill JE, Armstrong E, Smith GD, Brett L, Lessells AM, Haynes WG, Gray GA, Mickley EJ, Webb DJ and Palmer KR: Nitric oxide and gall-bladder motor function. Aliment Pharmacol Ther. 12:425–432. 1998. View Article : Google Scholar : PubMed/NCBI

222 

Farrugia G, Miller SM, Rich A, Liu X, Maines MD, Rae JL and Szurszewski JH: Distribution of heme oxygenase and effects of exogenous carbon monoxide in canine jejunum. Am J Physiol. 274:G350–G358. 1998.PubMed/NCBI

223 

Zhang ZH, Qin CK, Wu SD, Xu J, Cui XP, Wang ZY and Xian GZ: Roles of sphincter of Oddi motility and serum vasoactive intestinal peptide, gastrin and cholecystokinin octapeptide. World J Gastroenterol. 20:4730–4736. 2014. View Article : Google Scholar : PubMed/NCBI

224 

Morales S, Camello PJ, Mawe GM and Pozo MJ: Cyclic AMP-mediated inhibition of gallbladder contractility: Role of K+ channel activation and Ca2+ signaling. Br J Pharmacol. 143:994–1005. 2004. View Article : Google Scholar : PubMed/NCBI

225 

Bitar KN and Makhlouf GM: Relaxation of isolated gastric smooth muscle cells by vasoactive intestinal peptide. Science. 216:531–533. 1982. View Article : Google Scholar : PubMed/NCBI

226 

Choi M, Moschetta A, Bookout AL, Peng L, Umetani M, Holmstrom SR, Suino-Powell K, Xu HE, Richardson JA, Gerard RD, et al: Identification of a hormonal basis for gallbladder filling. Nat Med. 12:1253–1255. 2006. View Article : Google Scholar : PubMed/NCBI

227 

Yamasaki T, Chijiiwa K and Chijiiwa Y: Somatostatin inhibits cholecystokinin-induced contraction of isolated gallbladder smooth muscle cells. J Surg Res. 59:743–746. 1995. View Article : Google Scholar : PubMed/NCBI

228 

Kaczmarek P, Singh V, Cashen DE, Yang L, Berk S, Pasternak A, Xiong Y, Shen DM, Hutchins SM, Chapman K, et al: Somatostatin receptor subtypes 2 and 5 mediate inhibition of egg yolk-induced gall bladder emptying in mice. Neurogastroenterol Motil. 22:204–209.e66. 2010. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ding F, Hu Q, Wang Y, Jiang M, Cui Z, Guo R, Liu L, Chen F, Hu H, Zhao G, Zhao G, et al: Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review). Int J Mol Med 51: 33, 2023.
APA
Ding, F., Hu, Q., Wang, Y., Jiang, M., Cui, Z., Guo, R. ... Zhao, G. (2023). Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review). International Journal of Molecular Medicine, 51, 33. https://doi.org/10.3892/ijmm.2023.5236
MLA
Ding, F., Hu, Q., Wang, Y., Jiang, M., Cui, Z., Guo, R., Liu, L., Chen, F., Hu, H., Zhao, G."Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review)". International Journal of Molecular Medicine 51.4 (2023): 33.
Chicago
Ding, F., Hu, Q., Wang, Y., Jiang, M., Cui, Z., Guo, R., Liu, L., Chen, F., Hu, H., Zhao, G."Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review)". International Journal of Molecular Medicine 51, no. 4 (2023): 33. https://doi.org/10.3892/ijmm.2023.5236
Copy and paste a formatted citation
x
Spandidos Publications style
Ding F, Hu Q, Wang Y, Jiang M, Cui Z, Guo R, Liu L, Chen F, Hu H, Zhao G, Zhao G, et al: Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review). Int J Mol Med 51: 33, 2023.
APA
Ding, F., Hu, Q., Wang, Y., Jiang, M., Cui, Z., Guo, R. ... Zhao, G. (2023). Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review). International Journal of Molecular Medicine, 51, 33. https://doi.org/10.3892/ijmm.2023.5236
MLA
Ding, F., Hu, Q., Wang, Y., Jiang, M., Cui, Z., Guo, R., Liu, L., Chen, F., Hu, H., Zhao, G."Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review)". International Journal of Molecular Medicine 51.4 (2023): 33.
Chicago
Ding, F., Hu, Q., Wang, Y., Jiang, M., Cui, Z., Guo, R., Liu, L., Chen, F., Hu, H., Zhao, G."Smooth muscle cells, interstitial cells and neurons in the gallbladder (GB): Functional syncytium of electrical rhythmicity and GB motility (Review)". International Journal of Molecular Medicine 51, no. 4 (2023): 33. https://doi.org/10.3892/ijmm.2023.5236
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team