Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
March-2015 Volume 46 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2015 Volume 46 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review)

  • Authors:
    • Panagiotis Papageorgis
    • Triantafyllos Stylianopoulos
  • View Affiliations / Copyright

    Affiliations: Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
    Copyright: © Papageorgis et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 933-943
    |
    Published online on: January 7, 2015
       https://doi.org/10.3892/ijo.2015.2816
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Deregulation of cell signaling homeostasis is a predominant feature of cancer initiation and progression. Transforming growth factor β (TGFβ) is a pleiotropic cytokine, which regulates numerous biological processes of various tissues in an autocrine and paracrine manner. Aberrant activity of TGFβ signaling is well known to play dual roles in cancer, depending on tumor stage and cellular context. The crucial roles of TGFβ in modulating the tumor microenvironment, its contribution to the accumulation of mechanical forces within the solid constituents of a tumor and its effects on the effective delivery of drugs are also becoming increasingly clear. In this review, we discuss the latest advances in the efforts to unravel the effects of TGFβ signaling in various components of the tumor microenvironment and how these influence the generation of forces and the efficacy of drugs. We also report the implications of tumor mechanics in cancer therapy and the potential usage of anti‑TGFβ agents to enhance drug delivery and augment existing therapeutic approaches. These findings provide new insights towards the significance of targeting TGFβ pathway to enhance personalized tumor treatment.
View Figures

Figure 1

Figure 2

View References

1 

Derynck R and Akhurst RJ: Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol. 9:1000–1004. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Wakefield LM and Hill CS: Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat Rev Cancer. 13:328–341. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Massagué J, Seoane J and Wotton D: Smad transcription factors. Genes Dev. 19:2783–2810. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Annes JP, Munger JS and Rifkin DB: Making sense of latent TGFbeta activation. J Cell Sci. 116:217–224. 2003. View Article : Google Scholar

5 

Gleizes PE, Beavis RC, Mazzieri R, Shen B and Rifkin DB: Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta1. J Biol Chem. 271:29891–29896. 1996. View Article : Google Scholar : PubMed/NCBI

6 

Miyazono K, Olofsson A, Colosetti P and Heldin CH: A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1. EMBO J. 10:1091–1101. 1991.PubMed/NCBI

7 

Saharinen J, Taipale J and Keski-Oja J: Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J. 15:245–253. 1996.PubMed/NCBI

8 

Unsöld C, Hyytiäinen M, Bruckner-Tuderman L and Keski-Oja J: Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J Cell Sci. 114:187–197. 2001.

9 

Nunes I, Gleizes PE, Metz CN and Rifkin DB: Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol. 136:1151–1163. 1997. View Article : Google Scholar : PubMed/NCBI

10 

Lawrence DA, Pircher R, Krycève-Martinerie C and Jullien P: Normal embryo fibroblasts release transforming growth factors in a latent form. J Cell Physiol. 121:184–188. 1984. View Article : Google Scholar : PubMed/NCBI

11 

Crawford SE, Stellmach V, Murphy-Ullrich JE, et al: Thrombospondin-1 is a major activator of TGF-beta1 in vivo. Cell. 93:1159–1170. 1998. View Article : Google Scholar : PubMed/NCBI

12 

Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M and Murphy-Ullrich JE: The activation sequence of thrombos-pondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem. 274:13586–13593. 1999. View Article : Google Scholar : PubMed/NCBI

13 

Dubois CM, Laprise MH, Blanchette F, Gentry LE and Leduc R: Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem. 270:10618–10624. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Sato Y and Rifkin DB: Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J Cell Biol. 109:309–315. 1989. View Article : Google Scholar : PubMed/NCBI

15 

Yu Q and Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 14:163–176. 2000.PubMed/NCBI

16 

Derynck R, Zhang Y and Feng XH: Smads: transcriptional activators of TGF-beta responses. Cell. 95:737–740. 1998. View Article : Google Scholar : PubMed/NCBI

