Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
January-2020 Volume 56 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2020 Volume 56 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?

  • Authors:
    • Andrea Ritter
    • Marc Hirschfeld
    • Kai Berner
    • Gerta Rücker
    • Markus Jäger
    • Daniela Weiss
    • Markus Medl
    • Claudia Nöthling
    • Sandra Gassner
    • Jasmin Asberger
    • Thalia Erbes
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany, Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
    Copyright: © Ritter et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
  • Pages: 47-68
    |
    Published online on: November 25, 2019
       https://doi.org/10.3892/ijo.2019.4920
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy‑based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum‑ or urine‑based analyses of non‑coding RNA (ncRNA) expression may allow for fast, minimally‑invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer‑related ncRNAs [microRNA (miR)‑7, ‑9, ‑15a, ‑17, ‑18a, ‑19b, ‑21, ‑30b, ‑222 and ‑320c, PIWI‑interacting RNA‑36743 and GlyCCC2] in triple positive BT‑474 cells and three TNBC cell lines (BT‑20, HS‑578T and MDA‑MB‑231) treated with various chemotherapeutic agents using reverse transcription‑quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy‑driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two‑sample t‑tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT‑474 cell line in intra‑ and extracellular compartments. Serum and urine‑based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR‑36743, miR‑17, ‑19b and ‑30b expression levels and an NACT‑driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy‑based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

World Health Organization IAfRoC: Cancer Today. 2018, https://gco.iarc.fr/today/home. Accessed April 4, 2019.

2 

DeSantis C, Ma J, Bryan L and Jemal A: Breast cancer statistics, 2013. CA Cancer J Clin. 64:52–62. 2014. View Article : Google Scholar

3 

Early Breast Cancer Trialists' Collaborative Group (EBCTCG): Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet. 365:1687–1717. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X and Perou CM: Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12:R682010. View Article : Google Scholar : PubMed/NCBI

5 

Pérou CM, Sprlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Sprlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 98:10869–10874. 2001. View Article : Google Scholar

7 

Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, Thürlimann B, Senn HJ and Panel Members: Tailoring therapies-improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 20l5. Ann Oncol. 26:1533–1546. 2015. View Article : Google Scholar : PubMed/NCBI

8 

American Cancer Society: Breast CancerFacts &Figures. 2017-2018, American Cancer Society; Atlanta, GA: 2017, https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-stati-stics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2017-2018.pdf. Accessed April 02, 2019.

9 

Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, et al: Basal-like and triple-negative breast cancers: A critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 24:157–167. 2011. View Article : Google Scholar

10 

Plasilova ML, Hayse B, Killelea BK, Horowitz NR, Chagpar AB and Lannin DR: Features of triple-negative breast cancer: Analysis of 38,813 cases from the national cancer database. Medicine (Baltimore). 95:e46142016. View Article : Google Scholar

11 

Yeh J, Chun J, Schwartz S, Wang A, Kern E, Guth AA, Axelrod D, Shapiro R and Schnabel F: Clinical characteristics in patients with triple negative breast cancer. Int J Breast Cancer. 2017:17961452017. View Article : Google Scholar : PubMed/NCBI

12 

Anders CK and Carey LA: Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer. 9(Suppl 2): S73–S81. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 121:2750–2767. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Toft DJ and Cryns VL: Minireview: Basal-like breast cancer: From molecular profiles to targeted therapies. Mol Endocrinol. 25:199–211. 2011. View Article : Google Scholar :

15 

Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P and Birnbaum D: How basal are triple-negative breast cancers? Int J Cancer. 123:236–240. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Harbeck N and Gnant M: Breast cancer. Lancet. 389:1134–1150. 2017. View Article : Google Scholar

17 

Mieog JS, van der Hage JA and van de Velde CJ: Neoadjuvant chemotherapy for operable breast cancer. Br J Surg. 94:1189–1200. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Mieog JS, van der Hage JA and van de Velde CJ: Preoperative chemotherapy for women with operable breast cancer. Cochrane Database Syst Rev. CD0050022007.PubMed/NCBI

19 

Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerham DL, Begovic M, DeCillis A, Robidoux A, et al: Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 16:2672–2685. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, Margolese RG, Hoehn JL, Vogel VG, Dakhil SR, et al: Preoperative chemotherapy: Updates of National surgical adjuvant breast and bowel project protocols B-18 and B-27. J Clin Oncol. 26:778–785. 2008. View Article : Google Scholar : PubMed/NCBI

21 

van der Hage JA, van de Velde CJ, Julien JP, Tubiana-Hulin M, Vandervelden C and Duchateau L: Preoperative chemotherapy in primary operable breast cancer: Results from the European organization for research and treatment of cancer trial 10902. J Clin Oncol. 19:4224–4237. 2001. View Article : Google Scholar : PubMed/NCBI

22 

von Minckwitz G, Untch M, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, Gerber B, Eiermann W, Hilfrich J, Huober J, et al: Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 30:1796–1804. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Berruti A, Amoroso V, Gallo F, Bertaglia V, Simoncini E, Pedersini R, Ferrari L, Bottini A, Bruzzi P and Sormani MP: Pathologic complete response as a potential surrogate for the clinical outcome in patients with breast cancer after neoadjuvant therapy: A meta-regression of 29 randomized prospective studies. J Clin Oncol. 32:3883–3891. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, et al: Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet. 384:164–172. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Loibl S, Volz C, Mau C, Blohmer JU, Costa SD, Eidtmann H, Fasching PA, Gerber B, Hanusch C, Jackisch C, et al: Response and prognosis after neoadjuvant chemotherapy in 1,051 patients with infiltrating lobular breast carcinoma. Breast Cancer Res Treat. 144:153–162. 2014. View Article : Google Scholar : PubMed/NCBI

26 

von Minckwitz G, Untch M, Nüesch E, Loibl S, Kaufmann M, Kümmel S, Fasching PA, Eiermann W, Blohmer JU, Costa SD, et al: Impact of treatment characteristics on response of different breast cancer phenotypes: Pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat. 125:145–156. 2011. View Article : Google Scholar

27 

von Minckwitz G, Blohmer JU, Costa SD, Denkert C, Eidtmann H, Eiermann W, Gerber B, Hanusch C, Hilfrich J, Huober J, et al: Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol. 31:3623–3630. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Diagnosis and treatment of patients with primary and metastatic breast cancer. http://www.ago-online.de. Accessed April 2, 2019.

29 

Marinovich ML, Houssami N, Macaskill P, von Minckwitz G, Blohmer JU and Irwig L: Accuracy of ultrasound for predicting pathologic response during neoadjuvant therapy for breast cancer. Int J Cancer. 136:2730–2737. 2015. View Article : Google Scholar

30 

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 45:228–247. 2009. View Article : Google Scholar

31 

Chagpar AB, Middleton LP, Sahin AA, Dempsey P, Buzdar AU, Mirza AN, Ames FC, Babiera GV, Feig BW, Hunt KK, et al: Accuracy of physical examination, ultrasonography, and mammography in predicting residual pathologic tumor size in patients treated with neoadjuvant chemotherapy. Ann Surg. 243:257–264. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Sadeghi-Naini A, Sannachi L, Tadayyon H, Tran WT, Slodkowska E, Trudeau M, Gandhi S, Pritchard K, Kolios MC and Czarnota GJ: Chemotherapy-response monitoring of breast cancer patients using quantitative ultrasound-based Intra-tumour heterogeneities. Sci Rep. 7:103522017. View Article : Google Scholar : PubMed/NCBI

33 

Amoroso V, Generali D, Buchholz T, Cristofanilli M, Pedersini R, Curigliano G, Daidone MG, Di Cosimo S, Dowsett M, Fox S, et al: International expert consensus on primary systemic therapy in the management of early breast cancer: Highlights of the fifth symposium on primary systemic therapy in the management of operable breast cancer, Cremona, Italy 2013. J Natl Cancer Inst Monogr. 2015:90–96. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Liedtke C, Mazouni C, Hess KR, Andrè F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, et al: Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 26:1275–1281. 2008. View Article : Google Scholar : PubMed/NCBI

35 

von Minckwitz G, Blohmer JU, Raab G, Lohr A, Gerber B, Heinrich G, Eidtmann H, Kaufmann M, Hilfrich J, Jackisch C, et al: In vivo chemosensitivity-adapted preoperative chemotherapy in patients with early-stage breast cancer: The GEPARTRIO pilot study. Ann Oncol. 16:56–63. 2005. View Article : Google Scholar

36 

Hombach S and Kretz M: Non-coding RNAs: Classification, biology and functioning. Adv Exp Med Biol. 937:3–17. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Brosnan CA and Voinnet O: The long and the short of noncoding RNAs. Curr Opin Cell Biol. 21:416–425. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar

39 

Izzotti A, Carozzo S, Pulliero A, Zhabayeva D, Ravetti JL and Bersimbaev R: Extracellular MicroRNA in liquid biopsy: Applicability in cancer diagnosis and prevention. Am J Cancer Res. 6:1461–1493. 2016.PubMed/NCBI

40 

Qi P, Zhou XY and Du X: Circulating long non-coding RNAs in cancer: Current status and future perspectives. Mol Cancer. 15:392016. View Article : Google Scholar : PubMed/NCBI

41 

Yang X, Cheng Y, Lu Q, Wei J, Yang H and Gu M: Detection of stably expressed piRNAs in human blood. Int J Clin Exp Med. 8:13353–13358. 2015.PubMed/NCBI

42 

Fanale D, Castiglia M, Bazan V and Russo A: Involvement of Non-coding RNAs in Chemo- and radioresistance of colorectal cancer. Adv Exp Med Biol. 937:207–228. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Magee P, Shi L and Garofalo M: Role of microRNAs in chemo- resistance. Ann Transl Med. 3:3322015.

