Open Access

Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis

  • Authors:
    • Ewelina Szliszka
    • Grzegorz Zydowicz
    • Elzbieta Mizgala
    • Wojciech Krol
  • View Affiliations

  • Published online on: June 25, 2012     https://doi.org/10.3892/ijo.2012.1527
  • Pages: 818-828
  • Copyright: © Szliszka et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Naturally occurring phenolic compounds have been shown to sensitize prostate cancer cells to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. TRAIL is a potent stimulator of apoptosis in cancer cells and an important immune effector molecule in the surveillance and elimination of developing tumours. However, many cancer cells are resistant to TRAIL-mediated death. In this study, we aimed to determine the mechanisms by which TRAIL resistance can be overcome in prostate cancer cells by 3,5-diprenyl-4-hydroxycinnamic acid (artepillin C). Artepillin C is a bioactive component of Brazilian green propolis that possesses antitumour and chemopreventive activities. TRAIL-resistant LNCaP prostate cancer cells were treated with TRAIL and artepillin C. Cytotoxicity was measured by MTT and lactate dehydrogenase (LDH) assays. Apoptosis was detected using Annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor (DR) (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression was analyzed using flow cytometry. Mitochondrial membrane potential (∆ψm) was evaluated using DePsipher staining by fluorescence micro­scopy. The inhibition of NF-κB (p65) activation was confirmed with the ELISA-based TransAM NF-κB kit. Caspase-8 and caspase-3 activities were determined by colorimetric protease assays. The results showed that artepillin C sensitized the TRAIL-resistant LNCaP cells by engaging the extrinsic (receptor-mediated) and intrinsic (mitochondrial) apoptotic pathways. Artepillin C increased the expression of TRAIL-R2 and decreased the activity of NF-κB. Co-treatment with TRAIL and artepillin C induced the significant activation of caspase-8 and caspase-3, as well as the disruption of ∆ψm. These findings show that prostate cancer cells can be sensitized to TRAIL-mediated immunoprevention by artepillin C and confirm the role of phenolic compounds in prostate cancer immunochemoprevention.

References

1 

Lee JY, Huerta-Yepez S, Vega M, Baritaki S, Spandidos DA and Bonavida B: The NO TRAIL to YES TRAIL in cancer therapy (Review). Int J Oncol. 31:685–691. 2007.PubMed/NCBI

2 

Voelkel-Johnson C: TRAIL-mediated signaling in prostate, bladder and renal cancer. Nat Rev Urol. 8:417–427. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Baritaki S, Katsman A, Chatterjee D, Yeung KC, Spandidos DA and Bonavida B: Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. J Immunol. 179:5441–5453. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Baritaki S, Huerta-Yepez S, Sakai T, Spandidos DA and Bonavida B: Chemotherapeutic drugs sensitize cancer cells to TRAIL-mediated apoptosis: up-regulation of DR5 and inhibition of Yin Yang 1. Mol Cancer Ther. 6:1387–1399. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Baritaki S, Suzuki E, Umezawa K, Spandidos DA, Berenson J, Daniels TR, Penichet ML, Jazirehi AR, Palladino M and Bonavida B: Inhibition of Yin Yang 1-dependent repressor activity of DR5 transcription and expression by the novel proteasome inhibitor NPI-0052 contributes to its TRAIL-enhanced apoptosis in cancer cells. J Immunol. 180:6199–6210. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Szliszka E and Krol W: The role of dietary polyphenols in tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis for cancer chemoprevention. Eur J Cancer Prev. 20:63–69. 2011. View Article : Google Scholar

7 

Szliszka E, Bronikowska J, Majcher A, Miszkiewicz J and Krol W: Enhanced sensitivity of hormone-refractory prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated cytotoxicity by taxanes. CEJ Urol. 62:29–34. 2009.

8 

Szliszka E, Bronikowska J, Czuba ZP and Krol W: Isoflavones augment the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on prostate cancer cells. CEJ Urol. 63:182–186. 2010.

9 

Szliszka E, Gebka J, Bronikowska J and Krol W: Dietary flavones enhance the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on bladder cancer cells. CEJ Urol. 63:138–143. 2010.