17 

Massagué J: TGF-beta signal transduction. Annu Rev Biochem. 67:753–791. 1998. View Article : Google Scholar : PubMed/NCBI

18 

Riggins GJ, Thiagalingam S, Rozenblum E, et al: Mad-related genes in the human. Nat Genet. 13:347–349. 1996. View Article : Google Scholar : PubMed/NCBI

19 

Lagna G, Hata A, Hemmati-Brivanlou A and Massagué J: Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature. 383:832–836. 1996. View Article : Google Scholar : PubMed/NCBI

20 

Nakao A, Imamura T, Souchelnytskyi S, et al: TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16:5353–5362. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Heldin CH, Miyazono K and ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471. 1997. View Article : Google Scholar : PubMed/NCBI

22 

Bierie B and Moses HL: Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 6:506–520. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Lewis KA, Gray PC, Blount AL, et al: Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature. 404:411–414. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Wrana JL, Attisano L, Wieser R, Ventura F and Massagué J: Mechanism of activation of the TGF-beta receptor. Nature. 370:341–347. 1994. View Article : Google Scholar : PubMed/NCBI

25 

Shi Y and Massagué J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Miyazono K, Maeda S and Imamura T: BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16:251–263. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Derynck R and Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 425:577–584. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Abdollah S, Macías-Silva M, Tsukazaki T, Hayashi H, Attisano L and Wrana JL: TbetaRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem. 272:27678–27685. 1997. View Article : Google Scholar : PubMed/NCBI

29 

Zhang Y, Feng X, We R and Derynck R: Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 383:168–172. 1996. View Article : Google Scholar : PubMed/NCBI

30 

Tsukazaki T, Chiang TA, Davison AF, Attisano L and Wrana JL: SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 95:779–791. 1998. View Article : Google Scholar : PubMed/NCBI

31 

Feng XH, Zhang Y, Wu RY and Derynck R: The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev. 12:2153–2163. 1998. View Article : Google Scholar : PubMed/NCBI

32 

Janknecht R, Wells NJ and Hunter T: TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 12:2114–2119. 1998. View Article : Google Scholar : PubMed/NCBI

33 

Itoh S, Ericsson J, Nishikawa J, Heldin CH and ten Dijke P: The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res. 28:4291–4298. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Bai RY, Koester C, Ouyang T, et al: SMIF, a Smad4-interacting protein that functions as a co-activator in TGFbeta signalling. Nat Cell Biol. 4:181–190. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Chen CR, Kang Y, Siegel PM and Massagué J: E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell. 110:19–32. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Kang Y, Chen CR and Massagué J: A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell. 11:915–926. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Wotton D, Knoepfler PS, Laherty CD, Eisenman RN and Massagué J: The Smad transcriptional corepressor TGIF recruits mSin3. Cell Growth Differ. 12:457–463. 2001.PubMed/NCBI

38 

Akiyoshi S, Inoue H, Hanai J, et al: c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem. 274:35269–35277. 1999. View Article : Google Scholar : PubMed/NCBI

39 

Luo K, Stroschein SL, Wang W, et al: The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 13:2196–2206. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Stroschein SL, Wang W, Zhou S, Zhou Q and Luo K: Negative feedback regulation of TGF-beta signaling by the SnoN onco-protein. Science. 286:771–774. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF and Weinberg RA: Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol Cell. 4:499–509. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Seoane J, Le HV, Shen L, Anderson SA and Massagué J: Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 117:211–223. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Pardali K, Kurisaki A, Morén A, ten Dijke P, Kardassis D and Moustakas A: Role of Smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor-beta. J Biol Chem. 275:29244–29256. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Zhang Y, Feng XH and Derynck R: Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature. 394:909–913. 1998. View Article : Google Scholar : PubMed/NCBI