44 

Wang YW, Zhang W and Ma R: Bioinformatic identification of chemoresistance-associated microRNAs in breast cancer based on microarray data. Oncol Rep. 39:1003–1010. 2018.PubMed/NCBI

45 

Malhotra A, Jain M, Prakash H, Vasquez KM and Jain A: The regulatory roles of long non-coding RNAs in the development of chemoresistance in breast cancer. Oncotarget. 8:110671–110684. 2017. View Article : Google Scholar

46 

Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF, et al: Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One. 4:e61462009. View Article : Google Scholar : PubMed/NCBI

47 

Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B and Senn HJ: Panel members: Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of Early breast cancer 2013. Ann Oncol. 24:2206–2223. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Elston CW and Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology. 19:403–410. 1991. View Article : Google Scholar : PubMed/NCBI

49 

Busk PK: A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics. 15:292014. View Article : Google Scholar : PubMed/NCBI

50 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

51 

Torres A, Torres K, Wdowiak P, Paszkowski T and Maciejewski R: Selection and validation of endogenous controls for microRNA expression studies in endometrioid endometrial cancer tissues. Gynecol Oncol. 130:588–594. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Bockmeyer CL, Säuberlich K, Wittig J, Eßer M, Roeder SS, Vester U, Hoyer PF, Agustian PA, Zeuschner P, Amann K, et al: Comparison of different normalization strategies for the analysis of glomerular microRNAs in IgA nephropathy. Sci Rep. 6:319922016. View Article : Google Scholar : PubMed/NCBI

53 

Chen L, Jin Y, Wang L, Sun F, Yang X, Shi M, Zhan C, Shi Y and Wang Q: Identification of reference genes and miRNAs for qRT-PCR in human esophageal squamous cell carcinoma. Med Oncol. 34:22017. View Article : Google Scholar

54 

Masè M, Grasso M, Avogaro L, D'Amato E, Tessarolo F, Graffigna A, Denti MA and Ravelli F: Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation. Sci Rep. 7:411272017. View Article : Google Scholar : PubMed/NCBI

55 

Pfaffl MW, Tichopad A, Prgomet C and Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett. 26:509–515. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F and Vandesompele J: A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 10:R642009. View Article : Google Scholar : PubMed/NCBI

57 

D'Haene B, Mestdagh P, Hellemans J and Vandesompele J: miRNA expression profiling: From reference genes to global mean normalization. Methods Mol Biol. 822:261–272. 2012. View Article : Google Scholar

58 

Schwarzenbach H, da Silva AM, Calin G and Pantel K: Data Normalization strategies for MicroRNA quantification. Clin Chem. 61:1333–1342. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Erbes T, Hirschfeld M, Rücker G, Jaeger M, Boas J, Iborra S, Mayer S, Gitsch G and Stickeler E: Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer. 15:1932015. View Article : Google Scholar : PubMed/NCBI

60 

Marabita F, de Candia P, Torri A, Tegnér J, Abrignani S and Rossi RL: Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Brief Bioinform. 17:204–212. 2016. View Article : Google Scholar :

61 

Song W, Zhang WH, Zhang H, Li Y, Zhang Y, Yin W and Yang Q: Validation of housekeeping genes for the normalization of RT-qPCR expression studies in oral squamous cell carcinoma cell line treated by 5 kinds of chemotherapy drugs. Cell Mol Biol (Noisy-le-Grand). 62:29–34. 2016. View Article : Google Scholar

62 

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ and Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem. 150:76–85. 1985. View Article : Google Scholar : PubMed/NCBI

63 

Schägger H and von Jagow G: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 166:368–379. 1987. View Article : Google Scholar : PubMed/NCBI

64 

R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna: 2018

65 

Gao D, Qi X, Zhang X, Fang K, Guo Z and Li L: hsa_ circRNA_0006528 as a competing endogenous RNA promotes human breast cancer progression by sponging miR-75p and activating the MAPK/ERK signalling pathway. Mol Carcinog. 58:554–564. 2019. View Article : Google Scholar

66 

Gao D, Zhang X, Liu B, Meng D, Fang K, Guo Z and Li L: Screening circular RNA related to chemotherapeutic resistance in breast cancer. Epigenomics. 9:1175–1188. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Uhr K, Sieuwerts AM, de Weerd V, Smid M, Hammerl D, Foekens JA and Martens JWM: Association of microRNA-7 and its binding partner CDR1-AS with the prognosis and prediction of 1st-line tamoxifen therapy in breast cancer. Sci Rep. 8:96572018. View Article : Google Scholar :

68 

Garcia-Vazquez R, Ruiz-García E, Meneses García A, Astudillo-de la Vega H, Lara-Medina F, Alvarado-Miranda A, Mal donado-Martínez H, Gonzalez-Barrios JA, Campos-Parra AD, Rodríguez Cuevas S, et al: A microRNA signature associated with pathological complete response to novel neoadjuvant therapy regimen in triple-negative breast cancer. Tumour Biol. 39:10104283177028992017. View Article : Google Scholar : PubMed/NCBI

69 

Unger FT, Klasen HA, Tchartchian G, de Wilde RL and Witte I: DNA damage induced by cis- and carboplatin as indicator for in vitro sensitivity of ovarian carcinoma cells. BMC Cancer. 9:3592009. View Article : Google Scholar : PubMed/NCBI

70 

Su WC, Chang SL, Chen TY, Chen JS and Tsao CJ: Comparison of in vitro growth-inhibitory activity of carboplatin and cisplatin on leukemic cells and hematopoietic progenitors: The myelosuppressive activity of carboplatin may be greater than its antileukemic effect. Jpn. J Clin Oncol. 30:562–567. 2000.

71 

Kuittinen T, Rovio P, Staff S, Luukkaala T, Kallioniemi A, Grénman S, Laurila M and Maenpaa J: Paclitaxel, carboplatin and 1,25D3 inhibit proliferation of endometrial cancer cells in vitro. Anticancer Res. 37:6575–6581. 2017.PubMed/NCBI

72 

He Q, Liang CH and Lippard SJ: Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci USA. 97:5768–5772. 2000. View Article : Google Scholar : PubMed/NCBI

73 

Diehl JA, Zindy F and Sherr CJ: Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11:957–972. 1997. View Article : Google Scholar : PubMed/NCBI

74 

Luo H, Zhang J, Dastvan F, Yanagawa B, Reidy MA, Zhang HM, Yang D, Wilson JE and McManus BM: Ubiquitin-dependent proteolysis of cyclin D1 is associated with coxsackievirus-induced cell growth arrest. J Virol. 77:1–9. 2003. View Article : Google Scholar :

75 

Fuller-Pace FV: DEAD box RNA helicase functions in cancer. RNA Biol. 10:121–132. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Mazurek A, Luo W, Krasnitz A, Hicks J, Powers RS and Stillman B: DDX5 regulates DNA replication and is required for cell proliferation in a subset of breast cancer cells. Cancer Discov. 2:812–825. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Wang D, Huang J and Hu Z: RNA helicase DDX5 regulates microRNA expression and contributes to cytoskeletal reorganization in basal breast cancer cells. Mol Cell Proteomics. 11:M111.0119322012. View Article : Google Scholar :

