Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2024 Volume 64 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2024 Volume 64 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review)

  • Authors:
    • Leyu Ai
    • Na Yi
    • Chunhan Qiu
    • Wanyi Huang
    • Keke Zhang
    • Qiulian Hou
    • Long Jia
    • Hui Li
    • Ling Liu
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China, Department of Clinical Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China, Central Laboratory of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China
    Copyright: © Ai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 46
    |
    Published online on: March 8, 2024
       https://doi.org/10.3892/ijo.2024.5634
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer arises from the malignant transformation of mammary epithelial cells under the influence of various carcinogenic factors, leading to a gradual increase in its prevalence. This disease has become the leading cause of mortality among female malignancies, posing a significant threat to the health of women. The timely identification of breast cancer remains challenging, often resulting in diagnosis at the advanced stages of the disease. Conventional therapeutic approaches, such as surgical excision, chemotherapy and radiotherapy, exhibit limited efficacy in controlling the progression and metastasis of the disease. Regulated cell death (RCD), a process essential for physiological tissue cell renewal, occurs within the body independently of external influences. In the context of cancer, research on RCD primarily focuses on cuproptosis, ferroptosis and pyroptosis. Mounting evidence suggests a marked association between these specific forms of RCD, and the onset and progression of breast cancer. For example, a cuproptosis vector can effectively bind copper ions to induce cuproptosis in breast cancer cells, thereby hindering their proliferation. Additionally, the expression of ferroptosis‑related genes can enhance the sensitivity of breast cancer cells to chemotherapy. Likewise, pyroptosis‑related proteins not only participate in pyroptosis, but also regulate the tumor microenvironment, ultimately leading to the death of breast cancer cells. The present review discusses the unique regulatory mechanisms of cuproptosis, ferroptosis and pyroptosis in breast cancer, and the mechanisms through which they are affected by conventional cancer drugs. Furthermore, it provides a comprehensive overview of the significance of these forms of RCD in modulating the efficacy of chemotherapy and highlights their shared characteristics. This knowledge may provide novel avenues for both clinical interventions and fundamental research in the context of breast cancer.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI

2 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, Castro G Jr, Untch M, Smith I, Gianni L, et al: 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin Adjuvant (HERA) trial. Lancet. 389:1195–1205. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I and Andrews DW: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Conradt B: Genetic control of programmed cell death during animal development. Annu Rev Genet. 43:493–523. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Fuchs Y and Steller H: Programmed cell death in animal development and disease. Cell. 147:742–758. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Galluzzi L, Bravo-San Pedro JM, Kepp O and Kroemer G: Regulated cell death and adaptive stress responses. Cell Mol Life Sci. 73:2405–2410. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Lutsenko S: Human copper homeostasis: A network of interconnected pathways. Curr Opin Chem Biol. 14:211–217. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Gaggelli E, Kozlowski H, Valensin D and Valensin G: Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev. 106:1995–2044. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Festa RA and Thiele DJ: Copper: An essential metal in biology. Curr Biol. 21:R877–R883. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Chillappagari S, Seubert A, Trip H, Kuipers OP, Marahiel MA and Miethke M: Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J Bacteriol. 192:2512–2524. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Macomber L and Imlay JA: The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA. 106:8344–8349. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Wang Y, Zhang L and Zhou F: Cuproptosis: A new form of programmed cell death. Cell Mol Immunol. 19:867–868. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Tang D, Chen X and Kroemer G: Cuproptosis: A coppertriggered modality of mitochondrial cell death. Cell Res. 32:417–418. 2022. View Article : Google Scholar : PubMed/NCBI

16 

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al: Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 15:681–689. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Skrott Z, Majera D, Gursky J, Buchtova T, Hajduch M, Mistrik M and Bartek J: Disulfiram's anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene. 38:6711–6722. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Pan M, Zheng Q, Yu Y, Ai H, Xie Y, Zeng X, Wang C, Liu L and Zhao M: Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative. Nat Commun. 12:1212021. View Article : Google Scholar : PubMed/NCBI

21 

Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM and Brady DC: Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 22:412–424. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Davis CI, Gu X, Kiefer RM, Ralle M, Gade TP and Brady DC: Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. Metallomics. 12:1995–2008. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, et al: Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat Rev Cancer. 22:102–113. 2022. View Article : Google Scholar :

24 

Hasinoff BB, Yadav AA, Patel D and Wu X: The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). J Inorg Biochem. 137:22–30. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R and Marchiò L: Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J Am Chem Soc. 133:6235–6242. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Pavithra V, Sathisha TG, Kasturi K, Mallika DS, Amos SJ and Ragunatha S: Serum levels of metal ions in female patients with breast cancer. J Clin Diagn Res. 9:BC25–BC27. 2015.PubMed/NCBI

27 

Wu J, Zhu Y, Luo M and Li L: Comprehensive analysis of pyroptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front Immunol. 12:7482212021. View Article : Google Scholar : PubMed/NCBI

28 

Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell SL, Thiele DJ and Counter CM: Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 509:492–496. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Cui L, Gouw AM, LaGory EL, Guo S, Attarwala N, Tang Y, Qi J, Chen YS, Gao Z, Casey KM, et al: Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol. 39:357–367. 2021. View Article : Google Scholar