45 

Lin X, Liang YY, Sun B, et al: Smad6 recruits transcription corepressor CtBP to repress bone morphogenetic protein-induced transcription. Mol Cell Biol. 23:9081–9093. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Peng Y, Zhao S, Song L, Wang M and Jiao K: Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts. Biochem Biophys Res Commun. 441:751–756. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K and Hirai H: The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood. 97:2815–2822. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Xi Q, Wang Z, Zaromytidou AI, et al: A poised chromatin platform for TGF-β access to master regulators. Cell. 147:1511–1524. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Ross S, Cheung E, Petrakis TG, Howell M, Kraus WL and Hill CS: Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO J. 25:4490–4502. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Papageorgis P, Lambert AW, Ozturk S, et al: Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer Res. 70:968–978. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Nakao A, Afrakhte M, Morén A, et al: Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 389:631–635. 1997. View Article : Google Scholar : PubMed/NCBI

52 

Itóh S, Landström M, Hermansson A, et al: Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J Biol Chem. 273:29195–29201. 1998. View Article : Google Scholar : PubMed/NCBI

53 

Hayashi H, Abdollah S, Qiu Y, et al: The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell. 89:1165–1173. 1997. View Article : Google Scholar : PubMed/NCBI

54 

Ebisawa T, Fukuchi M, Murakami G, et al: Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 276:12477–12480. 2001. View Article : Google Scholar : PubMed/NCBI

55 

Kavsak P, Rasmussen RK, Causing CG, et al: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 6:1365–1375. 2000. View Article : Google Scholar

56 

Zhang S, Fei T, Zhang L, et al: Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol. 27:4488–4499. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Zhang YE: Non-Smad pathways in TGF-beta signaling. Cell Res. 19:128–139. 2009. View Article : Google Scholar :

58 

Hartsough MT and Mulder KM: Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem. 270:7117–7124. 1995. View Article : Google Scholar : PubMed/NCBI

59 

Frey RS and Mulder KM: TGFbeta regulation of mitogen-activated protein kinases in human breast cancer cells. Cancer Lett. 117:41–50. 1997. View Article : Google Scholar : PubMed/NCBI

60 

Papageorgis P, Cheng K, Ozturk S, et al: Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res. 71:998–1008. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Finlay GA, Thannickal VJ, Fanburg BL and Paulson KE: Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor. J Biol Chem. 275:27650–27656. 2000.PubMed/NCBI

62 

Vinals F and Pouysségur J: Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol. 21:7218–7230. 2001. View Article : Google Scholar : PubMed/NCBI

63 

Ellenrieder V, Hendler SF, Boeck W, et al: Transforming growth factor beta1 treatment leads to an epithelial-mesenchymal transdifferentiation of pancreatic cancer cells requiring extra-cellular signal-regulated kinase 2 activation. Cancer Res. 61:4222–4228. 2001.PubMed/NCBI

64 

Xie L, Law BK, Chytil AM, Brown KA, Aakre ME and Moses HL: Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 6:603–610. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Lee MK, Pardoux C, Hall MC, et al: TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 26:3957–3967. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Liao JH, Chen JS, Chai MQ, Zhao S and Song JG: The involvement of p38 MAPK in transforming growth factor beta1-induced apoptosis in murine hepatocytes. Cell Res. 11:89–94. 2001. View Article : Google Scholar : PubMed/NCBI

67 

Kimura N, Matsuo R, Shibuya H, Nakashima K and Taga T: BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem. 275:17647–17652. 2000. View Article : Google Scholar : PubMed/NCBI

68 

Bakin AV, Rinehart C, Tomlinson AK and Arteaga CL: p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci. 115:3193–3206. 2002.PubMed/NCBI

69 

Hocevar BA, Brown TL and Howe PH: TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 18:1345–1356. 1999. View Article : Google Scholar : PubMed/NCBI

70 

Yu L, Hébert MC and Zhang YE: TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 21:3749–3759. 2002. View Article : Google Scholar : PubMed/NCBI

71 

Yamaguchi K, Shirakabe K, Shibuya H, et al: Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science. 270:2008–2011. 1995. View Article : Google Scholar : PubMed/NCBI