78 

Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J, Gregory DJ, Lane DP, Perkins ND and Fuller-Pace FV: The DEAD box protein p68: A novel transcriptional coactivator of the p53 tumour suppressor. EMBO J. 24:543–553. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Wortham NC, Ahamed E, Nicol SM, Thomas RS, Periyasamy M, Jiang J, Ochocka AM, Shousha S, Huson L, Bray SE, et al: The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERalpha-positive breast cancer. Oncogene. 28:4053–4064. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Shin S, Rossow KL, Grande JP and Janknecht R: Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res. 67:7572–7578. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Jalal C, Uhlmann-Schiffler H and Stahl H: Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation. Nucleic Acids Res. 35:3590–3601. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Concepcion CP, Bonetti C and Ventura A: The microRNA-17-92family of microRNA clusters in development and disease. Cancer J. 18:262–267. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Mogilyansky E and Rigoutsos I: The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20:1603–1614. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P, Brown M, Hafner M, Reyal F, van Kouwenhove M, et al: MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res. 71:4443–4453. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Calvano Filho CM, Calvano-Mendes DC, Carvalho KC, Maciel GA, Ricci MD, Torres AP, Filassi JR and Baracat EC: Triple-negative and luminal A breast tumors: Differential expression of miR-18a-5p, and miR-17-5p, and miR-20a-5p. Tumour Biol. 35:7733–7741. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Hashim A, Rizzo F, Marchese G, Ravo M, Tarallo R, Nassa G, Giurato G, Santamaria G, Cordella A, Cantarella C and Weisz A: RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget. 5:9901–9910. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Liu B, Su F, Chen M, Li Y, Qi X, Xiao J, Li X, Liu X, Liang W, Zhang Y and Zhang J: Serum miR-21 and miR-125b as markers predicting neoadjuvant chemotherapy response and prognosis in stage II/III breast cancer. Hum Pathol. 64:44–52. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Gu X, Xue JQ, Han SJ, Qian SY and Zhang WH: Circulating microRNA-451 as a predictor of resistance to neoadjuvant chemotherapy in breast cancer. Cancer Biomark. 16:395–403. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Al-Khanbashi M, Caramuta S, Alajmi AM, Al-Haddabi I, Al-Riyami M, Lui WO and Al-Moundhri MS: Tissue and Serum miRNA profile in locally advanced breast cancer (LABC) in response to Neo-adjuvant chemotherapy (NAC) treatment. PLoS One. 11:e01520322016. View Article : Google Scholar : PubMed/NCBI

90 

Edgar JR: Q&A: What are exosomes, exactly? BMC Biol. 14:462016. View Article : Google Scholar :

91 

Ben-Dov IZ, Whalen VM, Goilav B, Max KE and Tuschl T: Cell and microvesicle urine microRNA deep sequencing profiles from healthy individuals: Observations with potential impact on biomarker studies. PLoS One. 11:e01472492016. View Article : Google Scholar : PubMed/NCBI

92 

Mansoori B, Mohammadi A, Shirjang S, Baghbani E and Baradaran B: Micro RNA 34a and Let-7a expression in human breast cancers is associated with apoptotic expression genes. Asian Pac J Cancer Prev. 17:1887–1890. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Liu K, Zhang C, Li T, Ding Y, Tu T, Zhou F, Qi W, Chen H and Sun X: Let-7a inhibits growth and migration of breast cancer cells by targeting HMGA1. Int J Oncol. 46:2526–2534. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Marques MM, Evangelista AF, Macedo T, Vieira RADC, Scapulatempo-Neto C, Reis RM, Carvalho AL and Silva IDCGD: Expression of tumor suppressors miR-195 and let-7a as potential biomarkers of invasive breast cancer. Clinics (Sao Paulo). 73:e1842018. View Article : Google Scholar :

95 

Huang SK, Luo Q, Peng H, Li J, Zhao M, Wang J, Gu YY, Li Y, Yuan P, Zhao GH and Huang CZ: A Panel of serum noncoding RNAs for the diagnosis and monitoring of response to therapy in patients with breast cancer. Med Sci Monit. 24:2476–2488. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Khalighfard S, Alizadeh AM, Irani S and Omranipour R: Plasma miR-21, miR-155, miR-10b, and Let-7a as the potential biomarkers for the monitoring of breast cancer patients. Sci Rep. 8:179812018. View Article : Google Scholar : PubMed/NCBI

97 

Mi Y, Liu F, Liang X, Liu S, Huang X, Sang M and Geng C: Tumor suppressor let-7a inhibits breast cancer cell proliferation, migration and invasion by targeting MAGE-A1. Neoplasma. 66:54–62. 2019. View Article : Google Scholar

98 

Guo Q, Wen R, Shao B, Li Y, Jin X, Deng H, Wu J, Su F and Yu F: Combined Let-7a and H19 signature: A prognostic index of progression-free survival in primary breast cancer patients. J Breast Cancer. 21:142–149. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Lehmann TP, Korski K, Gryczka R, Ibbs M, Thieleman A, Grodecka-Gazdecka S and Jagodzinski PP: Relative levels of let-7a, miR-17, miR-27b, miR-125a, miR-125b and miR-206 as potential molecular markers to evaluate grade, receptor status and molecular type in breast cancer. Mol Med Rep. 12:4692–4702. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Thakur S, Grover RK, Gupta S, Yadav AK and Das BC: Identification of Specific miRNA signature in paired sera and tissue samples of Indian Women with Triple Negative breast cancer. PLoS One. 11:e01589462016. View Article : Google Scholar : PubMed/NCBI

101 

Ahram M, Mustafa E, Zaza R, Abu Hammad S, Alhudhud M, Bawadi R and Zihlif M: Differential expression and androgen regulation of microRNAs and metalloprotease 13 in breast cancer cells. Cell Biol Int. 41:1345–1355. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Yu CC, Chen YW, Chiou GY, Tsai LL, Huang PI, Chang CY, Tseng LM, Chiou SH, Yen SH, Chou MY, et al: MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncol. 47:202–210. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Qiu L, Zhang GF, Yu L, Wang HY, Jia XJ and Wang TJ: Novel oncogenic and chemoresistance-inducing functions of resistin in ovarian cancer cells require miRNAs-mediated induction of epithelial-to-mesenchymal transition. Sci Rep. 8:125222018. View Article : Google Scholar : PubMed/NCBI

104 

Xiao G, Wang X and Yu Y: CXCR4/Let-7a Axis regulates metastasis and chemoresistance of pancreatic cancer cells through targeting HMGA2. Cell Physiol Biochem. 43:840–851. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Serguienko A, Grad I, Wennerstrpm AB, Meza-Zepeda LA, Thiede B, Stratford EW, Myklebost O and Munthe E: Metabolic reprogramming of metastatic breast cancer and melanoma by let-7a microRNA. Oncotarget. 6:2451–2465. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Tsang WP and Kwok TT: Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis. 13:1215–1222. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Wu J, Li S, Jia W, Deng H, Chen K, Zhu L, Yu F and Su F: Reduced let-7a is associated with chemoresistance in primary breast cancer. PLoS One. 10:e01336432015. View Article : Google Scholar : PubMed/NCBI

108 

Bhutia YD, Hung SW, Krentz M, Patel D, Lovin D, Manoharan R, Thomson JM and Govindarajan R: Differential processing of let-7a precursors influences RRM2 expression and chemosensitivity in pancreatic cancer: Role of LIN-28 and SET oncoprotein. PLoS One. 8:e534362013. View Article : Google Scholar : PubMed/NCBI

109 

Lu L, Schwartz P, Scarampi L, Rutherford T, Canuto EM, Yu H and Katsaros D: MicroRNA let-7a: A potential marker for selection of paclitaxel in ovarian cancer management. Gynecol Oncol. 122:366–371. 2011. View Article : Google Scholar : PubMed/NCBI

110 

Lv K, Liu L, Wang L, Yu J, Liu X, Cheng Y, Dong M, Teng R, Wu L, Fu P, et al: Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells. PLoS One. 7:e400082012. View Article : Google Scholar : PubMed/NCBI

111 

Yin PT, Pongkulapa T, Cho HY, Han J, Pasquale NJ, Rabie H, Kim JH, Choi JW and Lee KB: Overcoming chemoresistance in cancer via combined MicroRNA therapeutics with anticancer drugs using multifunctional magnetic Core-shell nanoparticles. ACS Appl Mater Interfaces. 10:26954–26963. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Farré PL, Scalise GD, Duca RB, Dalton GN, Massillo C, Porretti J, Grana K, Gardner K, De Luca P and De Siervi A: CTBP1 and metabolic syndrome induce an mRNA and miRNA expression profile critical for breast cancer progression and metastasis. Oncotarget. 9:13848–13858. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Aure MR, Leivonen SK, Fleischer T, Zhu Q, Overgaard J, Alsner J, Tramm T, Louhimo R, Alnaes GI, Perala M, et al: Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol. 14:R1262013. View Article : Google Scholar : PubMed/NCBI

114 

Lv J, Xia K, Xu P, Sun E, Ma J, Gao S, Zhou Q, Zhang M, Wang F, Chen F, et al: miRNA expression patterns in chemoresistant breast cancer tissues. Biomed Pharmacother. 68:935–942. 2014. View Article : Google Scholar : PubMed/NCBI

115 

Oztemur Islakoglu Y, Noyan S, Aydos A and Gur Dedeoglu B: Meta-microRNA biomarker signatures to classify breast cancer subtypes. OMICS. 22:709–716. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Shan Y, Liu Y, Zhao L, Liu B, Li Y and Jia L: MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. Int J Biochem Cell Biol. 90:48–58. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Svoboda M, Sana J, Fabian P, Kocakova I, Gombosova J, Nekvindova J, Radova L, Vyzula R and Slaby O: MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol. 7:1952012. View Article : Google Scholar : PubMed/NCBI