10 

Lee SJ, Noh HJ, Sung EG, Song IH, Kim JY, Kwon TK and Lee TJ: Berberine sensitizes TRAIL-induced apoptosis through proteasome-mediated downregulation of c-FLIP and Mcl-1 proteins. Int J Oncol. 38:485–492. 2011.PubMed/NCBI

11 

Fujiwara J, Sowa Y, Horinaka M, Koyama M, Wakada M, Miki T and Sakai T: The anti-obesity drug orlistat promotes sensitivity to TRAIL by two different pathways in hormone-refractory prostate cancer cells. Int J Oncol. 40:1483–1491. 2012.PubMed/NCBI

12 

Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M and Sakai T: The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Ther. 5:945–951. 2006. View Article : Google Scholar

13 

Jung YH, Heo J, Lee YJ, Kwon TK and Kim YH: Quercetin enhances TRAIL-mediated apoptosis in prostate cancer cells via increased protein stability of death receptor 5. Life Sci. 86:351–357. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Szliszka E, Czuba ZP, Mazur B, Paradysz A and Krol W: Chalcones and dihydrochalcones augment TRAIL-mediated apoptosis in prostate cancer cells. Molecules. 15:5336–5353. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Szliszka E, Czuba ZP, Sedek L, Paradysz A and Krol W: Enhanced TRAIL-mediated apoptosis in prostate cancer cells by the bioactive compounds neobavaisoflavone and psoralidin isolated from Psoralea corylifolia. Pharmacol Rep. 63:139–148. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Szliszka E, Czuba ZP, Bronikowska J, Mertas A, Paradysz A and Krol W: Ethanolic extract of propolis (EEP) augments TRAIL-induced apoptotic death in prostate cancer cells. Evid Based Complement Alternat Med. 2011:5351722011. View Article : Google Scholar : PubMed/NCBI

17 

Szliszka E, Zydowicz G, Janoszka B, Dobosz C, Kowalczyk-Ziomek G and Krol W: Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis. Int J Oncol. 38:941–953. 2011.PubMed/NCBI

18 

Szliszka E and Krol W: Soy isoflavones augment the effect of TRAIL-mediated apoptotic death in prostate cancer cells. Oncol Rep. 26:533–541. 2011.PubMed/NCBI

19 

Szliszka E, Helewski KJ, Mizgala E and Krol W: The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int J Oncol. 39:771–779. 2011.PubMed/NCBI

20 

Szliszka E, Czuba ZP, Mertas A, Paradysz A and Krol W: The dietary isoflavone biochanin-A sensitizes prostate cancer cells to TRAIL-induced apoptosis. Urol Oncol. http://dx.doi.org/10.1016/j.urolonc.2011.01.019urisimplehttp://dx.doi.org/10.1016/j.urolonc.2011.01.019. 2011, PubMed/NCBI

21 

Park YK, Paredes-Guzman JF, Aguiar CL, Alencar SM and Fujiwara FY: Chemical constituents in Baccharis dracunculifolia as the main botanical origin of southeastern Brazilian propolis. J Agric Food Chem. 52:1100–1113. 2004.

22 

Matsuda AH and de Almeida-Muradian LB: Validated method for the quantification of artepillin C in Brazilian propolis. Phytochem Anal. 19:179–183. 2008. View Article : Google Scholar : PubMed/NCBI

23 

de Sousa JP, Leite MF, Jorge RF, Resende DO, da Silva Filho AA, Furtado NA, Soares AE, Spadaro AC, de Magalhaes PM and Bastos JK: Seasonality role on the phenolics from cultivated Baccharis dracunculifolia. Evid Based Complement Alternat Med. 2011:4642892011.PubMed/NCBI

24 

Matsuno T, Jung SK, Matsumoto Y, Saito M and Morikawa J: Preferential cytotoxicity to tumor cells of 3,5-diprenyl-4-hydroxycinnamic acid (artepillin C) isolated from propolis. Anticancer Res. 17:3565–3568. 1997.PubMed/NCBI

25 

Kimoto T, Arai S, Kohguchi M, Aga M, Nomura Y, Micallef MJ, Kurimoto M and Mito K: Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis. Cancer Detect Prev. 22:506–515. 1998. View Article : Google Scholar : PubMed/NCBI