72 

Shim JH, Xiao C, Paschal AE, et al: TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19:2668–2681. 2005. View Article : Google Scholar : PubMed/NCBI

73 

Sorrentino A, Thakur N, Grimsby S, et al: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 10:1199–1207. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Yamashita M, Fatyol K, Jin C, Wang X, Liu Z and Zhang YE: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell. 31:918–924. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Zhang L, Wang W, Hayashi Y, et al: A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure. EMBO J. 22:4443–4454. 2003. View Article : Google Scholar : PubMed/NCBI

76 

Kim KY, Kim BC, Xu Z and Kim SJ: Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J Biol Chem. 279:29478–29484. 2004. View Article : Google Scholar : PubMed/NCBI

77 

Jaffe AB and Hall A: Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 21:247–269. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Bhowmick NA, Ghiassi M, Bakin A, et al: Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 12:27–36. 2001. View Article : Google Scholar : PubMed/NCBI

79 

Edlund S, Landström M, Heldin CH and Aspenström P: Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell. 13:902–914. 2002. View Article : Google Scholar : PubMed/NCBI

80 

Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y and Wrana JL: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 307:1603–1609. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL and Arteaga CL: Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 275:36803–36810. 2000. View Article : Google Scholar : PubMed/NCBI

82 

Shin I, Bakin AV, Rodeck U, Brunet A and Arteaga CL: Transforming growth factor beta enhances epithelial cell survival via Akt-dependent regulation of FKHRL1. Mol Biol Cell. 12:3328–3339. 2001. View Article : Google Scholar : PubMed/NCBI

83 

Hidalgo M and Rowinsky EK: The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene. 19:6680–6686. 2000. View Article : Google Scholar

84 

Lamouille S and Derynck R: Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol. 178:437–451. 2007. View Article : Google Scholar : PubMed/NCBI

85 

Roberts AB and Wakefield LM: The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA. 100:8621–8623. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Tang B, Vu M, Booker T, et al: TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest. 112:1116–1124. 2003. View Article : Google Scholar : PubMed/NCBI

87 

Wakefield LM and Roberts AB: TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev. 12:22–29. 2002. View Article : Google Scholar : PubMed/NCBI

88 

Siegel PM, Shu W, Cardiff RD, Muller WJ and Massagué J: Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA. 100:8430–8435. 2003. View Article : Google Scholar : PubMed/NCBI

89 

Siegel PM and Massagué J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 3:807–821. 2003. View Article : Google Scholar : PubMed/NCBI

90 

Choi ME and Ballermann BJ: Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-beta receptors. J Biol Chem. 270:21144–21150. 1995. View Article : Google Scholar : PubMed/NCBI

91 

Hyman KM, Seghezzi G, Pintucci G, et al: Transforming growth factor-beta1 induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein kinase. Surgery. 132:173–179. 2002. View Article : Google Scholar : PubMed/NCBI

92 

Rich JN, Zhang M, Datto MB, Bigner DD and Wang XF: Transforming growth factor-beta-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem. 274:35053–35058. 1999. View Article : Google Scholar : PubMed/NCBI

93 

Yang X, Letterio JJ, Lechleider RJ, et al: Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 18:1280–1291. 1999. View Article : Google Scholar : PubMed/NCBI

94 

Laiho M, DeCaprio JA, Ludlow JW, Livingston DM and Massagué J: Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell. 62:175–185. 1990. View Article : Google Scholar : PubMed/NCBI

95 

Hannon GJ and Beach D: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 371:257–261. 1994. View Article : Google Scholar : PubMed/NCBI

96 

Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y and Wang XF: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA. 92:5545–5549. 1995. View Article : Google Scholar : PubMed/NCBI

97 

Polyak K, Kato JY, Solomon MJ, et al: p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 8:9–22. 1994. View Article : Google Scholar : PubMed/NCBI

98 

Pietenpol JA, Stein RW, Moran E, et al: TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell. 61:777–785. 1990. View Article : Google Scholar : PubMed/NCBI