118 

Cai J, Yang C, Yang Q, Ding H, Jia J, Guo J, Wang J and Wang Z: Deregulation of let-7e in epithelial ovarian cancer promotes the development of resistance to cisplatin. Oncogenesis. 2:e752013. View Article : Google Scholar : PubMed/NCBI

119 

Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G and Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 111:478–486. 2008. View Article : Google Scholar : PubMed/NCBI

120 

Xiao M, Cai J, Cai L, Jia J, Xie L, Zhu Y, Huang B, Jin D and Wang Z: Let-7e sensitizes epithelial ovarian cancer to cisplatin through repressing DNA double strand break repair. J Ovarian Res. 10:242017. View Article : Google Scholar : PubMed/NCBI

121 

Block I, Burton M, Sprensen KP, Andersen L, Larsen MJ, Bak M, Cold S, Thomassen M, Tan Q and Kruse TA: Association of miR-548c-5p, miR-7-5p, miR-210-3p, miR-128-3p with recurrence in systemically untreated breast cancer. Oncotarget. 9:9030–9042. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AW, Klijn JG, Wiemer EA and Martens JW: Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA. 105:13021–13026. 2008. View Article : Google Scholar : PubMed/NCBI

123 

Gong C, Tan W, Chen K, You N, Zhu S, Liang G, Xie X, Li Q, Zeng Y, Ouyang N, et al: Prognostic value of a BCSC-associated MicroRNA signature in hormone receptor-positive HER2-negative breast cancer. EBioMedicine. 11:199–209. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Raychaudhuri M, Bronger H, Buchner T, Kiechle M, Weichert W and Avril S: MicroRNAs miR-7 and miR-340 predict response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 162:511–521. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Shi Y, Ye P and Long X: Differential expression profiles of the transcriptome in breast cancer cell lines revealed by next generation sequencing. Cell Physiol Biochem. 44:804–816. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Cui YX, Bradbury R, Flamini V, Wu B, Jordan N and Jiang WG: MicroRNA-7 suppresses the homing and migration potential of human endothelial cells to highly metastatic human breast cancer cells. Br J Cancer. 117:89–101. 2017. View Article : Google Scholar : PubMed/NCBI

127 

Vera-Puente O, Rodriguez-Antolin C, Salgado-Figueroa A, Michalska P, Pernia O, Reid BM, Rosas R, Garcia-Guede A, SacristAn S, Jimenez J, et al: MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells by increasing reactive oxygen species. Transl Res. 200:1–17. 2018. View Article : Google Scholar : PubMed/NCBI

128 

Filipits M, Nielsen TO, Rudas M, Greil R, Stoger H, Jakesz R, Bago-Horvath Z, Dietze O, Regitnig P and Gruber-Rossipal C: et al The PAM50 risk-of-recurrence score predicts risk for late distant recurrence after endocrine therapy in postmenopausal women with endocrine-responsive early breast cancer. Clin. Cancer Res. 20:1298–1305. 2014.

129 

Blume CJ, Hotz-Wagenblatt A, Hüllein J, Sellner L, Jethwa A, Stolz T, Slabicki M, Lee K, Sharathchandra A, Benner A, et al: p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 29:2015–2023. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Liu DZ, Chang B, Li XD, Zhang QH and Zou YH: MicroRNA-9 promotes the proliferation, migration, and invasion of breast cancer cells via down-regulating FOXO1. Clin Transl Oncol. 19:1133–1140. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, et al: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 12:247–256. 2010. View Article : Google Scholar : PubMed/NCBI

132 

Sporn JC, Katsuta E, Yan L and Takabe K: Expression of MicroRNA-9 is associated with overall survival in breast cancer patients. J Surg Res. 233:426–435. 2019. View Article : Google Scholar

133 

Orangi E and Motovali-Bashi M: Evaluation of miRNA-9 and miRNA-34a as potential biomarkers for diagnosis of breast cancer in Iranian women. Gene. 687:272–279. 2019. View Article : Google Scholar

134 

Naorem LD, Muthaiyan M and Venkatesan A: Identification of dysregulated miRNAs in triple negative breast cancer: A meta-analysis approach. J Cell Physiol. 234:11768–11779. 2019. View Article : Google Scholar

135 

Kia V, Paryan M, Mortazavi Y, Biglari A and Mohammadi-Yeganeh S: Evaluation of exosomal miR-9 and miR-155 targeting PTEN and DUSP14 in highly metastatic breast cancer and their effect on low metastatic cells. J Cell Biochem. 120:5666–5676. 2019. View Article : Google Scholar

136 

Jang MH, Kim HJ, Gwak JM, Chung YR and Park SY: Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum Pathol. 68:69–78. 2017. View Article : Google Scholar : PubMed/NCBI

137 

Cheng CW, Yu JC, Hsieh YH, Liao WL, Shieh JC, Yao CC, Lee HJ, Chen PM, Wu PE and Shen CY: Increased cellular levels of MicroRNA-9 and MicroRNA-221 correlate with cancer stemness and predict poor outcome in human breast cancer. Cell Physiol Biochem. 48:2205–2218. 2018. View Article : Google Scholar : PubMed/NCBI

138 

D'Ippolito E, Plantamura I, Bongiovanni L, Casalini P, Baroni S, Piovan C, Orlandi R, Gualeni AV, Gloghini A, Rossini A, et al: miR-9 and miR-200 Regulate PDGFRp-mediated endothelial differentiation of tumor cells in Triple-negative breast cancer. Cancer Res. 76:5562–5572. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Li X, Pan Q, Wan X, Mao Y, Lu W, Xie X and Cheng X: Methylation-associated Has-miR-9 deregulation in pacli- taxel-resistant epithelial ovarian carcinoma. BMC Cancer. 15:5092015. View Article : Google Scholar

140 

Pezuk JA, Miller TLA, Bevilacqua JLB, de Barros ACSD, de Andrade FEM, E Macedo LFA, Aguilar V, Claro ANM, Camargo AA, Galante PAF and Reis LFL: Measuring plasma levels of three microRNAs can improve the accuracy for identification of malignant breast lesions in women with BI-RADS 4 mammography. Oncotarget. 8:83940–83948. 2017. View Article : Google Scholar : PubMed/NCBI

141 

Kodahl AR, Lyng MB, Binder H, Cold S, Gravgaard K, Knoop AS and Ditzel HJ: Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: A case control study. Mol Oncol. 8:874–883. 2014. View Article : Google Scholar : PubMed/NCBI

142 

Yang L, Zhao W, Wei P, Zuo W and Zhu S: Tumor suppressor p53 induces miR-15a processing to inhibit neuronal apoptosis inhibitory protein (NAIP) in the apoptotic response DNA damage in breast cancer cell. Am J Transl Res. 9:683–691. 2017.PubMed/NCBI

143 

Patel N, Garikapati KR, Ramaiah MJ, Polavarapu KK, Bhadra U and Bhadra MP: miR-15a/miR-16 induces mitochondrial dependent apoptosis in breast cancer cells by suppressing oncogene BMI1. Life Sci. 164:60–70. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Hamdi K, Blancato J, Goerlitz D, Islam M, Neili B, Abidi A, Gat A, Ayed FB, Chivi S, Loffredo C, et al: Circulating Cell-free miRNA expression and its association with clinicopathologic features in inflammatory and non-inflammatory breast cancer. Asian Pac J Cancer Prev. 17:1801–1810. 2016. View Article : Google Scholar

145 

Shinden Y, Akiyoshi S, Ueo H, Nambara S, Saito T, Komatsu H, Ueda M, Hirata H, Sakimura S, Uchi R, et al: Diminished expression of MiR-15a is an independent prognostic marker for breast cancer cases. Anticancer Res. 35:123–127. 2015.PubMed/NCBI

146 

Li F, Xu Y, Deng S, Li Z, Zou D, Yi S, Sui W, Hao M and Qiu L: MicroRNA-15a/161 cluster located at chromosome 13q14 is down-regulated but displays different expression pattern and prognostic significance in multiple myeloma. Oncotarget. 6:38270–38282. 2015. View Article : Google Scholar : PubMed/NCBI

147 

Patel N, Garikapati KR, Makani VKK, Nair AD, Vangara N, Bhadra U and Pal Bhadra M: Regulating BMI1 expression via miRNAs promote Mesenchymal to Epithelial Transition (MET) and sensitizes breast cancer cell to chemotherapeutic drug. PLoS One. 13:e01902452018. View Article : Google Scholar : PubMed/NCBI

148 

Rodriguez-Aguayo C, Monroig PDC, Redis RS, Bayraktar E, Almeida MI, Ivan C, Fuentes-Mattei E, Rashed MH, Chavez-Reyes A, Ozpolat B, et al: Regulation of hnRNPA1 by microRNAs controls the miR-18a-K-RAS axis in chemotherapy-resistant ovarian cancer. Cell Discov. 3:170292017. View Article : Google Scholar

149 

Wang L, Zhang X, Sheng L, Qiu C and Luo R: LINC00473 promotes the Taxol resistance via miR-15a in colorectal cancer. Biosci Rep. 38:pii: BSR20180790. 2018.