26 

Kimoto T, Aga M, Hino K, Koya-Miyata S, Yamamoto Y, Micallef MJ, Hanaya T, Arai S, Ikeda M and Kurimoto M: Apoptosis of human leukemia cells induced by artepillin C, an active ingredient of Brazilian propolis. Anticancer Res. 21:221–228. 2001.PubMed/NCBI

27 

Ahn MR, Kunimasa K, Ohta T, Kumazawa S, Kamihira M, Kaji K, Uto Y, Hori H, Nagasawa H and Nakayama T: Suppression of tumor-induced angiogenesis by Brazilian propolis: major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation. Cancer Lett. 252:235–243. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Paulino N, Abreu SR, Uto Y, Koyama D, Nagasawa H, Hori H, Dirsch VM, Vollmar AM, Scremin A and Bretz WA: Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur J Pharmacol. 587:296–301. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Ahn MR, Kunimasa K, Kumazawa S, Nakayama T, Kaji K, Uto Y, Hori H, Nagasawa H and Ohta T: Correlation between antiangiogenic activity and antioxidant activity of various components from propolis. Mol Nutr Food Res. 53:643–651. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Izuta H, Narahara Y, Shimazawa M, Mishima S, Kondo S and Hara H: 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity of bee products and their constituents determined by ESR. Biol Pharm Bull. 32:1947–1951. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Messerli SM, Ahn MR, Kunimasa K, Yanagihara M, Tatefuji T, Hashimoto K, Mautner V, Uto Y, Hori H, Kumazawa S, Kaji K, Ohta T and Maruta H: Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice. Phytother Res. 23:423–427. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Simoes-Ambrosio LM, Gregorio LE, Sousa JP, Figueiredo-Rinhel AS, Azzolini AE, Bastos JK and Lucisano-Valim YM: The role of seasonality on the inhibitory effect of Brazilian green propolis on the oxidative metabolism of neutrophils. Fitoterapia. 81:1102–1108. 2010. View Article : Google Scholar : PubMed/NCBI

33 

de Azevedo Bentes Monteiro Neto M, de Souza Lima IM, Furtado RA, Bastos JK, da Silva Filho AA and Tavares DC: Antigenotoxicity of artepillin C in vivo evaluated by the micronucleus and comet assays. J Appl Toxicol. 31:714–719. 2011.PubMed/NCBI

34 

Fonseca YM, Marquele-Oliveira F, Vicentini FT, Furtado NA, Sousa JP, Lucisano-Valim YM and Fonseca MJ: Evaluation of the potential of Brazilian propolis against UV-induced oxidative stress. Evid Based Complement Alternat Med. 2011:8639172010.PubMed/NCBI

35 

Moura SA, Negri G, Salatino A, Lima LD, Dourado LP, Mendes JB, Andrade SP, Ferreira MA and Cara DC: Aqueous extract of Brazilian green propolis: primary components, evaluation of inflammation and wound healing by using subcutaneous implanted sponges. Evid Based Complement Alternat Med. 2011:7482832011. View Article : Google Scholar

36 

Watanabe MA, Amarante MK, Conti BJ and Sforcin JM: Cytotoxic constituents of propolis inducing anticancer effects: a review. J Pharm Pharmacol. 63:1378–1386. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Androutsopoulos VP, Ruparelia K, Arroo RR, Tsatsakis AM and Spandidos DA: CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells. Toxicology. 264:162–170. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Androutsopoulos VP, Papakyriakou A, Vourloumis D, Tsatsakis AM and Spandidos DA: Dietary flavonoids in cancer therapy and prevention: substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol Ther. 126:9–20. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Androutsopoulos VP, Papakyriakou A, Vourloumis D and Spandidos DA: Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorg Med Chem. 19:2842–2849. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Davalli P, Rizzi F, Caldara GF, Davoli S, Corti A, Silva A, Astancolle S, Vitale M, Bettuzzi S, Arcari M and Azzali G: Chronic administration of green tea extract to TRAMP mice induces the collapse of Golgi apparatus in prostate secretory cells and results in alterations of protein post-translational processing. Int J Oncol. 39:1521–1527. 2011.PubMed/NCBI

41 

Onoda C, Kuribayashi K, Nirasawa S, Tsuji N, Tanaka M, Kobayashi D and Watanabe N: (−)-Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression. Int J Oncol. 38:1403–1408. 2011.