99 

Norton JD: ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci. 113:3897–3905. 2000.PubMed/NCBI

100 

Grotendorst GR: Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 8:171–179. 1997. View Article : Google Scholar

101 

Park K, Kim SJ, Bang YJ, et al: Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci USA. 91:8772–8776. 1994. View Article : Google Scholar : PubMed/NCBI

102 

Kim IY, Ahn HJ, Zelner DJ, et al: Genetic change in transforming growth factor beta (TGF-beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in human prostate cancer cells. Cancer Res. 56:44–48. 1996.PubMed/NCBI

103 

Markowitz S, Wang J, Myeroff L, et al: Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 268:1336–1338. 1995. View Article : Google Scholar : PubMed/NCBI

104 

Riggins GJ, Kinzler KW, Vogelstein B and Thiagalingam S: Frequency of Smad gene mutations in human cancers. Cancer Res. 57:2578–2580. 1997.PubMed/NCBI

105 

Schutte M, Hruban RH, Hedrick L, et al: DPC4 gene in various tumor types. Cancer Res. 56:2527–2530. 1996.PubMed/NCBI

106 

Eppert K, Scherer SW, Ozcelik H, et al: MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 86:543–552. 1996. View Article : Google Scholar : PubMed/NCBI

107 

Hahn SA, Hoque AT, Moskaluk CA, et al: Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res. 56:490–494. 1996.PubMed/NCBI

108 

Hahn SA, Schutte M, Hoque AT, et al: DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 271:350–353. 1996. View Article : Google Scholar : PubMed/NCBI

109 

Thiagalingam S, Lengauer C, Leach FS, et al: Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet. 13:343–346. 1996. View Article : Google Scholar : PubMed/NCBI

110 

Schwarte-Waldhoff I, Volpert OV, Bouck NP, et al: Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA. 97:9624–9629. 2000. View Article : Google Scholar : PubMed/NCBI

111 

Kretzschmar M, Doody J, Timokhina I and Massagué J: A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev. 13:804–816. 1999. View Article : Google Scholar : PubMed/NCBI

112 

Kretzschmar M, Doody J and Massagué J: Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature. 389:618–622. 1997. View Article : Google Scholar : PubMed/NCBI

113 

Massagué J: Integration of Smad and MAPK pathways: a link and a linker revisited. Genes Dev. 17:2993–2997. 2003. View Article : Google Scholar

114 

Gomis RR, Alarcón C, Nadal C, Van Poznak C and Massagué J: C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell. 10:203–214. 2006. View Article : Google Scholar : PubMed/NCBI

115 

Padua D, Zhang XH, Wang Q, et al: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133:66–77. 2008. View Article : Google Scholar : PubMed/NCBI

116 

Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI

117 

Yang J, Mani SA, Donaher JL, et al: Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 117:927–939. 2004. View Article : Google Scholar : PubMed/NCBI

118 

Xu J, Lamouille S and Derynck R: TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19:156–172. 2009. View Article : Google Scholar : PubMed/NCBI

119 

Cano A, Pérez-Moreno MA, Rodrigo I, et al: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2:76–83. 2000. View Article : Google Scholar : PubMed/NCBI

120 

Savagner P, Yamada KM and Thiery JP: The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol. 137:1403–1419. 1997. View Article : Google Scholar : PubMed/NCBI

121 

Eger A, Aigner K, Sonderegger S, et al: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 24:2375–2385. 2005. View Article : Google Scholar : PubMed/NCBI

122 

Comijn J, Berx G, Vermassen P, et al: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 7:1267–1278. 2001. View Article : Google Scholar : PubMed/NCBI

123 

Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH and Moustakas A: Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol. 174:175–183. 2006. View Article : Google Scholar : PubMed/NCBI

124 

Mani SA, Yang J, Brooks M, et al: Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA. 104:10069–10074. 2007. View Article : Google Scholar : PubMed/NCBI