150 

Chu J, Zhu Y, Liu Y, Sun L, Lv X, Wu Y, Hu P, Su F, Gong C, Song E, et al: E2F7 overexpression leads to tamoxifen resistance in breast cancer cells by competing with E2F1 at miR-15a/16 promoter. Oncotarget. 6:31944–31957. 2015. View Article : Google Scholar : PubMed/NCBI

151 

Jurkovicova D, Smolkova B, Magyerkova M, Sestakova Z, Kajabova VH, Kulcsar L, Zmetakova I, Kalinkova L, Krivulcik T, Karaba M, et al: Down-regulation of traditional oncomiRs in plasma of breast cancer patients. Oncotarget. 8:77369–77384. 2017. View Article : Google Scholar : PubMed/NCBI

152 

Zhang N, Zhang H, Liu Y, Su P, Zhang J, Wang X, Sun M, Chen B, Zhao W, Wang L, et al: SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2. Cell Death Differ. 26:843–859. 2019. View Article : Google Scholar

153 

Yang F, Li Y, Xu L, Zhu Y, Gao H, Zhen L and Fang L: miR-17 as a diagnostic biomarker regulates cell proliferation in breast cancer. Onco Targets Ther. 10:543–550. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Wang Y, Li J, Dai L, Zheng J, Yi Z and Chen L: MiR-17-5p may serve as a novel predictor for breast cancer recurrence. Cancer Biomark. 22:721–726. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Sueta A, Yamamoto Y, Tomiguchi M, Takeshita T, Yamamoto-Ibusuki M and Iwase H: Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget. 8:69934–69944. 2017. View Article : Google Scholar : PubMed/NCBI

156 

Hesari A, Azizian M, Darabi H, Nesaei A, Hosseini SA, Salarinia R, Motaghi AA and Ghasemi F: Expression of circulating miR-17, miR-25, and miR-133 in breast cancer patients. J Cell Biochem. Nov 28–2018. View Article : Google Scholar : Epub ahead of print.

157 

Li H, Liu J, Chen J, Wang H, Yang L, Chen F, Fan S, Wang J, Shao B, Yin D, et al: A serum microRNA signature predicts trastuzumab benefit in HER2-positive metastatic breast cancer patients. Nat Commun. 9:16142018. View Article : Google Scholar : PubMed/NCBI

158 

Braicu C, Raduly L, Morar-Bolba G, Cojocneanu R, Jurj A, Pop LA, Pileczki V, Ciocan C, Moldovan A, Irimie A, et al: Aberrant miRNAs expressed in HER-2 negative breast cancers patient. J Exp Cli. Cancer Res. 37:2572018.

159 

Li J, Lai Y, Ma J, Liu Y, Bi J, Zhang L, Chen L, Yao C, Lv W, Chang G, et al: miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer. BMC Cancer. 17:7452017. View Article : Google Scholar : PubMed/NCBI

160 

Li X, Wu B, Chen L, Ju Y, Li C and Meng S: Urokinase-type plasminogen activator receptor inhibits apoptosis in triple-negative breast cancer through miR-17/20a suppression of death receptors 4 and 5. Oncotarget. 8:88645–88657. 2017.PubMed/NCBI

161 

Cui YH, Kim H, Lee M, Yi JM, Kim RK, Uddin N, Yoo KC, Kang JH, Choi MY, Cha HJ, et al: FBXL14 abolishes breast cancer progression by targeting CDCP1 for proteasomal degradation. Oncogene. 37:5794–5809. 2018. View Article : Google Scholar : PubMed/NCBI

162 

Wang ST, Liu LB, Li XM, Wang YF, Xie PJ, Li Q, Wang R, Wei Q, Kang YH, Meng R, et al: Circ-ITCH regulates triple-negative breast cancer progression through the Wnt/p-catenin pathway. Neoplasma. 66:232–239. 2019. View Article : Google Scholar

163 

Jia J, Zhan D, Li J, Li Z, Li H and Qian J: The contrary functions of lncRNA HOTAIR/miR-17-5p/PTEN axis and Shenqifuzheng injection on chemosensitivity of gastric cancer cells. J Cell Mol Med. 23:656–669. 2019. View Article : Google Scholar

164 

Wu DM, Hong XW, Wang LL, Cui XF, Lu J, Chen GQ and Zheng YL: MicroRNA-17 inhibition overcomes chemoresistance and suppresses epithelial-mesenchymal transition through a DEDD-dependent mechanism in gastric cancer. Int J Biochem Cell Biol. 102:59–70. 2018. View Article : Google Scholar : PubMed/NCBI

165 

Fan B, Shen C, Wu M, Zhao J, Guo Q and Luo Y: miR-17-92 cluster is connected with disease progression and oxaliplatin/capecitabine chemotherapy efficacy in advanced gastric cancer patients: A preliminary study. Medicine (Baltimore). 97:e120072018. View Article : Google Scholar

166 

Huang FX, Chen HJ, Zheng FX, Gao ZY, Sun PF, Peng Q, Liu Y, Deng X, Huang YH, Zhao C and Miao LJ: LncRNA BLACAT1 is involved in chemoresistance of nonsmall cell lung cancer cells by regulating autophagy. Int J Oncol. 54:339–347. 2019.

167 

Gu J, Wang D, Zhang J, Zhu Y, Li Y, Chen H, Shi M, Wang X, Shen B, Deng X, et al: GFRa2 prompts cell growth and chemo- resistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer. Cancer Lett. 380:434–441. 2016. View Article : Google Scholar : PubMed/NCBI

168 

Cioffi M, Trabulo SM, Sanchez-Ripoll Y, Miranda-Lorenzo I, Lonardo E, Dorado J, Reis Vieira C, Ramirez JC, Hidalgo M, Aicher A, et al: The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut. 64:1936–1948. 2015. View Article : Google Scholar : PubMed/NCBI

169 

Yan HJ, Liu WS, Sun WH, Wu J, Ji M, Wang Q, Zheng X, Jiang JT and Wu CP: miR-17-5p inhibitor enhances chemo- sensitivity to gemcitabine via upregulating Bim expression in pancreatic cancer cells. Dig Dis Sci. 57:3160–3167. 2012. View Article : Google Scholar : PubMed/NCBI

170 

Ao X: Decreased expression of microRNA-17 and microRNA-20b promotes breast cancer resistance to taxol therapy by upregula- tion of NCOA3. Cell Death Dis. 7:e24632016. View Article : Google Scholar

171 

Liao XH, Xiang Y, Yu CX, Li JP, Li H and Nie Q: STAT3 is required for MiR-17-5p-mediated sensitization to chemotherapy-induced apoptosis in breast cancer cells. Oncotarget. 8:15763–15774. 2017. View Article : Google Scholar : PubMed/NCBI

172 

Zhu H, Yang SY, Wang J, Wang L and Han SY: Evidence for miR-s17-92 and miR-134 gene cluster regulation of ovarian cancer drug resistance. Eur Rev Med Pharmacol Sci. 20:2526–2531. 2016.PubMed/NCBI

173 

Fang Y, Xu C and Fu Y: MicroRNA-17-5p induces drug resistance and invasion of ovarian carcinoma cells by targeting PTEN signaling. J Biol Res (Thessalon). 22:122015. View Article : Google Scholar

174 

Chatterjee A, Chattopadhyay D and Chakrabarti G: miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression. PLoS One. 9:e957162014. View Article : Google Scholar : PubMed/NCBI

175 

Krutilina R, Sun W, Sethuraman A, Brown M, Seagroves TN, Pfeffer LM, Ignatova T and Fan M: MicroRNA-18a inhibits hypoxia-inducible factor 1a activity and lung metastasis in basal breast cancers. Breast Cancer Res. 16:R782014. View Article : Google Scholar

176 

Godfrey AC, Xu Z, Weinberg CR, Getts RC, Wade PA, DeRoo LA, Sandler DP and Taylor JA: Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the Sister Study cohort. Breast Cancer Res. 15:R422013. View Article : Google Scholar : PubMed/NCBI

177 

Shidfar A, Costa FF, Scholtens D, Bischof JM, Sullivan ME, Ivancic DZ, Vanin EF, Soares MB, Wang J and Khan SA: Expression of miR-18a and miR-210 in normal breast tissue as candidate biomarkers of breast cancer risk. Cancer Prev Res (Phila). 10:89–97. 2017. View Article : Google Scholar

178 

Sha LY, Zhang Y, Wang W, Sui X, Liu SK, Wang T and Zhang H: MiR-18a upregulation decreases Dicer expression and confers paclitaxel resistance in triple negative breast cancer. Eur Rev Med Pharmacol Sci. 20:2201–2208. 2016.PubMed/NCBI

179 

Xiao H, Liu Y, Liang P, Wang B, Tan H, Zhang Y, Gao X and Gao J: TP53TG1 enhances cisplatin sensitivity of non-small cell lung cancer cells through regulating miR-18a/PTEN axis. Cell Biosci. 8:232018. View Article : Google Scholar : PubMed/NCBI