42 

Teiten MH, Gaascht F, Cronauer M, Henry E, Dicato M and Diederich M: Anti-proliferative potential of curcumin in androgen-dependent prostate cancer cells occurs through modulation of the Wingless signaling pathway. Int J Oncol. 38:603–611. 2011.

43 

Miki H, Uehara N, Kimura A, Sasaki T, Yuri T, Yoshizawa K and Tsubura A: Resveratrol induces apoptosis via ROS-triggered autophagy in human colon cancer cells. Int J Oncol. 40:1020–1028. 2012.PubMed/NCBI

44 

Marech I, Vacca A, Ranieri G, Gnoni A and Dammacco F: Novel strategies in the treatment of castration-resistant prostate cancer (Review). Int J Oncol. 40:1313–1320. 2012.PubMed/NCBI

45 

Venkateswaran V and Klotz LH: Diet and prostate cancer: mechanisms of action and implications for chemoprevention. Nat Rev Urol. 7:442–453. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Bronikowska J, Szliszka E, Czuba ZP, Zwolinski D, Szmydki B and Krol W: The combination of TRAIL and isoflavones enhances apoptosis in cancer cells. Molecules. 15:2000–2015. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Szliszka E, Czuba ZP, Domino M, Mazur B, Zydowicz G and Krol W: Ethanolic extract of propolis (EEP) enhances the apoptosis-inducing potential of TRAIL in cancer cells. Molecules. 14:738–754. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Szliszka E, Skaba D, Czuba ZP and Krol W: Inhibition of inflammatory mediators by neobavaisoflavone in activated RAW264.7 macrophages. Molecules. 16:3701–3712. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Szliszka E, Czuba ZP, Kawczyk-Krupka A, Sieron-Stoltny A, Sieron A and Krol W: Chlorin-based photodynamic therapy enhances the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in bladder cancer cells. Med Sci Monit. 18:BR47–BR53. 2012. View Article : Google Scholar

50 

Szliszka E, Mazur B, Zydowicz G, Czuba ZP and Krol W: TRAIL-induced apoptosis and expression of death receptor TRAIL-R1 and TRAIL-R2 in bladder cancer cells. Folia Histochem Cytobiol. 47:579–585. 2009.PubMed/NCBI

51 

Akao Y, Maruyama H, Matsumoto K, Ohguchi K, Nishizawa K, Sakamoto T, Araki Y, Mishima S and Nozawa Y: Cell growth inhibitory effect of cinnamic acid derivatives from propolis on human tumor cell lines. Biol Pharm Bull. 26:1057–1059. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Yoshida T, Konishi M, Horinaka M, Yasuda T, Goda AE, Taniguchi H, Yano K, Wakada M and Sakai T: Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochem Biophys Res Commun. 375:129–133. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Li X, Wang JN, Huang JM, Xiong XK, Chen MF, Ong CN, Shen HM and Yang XF: Chrysin promotes tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced apoptosis in human cancer cell lines. Toxicol In Vitro. 25:630–635. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Baritaki S, Militello L, Malaponte G, Spandidos DA, Salcedo M and Bonavida B: The anti-CD20 mAb LFB-R603 interrupts the dysregulated NF-κB/Snail/RKIP/PTEN resistance loop in B-NHL cells: Role in sensitization to TRAIL apoptosis. Int J Oncol. 38:1683–1694. 2011.PubMed/NCBI

Related Articles

Journal Cover

September 2012
Volume 41 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Szliszka, E., Zydowicz, G., Mizgala, E., & Krol, W. (2012). Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis. International Journal of Oncology, 41, 818-828. https://doi.org/10.3892/ijo.2012.1527
MLA
Szliszka, E., Zydowicz, G., Mizgala, E., Krol, W."Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis". International Journal of Oncology 41.3 (2012): 818-828.
Chicago
Szliszka, E., Zydowicz, G., Mizgala, E., Krol, W."Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis". International Journal of Oncology 41, no. 3 (2012): 818-828. https://doi.org/10.3892/ijo.2012.1527