125 

Derynck R, Akhurst RJ and Balmain A: TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 29:117–129. 2001. View Article : Google Scholar : PubMed/NCBI

126 

Yang J and Weinberg RA: Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI

127 

Zhu B, Fukada K, Zhu H and Kyprianou N: Prohibitin and cofilin are intracellular effectors of transforming growth factor beta signaling in human prostate cancer cells. Cancer Res. 66:8640–8647. 2006. View Article : Google Scholar : PubMed/NCBI

128 

Deckers M, van Dinther M, Buijs J, et al: The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res. 66:2202–2209. 2006. View Article : Google Scholar : PubMed/NCBI

129 

Kang Y and Massagué J: Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 118:277–279. 2004. View Article : Google Scholar : PubMed/NCBI

130 

Grande JP: Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med. 214:27–40. 1997. View Article : Google Scholar : PubMed/NCBI

131 

Singer AJ and Clark RA: Cutaneous wound healing. N Engl J Med. 341:738–746. 1999. View Article : Google Scholar : PubMed/NCBI

132 

Pickup M, Novitskiy S and Moses HL: The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 13:788–799. 2013. View Article : Google Scholar : PubMed/NCBI

133 

Dalal BI, Keown PA and Greenberg AH: Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol. 143:381–389. 1993.PubMed/NCBI

134 

Kingsley LA, Fournier PG, Chirgwin JM and Guise TA: Molecular biology of bone metastasis. Mol Cancer Ther. 6:2609–2617. 2007. View Article : Google Scholar : PubMed/NCBI

135 

Prud’homme GJ: Pathobiology of transforming growth factor beta in cancer, fibrosis and immunologic disease, and therapeutic considerations. Lab Invest. 87:1077–1091. 2007. View Article : Google Scholar

136 

Wrzesinski SH, Wan YY and Flavell RA: Transforming growth factor-beta and the immune response: implications for anti-cancer therapy. Clin Cancer Res. 13:5262–5270. 2007. View Article : Google Scholar : PubMed/NCBI

137 

Akhurst RJ and Hata A: Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov. 11:790–811. 2012. View Article : Google Scholar : PubMed/NCBI

138 

Flavell RA, Sanjabi S, Wrzesinski SH and Licona-Limón P: The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol. 10:554–567. 2010. View Article : Google Scholar : PubMed/NCBI

139 

Laouar Y, Sutterwala FS, Gorelik L and Flavell RA: Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol. 6:600–607. 2005. View Article : Google Scholar : PubMed/NCBI

140 

Rubtsov YP and Rudensky AY: TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol. 7:443–453. 2007. View Article : Google Scholar : PubMed/NCBI

141 

Mantovani A, Sozzani S, Locati M, Allavena P and Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI

142 

Gong D, Shi W, Yi SJ, Chen H, Groffen J and Heisterkamp N: TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 13:312012. View Article : Google Scholar

143 

Fridlender ZG, Sun J, Kim S, et al: Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI

144 

Yamaguchi Y, Tsumura H, Miwa M and Inaba K: Contrasting effects of TGF-beta 1 and TNF-alpha on the development of dendritic cells from progenitors in mouse bone marrow. Stem Cells. 15:144–153. 1997. View Article : Google Scholar : PubMed/NCBI

145 

Ramesh S, Wildey GM and Howe PH: Transforming growth factor beta (TGFbeta)-induced apoptosis: the rise & fall of Bim. Cell Cycle. 8:11–17. 2009. View Article : Google Scholar

146 

Marcoe JP, Lim JR, Schaubert KL, et al: TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy. Nat Immunol. 13:843–850. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Wipff PJ, Rifkin DB, Meister JJ and Hinz B: Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 179:1311–1323. 2007. View Article : Google Scholar : PubMed/NCBI

148 

Wipff PJ and Hinz B: Myofibroblasts work best under stress. J Bodyw Mov Ther. 13:121–127. 2009. View Article : Google Scholar : PubMed/NCBI