180 

Hummel R, Sie C, Watson DI, Wang T, Ansar A, Michael MZ, Van der Hoek M, Haier J and Hussey DJ: MicroRNA signatures in chemotherapy resistant esophageal cancer cell lines. World J Gastroenterol. 20:14904–14912. 2014. View Article : Google Scholar : PubMed/NCBI

181 

Fan YX, Dai YZ, Wang XL, Ren YQ, Han JJ and Zhang H: MiR-18a upregulation enhances autophagy in triple negative cancer cells via inhibiting mTOR signaling pathway. Eur Rev Med Pharmacol Sci. 20:2194–2200. 2016.PubMed/NCBI

182 

Zhu HY, Bai WD, Ye XM, Yang AG and Jia LT: Long non-coding RNA UCA1 desensitizes breast cancer cells to trastuzumab by impeding miR-18a repression of Yes-associated protein 1. Biochem Biophys Res Commun. 496:1308–1313. 2018. View Article : Google Scholar : PubMed/NCBI

183 

Li M, Zhou Y, Xia T, Zhou X, Huang Z, Zhang H, Zhu W, Ding Q and Wang S: Circulating microRNAs from the miR-106a-363 cluster on chromosome X as novel diagnostic biomarkers for breast cancer. Breast Cancer Res Treat. 170:257–270. 2018. View Article : Google Scholar : PubMed/NCBI

184 

Li C, Zhang J, Ma Z, Zhang F and Yu W: miR-19b serves as a prognostic biomarker of breast cancer and promotes tumor progression through PI3K/AKT signaling pathway. Onco Targets Ther. 11:4087–4095. 2018. View Article : Google Scholar : PubMed/NCBI

185 

Zhao L, Zhao Y, He Y and Mao Y: miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules. Oncotarget. 8:64330–64343. 2017.PubMed/NCBI

186 

Liu M, Yang R, Urrehman U, Ye C, Yan X, Cui S, Hong Y, Gu Y, Liu Y, Zhao C, et al: MiR-19b suppresses PTPRG to promote breast tumorigenesis. Oncotarget. 7:64100–64108. 2016.PubMed/NCBI

187 

Maleki E, Ghaedi K, Shahanipoor K and Karimi Kurdistani Z: Down-regulation of microRNA-19b in hormone receptor-posi- tive/HER2-negative breast cancer. APMI. S. 126:303–308. 2018.

188 

Wu Q, Guo L, Jiang F, Li L, Li Z and Chen F: Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER-breast cancer cell lines. J Cell Mol Med. 19:2874–2887. 2015. View Article : Google Scholar : PubMed/NCBI

189 

Kurokawa K, Tanahashi T, Iima T, Yamamoto Y, Akaike Y, Nishida K, Masuda K, Kuwano Y, Murakami Y, Fukushima M and Rokutan K: Role of miR-19b and its target mRNAs in 5-fluo - rouracil resistance in colon cancer cells. J Gastroenterol. 47:883–895. 2012. View Article : Google Scholar : PubMed/NCBI

190 

Thorne JL, Battaglia S, Baxter DE, Hayes JL, Hutchinson SA, Jana S, Millican-Slater RA, Smith L, Teske MC, Wastall LM and Hughes TA: MiR-19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer. Biochim Biophys Acta Gene Regul Mech. 1861:996–1006. 2018. View Article : Google Scholar : PubMed/NCBI

191 

Jiang T, Ye L, Han Z, Liu Y, Yang Y, Peng Z and Fan J: miR-19b-3p promotes colon cancer proliferation and oxalipl- atin-based chemoresistance by targeting SMAD4: Validation by bioinformatics and experimental analyses. J Exp Clin Cancer Res. 36:1312017. View Article : Google Scholar

192 

Jin J, Sun Z, Yang F, Tang L, Chen W and Guan X: miR-19b-3p inhibits breast cancer cell proliferation and reverses saraca- tinib-resistance by regulating PI3K/Akt pathway. Arch Biochem Biophys. 645:54–60. 2018. View Article : Google Scholar : PubMed/NCBI

193 

Tsai HP, Huang SF, Li CF, Chien HT and Chen SC: Differential microRNA expression in breast cancer with different onset age. PLoS One. 13:e01911952018. View Article : Google Scholar : PubMed/NCBI

194 

Chernyy V, Pustylnyak V, Kozlov V and Gulyaeva L: Increased expression of miR-155 and miR-222 is associated with lymph node positive status. J Cancer. 9:135–140. 2018. View Article : Google Scholar : PubMed/NCBI

195 

Xiong DD, Lv J, Wei KL, Feng ZB, Chen JT, Liu KC, Chen G and Luo DZ: A nine-miRNA signature as a potential diagnostic marker for breast carcinoma: An integrated study of 1,110 cases. Oncol Rep. 37:3297–3304. 2017. View Article : Google Scholar : PubMed/NCBI

196 

Bahrami A, Aledavood A, Anvari K, Hassanian SM, Maftouh M, Yaghobzade A, Salarzaee O, ShahidSales S and Avan A: The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs. J Cell Physiol. 233:774–786. 2018. View Article : Google Scholar

197 

Zhu M, Wang X, Gu Y, Wang F, Li L and Qiu X: MEG3 overexpression inhibits the tumorigenesis of breast cancer by downregulating miR-21 through the PI3K/Akt pathway. Arch Biochem Biophys. 661:22–30. 2019. View Article : Google Scholar

198 

Wang W, Yuan X, Xu A, Zhu X, Zhan Y, Wang S and Liu M: Human cancer cells suppress behaviors of endothelial progenitor cells through miR-21 targeting IL6R. Microvasc Res. 120:21–28. 2018. View Article : Google Scholar : PubMed/NCBI

199 

Han JG, Jiang YD, Zhang CH, Yang YM, Pang D, Song YN and Zhang GQ: A novel panel of serum miR-21/miR-155/miR-365 as a potential diagnostic biomarker for breast cancer. Ann Surg Treat Res. 92:55–66. 2017. View Article : Google Scholar : PubMed/NCBI

200 

Yu X, Liang J, Xu J, Li X, Xing S, Li H, Liu W, Liu D, Xu J, Huang L and Du H: Identification and validation of circulating MicroRNA signatures for breast cancer early detection based on large scale tissue-derived data. J Breast Cancer. 21:363–370. 2018. View Article : Google Scholar

201 

Hu X, Fan J, Duan B, Zhang H, He Y, Duan P and Li X: Single-molecule catalytic hairpin assembly for rapid and direct quantification of circulating miRNA biomarkers. Anal Chim. Acta. 1042:109–115. 2018.

202 

Fan T, Mao Y, Sun Q, Liu F, Lin JS, Liu Y, Cui J and Jiang Y: Branched rolling circle amplification method for measuring serum circulating microRNA levels for early breast cancer detection. Cancer Sci. 109:2897–2906. 2018. View Article : Google Scholar : PubMed/NCBI

203 

Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, Zhao ZJ, Blick KE, Dooley WC and Ding WQ: Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 18:902016. View Article : Google Scholar : PubMed/NCBI

204 

Wang M, Ji S, Shao G, Zhang J, Zhao K, Wang Z and Wu A: Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clin Transl Oncol. 20:906–911. 2018. View Article : Google Scholar

205 

Adhami M, Haghdoost AA, Sadeghi B and Malekpour Afshar R: Candidate miRNAs in human breast cancer biomark ers: A systematic review. Breast Cancer. 25:198–205. 2018. View Article : Google Scholar

206 

Petrovic N, Sami A, Martinovic J, Zaric M, Nakashidze I, Lukic S and Jovanovic-Cupic S: TIMP-3 mRNA expression levels positively correlates with levels of miR-21 in in situ BC and negatively in PR positive invasive BC. Pathol Res Pract. 213:1264–1270. 2017. View Article : Google Scholar : PubMed/NCBI

207 

Jinling W, Sijing S, Jie Z and Guinian W: Prognostic value of circulating microRNA-21 for breast cancer: A systematic review and meta-analysis. Artif Cells Nanomed Biotechnol. 45:1–6. 2017. View Article : Google Scholar

208 

Papadaki C, Stratigos M, Markakis G, Spiliotaki M, Mastrostamatis G, Nikolaou C, Mavroudis D and Agelaki S: Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res. 20:722018. View Article : Google Scholar : PubMed/NCBI

209 

Huo D, Clayton WM, Yoshimatsu TF, Chen J and Olopade OI: Identification of a circulating microRNA signature to distinguish recurrence in breast cancer patients. Oncotarget. 7:55231–55248. 2016. View Article : Google Scholar : PubMed/NCBI

210 

Shin VY, Siu JM, Cheuk I, Ng EK and Kwong A: Circulating cell-free miRNAs as biomarker for triple-negative breast cancer. Br J Cancer. 112:1751–1759. 2015. View Article : Google Scholar : PubMed/NCBI

211 

Fang H, Xie J, Zhang M, Zhao Z, Wan Y and Yao Y: miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am J Transl Res. 9:953–961. 2017.PubMed/NCBI