149 

Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C and Brown RA: Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 3:349–363. 2002. View Article : Google Scholar : PubMed/NCBI

150 

Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH and Diamandis EP: Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res. 10:1403–1418. 2012. View Article : Google Scholar : PubMed/NCBI

151 

Paszek MJ, Zahir N, Johnson KR, et al: Tensional homeostasis and the malignant phenotype. Cancer Cell. 8:241–254. 2005. View Article : Google Scholar : PubMed/NCBI

152 

Samuel MS, Lopez JI, McGhee EJ, et al: Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell. 19:776–791. 2011. View Article : Google Scholar : PubMed/NCBI

153 

Branton MH and Kopp JB: TGF-beta and fibrosis. Microbes Infect. 1:1349–1365. 1999. View Article : Google Scholar : PubMed/NCBI

154 

Egeblad M, Rasch MG and Weaver VM: Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol. 22:697–706. 2010. View Article : Google Scholar : PubMed/NCBI

155 

Smith NR, Baker D, Farren M, et al: Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin Cancer Res. 19:6943–6956. 2013. View Article : Google Scholar : PubMed/NCBI

156 

Stylianopoulos T and Jain RK: Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci USA. 110:18632–18637. 2013. View Article : Google Scholar : PubMed/NCBI

157 

Stylianopoulos T, Martin JD, Chauhan VP, et al: Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci USA. 109:15101–15108. 2012. View Article : Google Scholar : PubMed/NCBI

158 

Demou ZN: Gene expression profiles in 3D tumor analogs indicate compressive strain differentially enhances metastatic potential. Ann Biomed Eng. 38:3509–3520. 2010. View Article : Google Scholar : PubMed/NCBI

159 

Tse JM, Cheng G, Tyrrell JA, et al: Mechanical compression drives cancer cells toward invasive phenotype. Proc Natl Acad Sci USA. 109:911–916. 2012. View Article : Google Scholar :

160 

Chauhan VP, Martin JD, Liu H, et al: Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumor blood vessels. Nat Commun. 4:25162013. View Article : Google Scholar

161 

Facciabene A, Peng X, Hagemann IS, et al: Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 475:226–230. 2011. View Article : Google Scholar : PubMed/NCBI

162 

Wilson WR and Hay MP: Targeting hypoxia in cancer therapy. Nat Rev Cancer. 11:393–410. 2011. View Article : Google Scholar : PubMed/NCBI

163 

Jain RK, Martin JD and Stylianopoulos T: The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng. 16:321–346. 2014. View Article : Google Scholar : PubMed/NCBI

164 

Jain RK and Stylianopoulos T: Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 7:653–664. 2010. View Article : Google Scholar : PubMed/NCBI

165 

Chauhan VP and Jain RK: Strategies for advancing cancer nanomedicine. Nat Mater. 12:958–962. 2013. View Article : Google Scholar : PubMed/NCBI

166 

Popovi Z, Liu W, Chauhan VP, et al: A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl. 49:8649–8652. 2010. View Article : Google Scholar

167 

Stylianopoulos T, Poh MZ, Insin N, et al: Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J. 99:1342–1349. 2010. View Article : Google Scholar : PubMed/NCBI

168 

Zhong Z, Carroll KD, Policarpio D, et al: Anti-transforming growth factor beta receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multi-effects on cancer, stroma, and immune cells. Clin Cancer Res. 16:1191–1205. 2010. View Article : Google Scholar : PubMed/NCBI

169 

Uhl M, Aulwurm S, Wischhusen J, et al: SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res. 64:7954–7961. 2004. View Article : Google Scholar : PubMed/NCBI

170 

Kim S, Buchlis G, Fridlender ZG, et al: Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res. 68:10247–10256. 2008. View Article : Google Scholar : PubMed/NCBI

171 

Chakrabarti R, Subramaniam V, Abdalla S, Jothy S and Prud’homme GJ: Tranilast inhibits the growth and metastasis of mammary carcinoma. Anticancer Drugs. 20:334–345. 2009. View Article : Google Scholar : PubMed/NCBI