212 

Dong G, Liang X, Wang D, Gao H, Wang L, Wang L, Liu J and Du Z: High expression of miR-21 in triple-negative breast cancers was correlated with a poor prognosis and promoted tumor cell in vitro proliferation. Med Oncol. 31:572014. View Article : Google Scholar : PubMed/NCBI

213 

Komatsu S, Ichikawa D, Kawaguchi T, Miyamae M, Okajima W, Ohashi T, Imamura T, Kiuchi J, Konishi H, Shiozaki A, et al: Circulating miR-21 as an independent predictive biomarker for chemoresistance in esophageal squamous cell carcinoma. Am J Cancer Res. 6:1511–1523. 2016.PubMed/NCBI

214 

Campayo M, Navarro A, Benitez JC, Santasusagna S, Ferrer C, Monzo M and Cirera L: miR-21, miR-99b and miR-375 combination as predictive response signature for preoperative chemoradiotherapy in rectal cancer. PLoS One. 13:e02065422018. View Article : Google Scholar : PubMed/NCBI

215 

Gaudelot K, Gibier JB, Pottier N, Hemon B, Van Seuningen I, Glowacki F, Leroy X, Cauffiez C, Gnemmi V, Aubert S and Perrais M: Targeting miR-21 decreases expression of multi-drug resistant genes and promotes chemosensitivity of renal carcinoma. Tumour Biol. 39:10104283177073722017. View Article : Google Scholar : PubMed/NCBI

216 

Lin L, Tu HB, Wu L, Liu M and Jiang GN: MicroRNA-21 regulates non-small cell lung cancer cell invasion and chemo-sensitivity through SMAD7. Cell Physiol Biochem. 38:2152–2162. 2016. View Article : Google Scholar : PubMed/NCBI

217 

Szejniuk WM, Robles AI, McCulloch T, Falkmer UGI and Roe OD: Epigenetic predictive biomarkers for response or outcome to platinum-based chemotherapy in non-small cell lung cancer, current state-of-art. Pharmacogenomics J. 19:5–14. 2019. View Article : Google Scholar

218 

Feng Y, Zou W, Hu C, Li G, Zhou S, He Y, Ma F, Deng C and Sun L: Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin. Arch Biochem Biophys. 623-624:20–30. 2017. View Article : Google Scholar : PubMed/NCBI

219 

Chan JK, Blansit K, Kiet T, Sherman A, Wong G, Earle C and Bourguignon LY: The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol. 132:739–744. 2014. View Article : Google Scholar : PubMed/NCBI

220 

Pink RC, Samuel P, Massa D, Caley DP, Brooks SA and Carter DR: The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol. 137:143–151. 2015. View Article : Google Scholar : PubMed/NCBI

221 

Dai X, Fang M, Li S, Yan Y, Zhong Y and Du B: miR-21 is involved in transforming growth factor |31-induced chemoresis- tance and invasion by targeting PTEN in breast cancer. Oncol Lett. 14:6929–6936. 2017.PubMed/NCBI

222 

Bose RJC, Uday Kumar S, Zeng Y, Afjei R, Robinson E, Lau K, Bermudez A, Habte F, Pitteri SJ, Sinclair R, et al: Tumor cell-derived extracellular vesicle-coated nanocarriers: An efficient theranostic platform for the cancer-specific delivery of Anti-miR-21 and imaging agents. ACS Nano. 12:10817–10832. 2018. View Article : Google Scholar : PubMed/NCBI

223 

Zhou Q, Zeng H, Ye P, Shi Y, Guo J and Long X: Differential microRNA profiles between fulvestrant-resistant and tamoxifen-resistant human breast cancer cells. Anticancer Drugs. 29:539–548. 2018. View Article : Google Scholar : PubMed/NCBI

224 

Wu ZH, Tao ZH, Zhang J, Li T, Ni C, Xie J, Zhang JF and Hu XC: MiRNA-21 induces epithelial to mesenchymal transition and gemcitabine resistance via the PTEN/AKT pathway in breast cancer. Tumour Biol. 37:7245–7254. 2016. View Article : Google Scholar

225 

Dhayat SA, Mardin WA, Seggewifi J, Strose AJ, Matuszcak C, Hummel R, Senninger N, Mees ST and Haier J: MicroRNA profiling implies new markers of gemcitabine chemoresistance in mutant p53 pancreatic ductal adenocarcinoma. PLoS One. 10:e01437552015. View Article : Google Scholar : PubMed/NCBI

226 

Dong J, Zhao YP, Zhou L, Zhang TP and Chen G: Bcl-2 upregu- lation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch Med Res. 42:8–14. 2011. View Article : Google Scholar : PubMed/NCBI

227 

Kopczynska E: Role of microRNAs in the resistance of prostate cancer to docetaxel and paclitaxel. Contemp Oncol (Pozn). 19:423–427. 2015.

228 

Haghnavaz N, Asghari F, Komi Ali Elieh D, Shanehbandi D, Baradaran B and Kazemi T: HER2 positivity may confer resistance to therapy with paclitaxel in breast cancer cell lines. Artif Cells Nanomed Biotechnol. 46:518–523. 2018. View Article : Google Scholar

229 

Du G, Cao D and Meng L: miR-21 inhibitor suppresses cell proliferation and colony formation through regulating the PTEN/AKT pathway and improves paclitaxel sensitivity in cervical cancer cells. Mol Med Rep. 15:2713–2719. 2017. View Article : Google Scholar : PubMed/NCBI

230 

Jin B, Liu Y and Wang H: Antagonism of miRNA-21 sensitizes human gastric cancer cells to paclitaxel. Cell Biochem Biophys. 72:275–282. 2015. View Article : Google Scholar

231 

Mei M, Ren Y, Zhou X, Yuan XB, Han L, Wang GX, Jia Z, Pu PY, Kang CS and Yao Z: Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat. 9:77–86. 2010. View Article : Google Scholar : PubMed/NCBI

232 

Naro Y, Ankenbruck N, Thomas M, Tivon Y, Connelly CM, Gardner L and Deiters A: Small molecule inhibition of MicroRNA miR-21 rescues chemosensitivity of renal-cell carcinoma to topotecan. J Med Chem. 61:5900–5909. 2018. View Article : Google Scholar : PubMed/NCBI

233 

Liu Y, Xu J, Choi HH, Han C, Fang Y, Li Y, Van der Jeught K, Xu H, Zhang L, Frieden M, et al: Targeting 17q23 amplicon to overcome the resistance to anti-HER2 therapy in HER2+ breast cancer. Nat Commun. 9:47182018. View Article : Google Scholar : PubMed/NCBI

234 

Decker JT, Hall MS, Blaisdell RB, Schwark K, Jeruss JS and Shea LD: Dynamic microRNA activity identifies therapeutic targets in trastuzumab-resistant HER2+ breast cancer. Biotechnol Bioeng. 115:2613–2623. 2018. View Article : Google Scholar : PubMed/NCBI

235 

Bahreyni A, Alibolandi M, Ramezani M, Sarafan Sadeghi A, Abnous K and Taghdisi SM: A novel MUC1 aptamer-modified PLGA-epirubicin-PpAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids Surf B Biointerfaces. 175:231–238. 2018. View Article : Google Scholar

236 

Vandghanooni S, Eskandani M, Barar J and Omidi Y: AS1411 aptamer-decorated cisplatin-loaded poly(lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomedicine (Lond). 13:2729–2758. 2018. View Article : Google Scholar

237 

Wang W, Huang S, Yuan J, Xu X, Li H, Lv Z, Yu W, Duan S and Hu Y: Reverse multidrug resistance in human HepG2/ADR by Anti-miR-21 combined with hyperthermia mediated by functionalized gold nanocages. Mol Pharm. 15:3767–3776. 2018. View Article : Google Scholar : PubMed/NCBI

238 

Luo J, Zhao Q, Zhang W, Zhang Z, Gao J, Zhang C, Li Y and Tian Y: A novel panel of microRNAs provides a sensitive and specific tool for the diagnosis of breast cancer. Mol Med Rep. 10:785–791. 2014. View Article : Google Scholar : PubMed/NCBI

239 

Zhang K, Wang YW, Wang YY, Song Y, Zhu J, Si PC and Ma R: Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene. 619:10–20. 2017. View Article : Google Scholar : PubMed/NCBI

240 

Croset M, Pantano F, Kan CWS, Bonnelye E, Descotes F, Alix-Panabieres C, Lecellier CH, Bachelier R, Allioli N, Hong SS, et al: MicroRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res. 78:5259–5273. 2018. View Article : Google Scholar : PubMed/NCBI

241 

Ni Q, Stevic I, Pan C, Muller V, Oliviera-Ferrer L, Pantel K and Schwarzenbach H: Different signatures of miR-16, miR-30b and miR-93 in exosomes from breast cancer and DCIS patients. Sci Rep. 8:129742018. View Article : Google Scholar : PubMed/NCBI

242 

Xi Z, Si J and Nan J: LncRNA MALAT1 potentiates autophagyassociated cisplatin resistance by regulating the microRNA30b/autophagyrelated gene 5 axis in gastric cancer. Int J Oncol. 54:239–248. 2019.