172 

Achyut BR, Bader DA, Robles AI, et al: Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet. 9:e10032512013. View Article : Google Scholar

173 

Bragado P, Estrada Y, Parikh F, et al: TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat Cell Biol. 15:1351–1361. 2013. View Article : Google Scholar : PubMed/NCBI

174 

Biswas T, Gu X, Yang J, Ellies LG and Sun LZ: Attenuation of TGF-β signaling supports tumor progression of a mesenchymal-like mammary tumor cell line in a syngeneic murine model. Cancer Lett. 346:129–138. 2014. View Article : Google Scholar

175 

Stockmann C, Doedens A, Weidemann A, et al: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 456:814–818. 2008. View Article : Google Scholar : PubMed/NCBI

176 

Rhim AD, Mirek ET, Aiello NM, et al: EMT and dissemination precede pancreatic tumor formation. Cell. 148:349–361. 2012. View Article : Google Scholar : PubMed/NCBI

177 

Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y and Jain RK: Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc Natl Acad Sci USA. 108:2909–2914. 2011. View Article : Google Scholar : PubMed/NCBI

178 

Wilop S, von Hobe S, Crysandt M, Esser A, Osieka R and Jost E: Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J Cancer Res Clin Oncol. 135:1429–1435. 2009. View Article : Google Scholar : PubMed/NCBI

179 

Keizman D, Huang P, Eisenberger MA, et al: Angiotensin system inhibitors and outcome of sunitinib treatment in patients with metastatic renal cell carcinoma: a retrospective examination. Eur J Cancer. 47:1955–1961. 2011. View Article : Google Scholar : PubMed/NCBI

180 

Nakai Y, Isayama H, Ijichi H, et al: Phase I trial of gemcitabine and candesartan combination therapy in normotensive patients with advanced pancreatic cancer: GECA1. Cancer Sci. 103:1489–1492. 2012. View Article : Google Scholar : PubMed/NCBI

181 

Liu J, Liao S, Diop-Frimpong B, et al: TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci USA. 109:16618–16623. 2012. View Article : Google Scholar

182 

Kozono S, Ohuchida K, Eguchi D, et al: Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res. 73:2345–2356. 2013. View Article : Google Scholar : PubMed/NCBI

183 

Bouquet F, Pal A, Pilones KA, et al: TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res. 17:6754–6765. 2011. View Article : Google Scholar : PubMed/NCBI

184 

Zhang M, Kleber S, Röhrich M, et al: Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 71:7155–7167. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Papageorgis P and Stylianopoulos T: Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review). Int J Oncol 46: 933-943, 2015.
APA
Papageorgis, P., & Stylianopoulos, T. (2015). Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review). International Journal of Oncology, 46, 933-943. https://doi.org/10.3892/ijo.2015.2816
MLA
Papageorgis, P., Stylianopoulos, T."Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review)". International Journal of Oncology 46.3 (2015): 933-943.
Chicago
Papageorgis, P., Stylianopoulos, T."Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review)". International Journal of Oncology 46, no. 3 (2015): 933-943. https://doi.org/10.3892/ijo.2015.2816
Copy and paste a formatted citation
x
Spandidos Publications style
Papageorgis P and Stylianopoulos T: Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review). Int J Oncol 46: 933-943, 2015.
APA
Papageorgis, P., & Stylianopoulos, T. (2015). Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review). International Journal of Oncology, 46, 933-943. https://doi.org/10.3892/ijo.2015.2816
MLA
Papageorgis, P., Stylianopoulos, T."Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review)". International Journal of Oncology 46.3 (2015): 933-943.
Chicago
Papageorgis, P., Stylianopoulos, T."Role of TGFβ in regulation of the tumor microenvironment and drug delivery (Review)". International Journal of Oncology 46, no. 3 (2015): 933-943. https://doi.org/10.3892/ijo.2015.2816
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team