243 

Chen JC, Su YH, Chiu CF, Chang YW, Yu YH, Tseng CF, Chen HA and Su JL: Suppression of Dicer increases sensitivity to gefitinib in human lung cancer cells. Ann Surg Oncol. 21(Suppl 4): S555–S563. 2014. View Article : Google Scholar : PubMed/NCBI

244 

Tormo E, Adam-Artigues A, Ballester S, Pineda B, Zazo S, Gonzalez-Alonso P, Albanell J, Rovira A, Rojo F, Lluch A and Eroles P: The role of miR-26a and miR-30b in HER2+ breast cancer trastuzumab resistance and regulation of the CCNE2 gene. Sci Rep. 7:413092017. View Article : Google Scholar : PubMed/NCBI

245 

Gu YF, Zhang H, Su D, Mo ML, Song P, Zhang F and Zhang SC: miR-30b and miR-30c expression predicted response to tyrosine kinase inhibitors as first line treatment in non-small cell lung cancer. Chin Med J (Engl). 126:4435–4439. 2013.

246 

Amini S, Abak A, Estiar MA, Montazeri V, Abhari A and Sakhinia E: Expression Analysis of MicroRNA-222 in breast cancer. Clin Lab. 64:491–496. 2018. View Article : Google Scholar : PubMed/NCBI

247 

Zong Y, Zhang Y, Sun X, Xu T, Cheng X and Qin Y: miR-221/222 promote tumor growth and suppress apoptosis by targeting lncRNA GAS5 in breast cancer. Biosci Rep. 39:pii: BSR20181859. 2019. View Article : Google Scholar :

248 

Hoppe R, Fan P, Buttner F, Winter S, Tyagi AK, Cunliffe H, Jordan VC and Brauch H: Profiles of miRNAs matched to biology in aromatase inhibitor resistant breast cancer. Oncotarget. 7:71235–71254. 2016. View Article : Google Scholar : PubMed/NCBI

249 

Han SH, Kim HJ, Gwak JM, Kim M, Chung YR and Park SY: MicroRNA-222 expression as a predictive marker for tumor progression in hormone receptor-positive breast cancer. J Breast Cancer. 20:35–44. 2017. View Article : Google Scholar : PubMed/NCBI

250 

Kim C, Go EJ and Kim A: Recurrence prediction using microRNA expression in hormone receptor positive breast cancer during tamoxifen treatment. Biomarkers. 23:804–811. 2018. View Article : Google Scholar : PubMed/NCBI

251 

Zhu W, Liu M, Fan Y, Ma F, Xu N and Xu B: Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer. Cancer Med. 7:4420–4433. 2018. View Article : Google Scholar : PubMed/NCBI

252 

Chen X, Lu P, Wang DD, Yang SJ, Wu Y, Shen HY, Zhong SL, Zhao JH and Tang JH: The role of miRNAs in drug resistance and prognosis of breast cancer formalin-fixed paraffin-embedded tissues. Gene. 595:221–226. 2016. View Article : Google Scholar : PubMed/NCBI

253 

Chen J, Chen Z, Huang J, Chen F, Ye W, Ding G and Wang X: Bioinformatics identification of dysregulated microRNAs in triple negative breast cancer based on microRNA expression profiling. Oncol Lett. 15:3017–3023. 2018.PubMed/NCBI

254 

Li Y, Liang C, Ma H, Zhao Q, Lu Y, Xiang Z, Li L, Qin J, Chen Y, Cho WC, et al: miR-221/222 promotes S-phase entry and cellular migration in control of basal-like breast cancer. Molecules. 19:7122–7137. 2014. View Article : Google Scholar : PubMed/NCBI

255 

Zhao L, Ren Y, Tang H, Wang W, He Q, Sun J, Zhou X and Wang A: Deregulation of the miR-222-ABCG2 regulatory module in tongue squamous cell carcinoma contributes to chemoresistance and enhanced migratory/invasive potential. Oncotarget. 6:44538–44550. 2015. View Article : Google Scholar : PubMed/NCBI

256 

Shen H, Wang D, Li L, Yang S, Chen X, Zhou S, Zhong S, Zhao J and Tang J: MiR-222 promotes drug-resistance of breast cancer cells to adriamycin via modulation of PTEN/Akt/FOXO1 pathway. Gene. 596:110–118. 2017. View Article : Google Scholar

257 

Wang DD, Yang SJ, Chen X, Shen HY, Luo LJ, Zhang XH, Zhong SL, Zhao JH and Tang JH: miR-222 induces Adriamycin resistance in breast cancer through PTEN/Akt/p27(kip1) pathway. Tumour Biol. 37:15315–15324. 2016. View Article : Google Scholar : PubMed/NCBI

258 

Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, Burow ME, Ivan M, Croce CM and Nephew KP: MicroRNA- 221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 30:1082–1097. 2011. View Article : Google Scholar

259 

Wei F, Ma C, Zhou T, Dong X, Luo Q, Geng L, Ding L, Zhang Y, Zhang L, Zhang L, et al: Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer. 16:1322017. View Article : Google Scholar : PubMed/NCBI

260 

Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ, Guiro K, Isenalumhe LL, Greco SJ, Ayer S, Bryan M, et al: Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 76:5832–5844. 2016. View Article : Google Scholar : PubMed/NCBI

261 

Ding J, Xu Z, Zhang Y, Tan C, Hu W, Wang M, Xu Y and Tang J: Exosome-mediated miR-222 transferring: An insight into NF-kappaB-mediated breast cancer metastasis. Exp Cell Res. 369:129–138. 2018. View Article : Google Scholar : PubMed/NCBI

262 

Gan R, Yang Y, Yang X, Zhao L, Lu J and Meng QH: Downregulation of miR-221/222 enhances sensitivity of breast cancer cells to tamoxifen through upregulation of TIMP3. Cancer Gene Ther. 21:290–296. 2014. View Article : Google Scholar : PubMed/NCBI

263 

Vishnubalaji R, Hamam R, Yue S, Al-Obeed O, Kassem M, Liu FF, Aldahmash A and Alajez NM: MicroRNA-320 suppresses colorectal cancer by targeting SOX4, FOXM1, and FOXQ1. Oncotarget. 7:35789–35802. 2016. View Article : Google Scholar : PubMed/NCBI

264 

Iwagami Y, Eguchi H, Nagano H, Akita H, Hama N, Wada H, Kawamoto K, Kobayashi S, Tomokuni A, Tomimaru Y, et al: miR-320c regulates gemcitabine-resistance in pancreatic cancer via SMARCC1. Br J Cancer. 109:502–511. 2013. View Article : Google Scholar : PubMed/NCBI

265 

Li M, Zeringer E, Barta T, Schageman J, Cheng A and Vlassov AV: Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc Lond B Biol Sci. 369:pii: 201305022014. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Asberger J, et al: Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?. Int J Oncol 56: 47-68, 2020.
APA
Ritter, A., Hirschfeld, M., Berner, K., Rücker, G., Jäger, M., Weiss, D. ... Erbes, T. (2020). Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?. International Journal of Oncology, 56, 47-68. https://doi.org/10.3892/ijo.2019.4920
MLA
Ritter, A., Hirschfeld, M., Berner, K., Rücker, G., Jäger, M., Weiss, D., Medl, M., Nöthling, C., Gassner, S., Asberger, J., Erbes, T."Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?". International Journal of Oncology 56.1 (2020): 47-68.
Chicago
Ritter, A., Hirschfeld, M., Berner, K., Rücker, G., Jäger, M., Weiss, D., Medl, M., Nöthling, C., Gassner, S., Asberger, J., Erbes, T."Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?". International Journal of Oncology 56, no. 1 (2020): 47-68. https://doi.org/10.3892/ijo.2019.4920
Copy and paste a formatted citation
x
Spandidos Publications style
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Asberger J, et al: Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?. Int J Oncol 56: 47-68, 2020.
APA
Ritter, A., Hirschfeld, M., Berner, K., Rücker, G., Jäger, M., Weiss, D. ... Erbes, T. (2020). Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?. International Journal of Oncology, 56, 47-68. https://doi.org/10.3892/ijo.2019.4920
MLA
Ritter, A., Hirschfeld, M., Berner, K., Rücker, G., Jäger, M., Weiss, D., Medl, M., Nöthling, C., Gassner, S., Asberger, J., Erbes, T."Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?". International Journal of Oncology 56.1 (2020): 47-68.
Chicago
Ritter, A., Hirschfeld, M., Berner, K., Rücker, G., Jäger, M., Weiss, D., Medl, M., Nöthling, C., Gassner, S., Asberger, J., Erbes, T."Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer?". International Journal of Oncology 56, no. 1 (2020): 47-68. https://doi.org/10.3892/ijo.2019.4920
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team