30 

Blockhuys S, Zhang X and Wittung-Stafshede P: Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration. Proc Natl Acad Sci USA. 117:2014–2019. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, Du Z, Barsoum J and Bertin J: Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther. 7:2319–2327. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J, Beaudette-Zlatanova BC, Lu R, Blackman RK, Barsoum J, et al: The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic Biol Med. 52:2142–2150. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Yadav AA, Patel D, Wu X and Hasinoff BB: Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II). J Inorg Biochem. 126:1–6. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Renier N, Reinaud O, Jabin I and Valkenier H: Transmembrane transport of copper(i) by imidazole-functionalised calix[4] arenes. Chem Commun (Camb). 56:8206–8209. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI

36 

Smirnova J, Kabin E, Järving I, Bragina O, Tõugu V, Plitz T and Palumaa P: Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. α-Lipoic acid as a potential anti-copper agent. Sci Rep. 8:14632018. View Article : Google Scholar

37 

He K, Chen Z, Ma Y and Pan Y: Identification of high-copper-responsive target pathways in Atp7b knockout mouse liver by GSEA on microarray data sets. Mamm Genome. 22:703–713. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R and Lill R: Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA. 107:11775–11780. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S and Park HW: Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci USA. 108:10139–10143. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Zalewski A, Ma NS, Legeza B, Renthal N, Flück CE and Pandey AV: Vitamin D-Dependent rickets type 1 caused by mutations in CYP27B1 affecting protein interactions with adrenodoxin. J Clin Endocrinol Metab. 101:3409–3418. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Moriya M, Ho YH, Grana A, Nguyen L, Alvarez A, Jamil R, Ackland ML, Michalczyk A, Hamer P, Ramos D, et al: Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol. 295:C708–C721. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Xie J, Yang Y, Gao Y and He J: Cuproptosis: Mechanisms and links with cancers. Mol Cancer. 22:462023. View Article : Google Scholar : PubMed/NCBI

43 

Lu Z and Hunter T: Metabolic kinases moonlighting as protein kinases. Trends Biochem Sci. 43:301–310. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Zhang L, Li M, Cui Z, Chai D, Guan Y, Chen C and Wang W: Systematic analysis of the role of SLC52A2 in multiple human cancers. Cancer Cell Int. 22:82022. View Article : Google Scholar : PubMed/NCBI

45 

Halestrap AP: The SLC16 gene family-structure, role and regulation in health and disease. Mol Aspects Med. 34:337–349. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Higuchi K, Sugiyama K, Tomabechi R, Kishimoto H and Inoue K: Mammalian monocarboxylate transporter 7 (MCT7/Slc16a6) is a novel facilitative taurine transporter. J Biol Chem. 298:1018002022. View Article : Google Scholar : PubMed/NCBI

47 

Wright ME, Peters U, Gunter MJ, Moore SC, Lawson KA, Yeager M, Weinstein SJ, Snyder K, Virtamo J and Albanes D: Association of variants in two vitamin e transport genes with circulating vitamin e concentrations and prostate cancer risk. Cancer Res. 69:1429–1438. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Tanaka T, Bai Z, Srinoulprasert Y, Yang BG, Hayasaka H and Miyasaka M: Chemokines in tumor progression and metastasis. Cancer Sci. 96:317–322. 2005. View Article : Google Scholar : PubMed/NCBI

49 

de Marco MC, Martín-Belmonte F, Kremer L, Albar JP, Correas I, Vaerman JP, Marazuela M, Byrne JA and Alonso MA: MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J Cell Biol. 159:37–44. 2002. View Article : Google Scholar : PubMed/NCBI

50 

Li DD, Yagüe E, Wang LY, Dai LL, Yang ZB, Zhi S, Zhang N, Zhao XM and Hu YH: Novel copper complexes that inhibit the proteasome and trigger apoptosis in triple-negative breast cancer cells. ACS Med Chem Lett. 10:1328–1335. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Lee ZY, Leong CH, Lim KUL, Wong CCS, Pongtheerawan P, Arikrishnan SA, Tan KL, Loh JS, Low ML, How CW, et al: Induction of apoptosis and autophagy by ternary copper complex towards breast cancer cells. Anticancer Agents Med Chem. 22:1159–1170. 2022. View Article : Google Scholar

52 

Li X, Ma Z and Mei L: Cuproptosis-related gene SLC31A1 is a potential predictor for diagnosis, prognosis and therapeutic response of breast cancer. Am J Cancer Res. 12:3561–3580. 2022.PubMed/NCBI

53 

Li L, Li L and Sun Q: High expression of cuproptosis-related SLC31A1 gene in relation to unfavorable outcome and deregulated immune cell infiltration in breast cancer: An analysis based on public databases. BMC Bioinformatics. 23:3502022. View Article : Google Scholar : PubMed/NCBI

54 

Li Z, Zhang H, Wang X, Wang Q, Xue J, Shi Y, Wang M, Wang G and Zhang J: Identification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front Immunol. 13:9968362022. View Article : Google Scholar : PubMed/NCBI

55 

Sha S, Si L, Wu X, Chen Y, Xiong H, Xu Y, Liu W, Mei H, Wang T and Li M: Prognostic analysis of cuproptosis-related gene in triple-negative breast cancer. Front Immunol. 13:9227802022. View Article : Google Scholar : PubMed/NCBI

56 

Guan X, Lu N and Zhang J: Construction of a prognostic model related to copper dependence in breast cancer by single-cell sequencing analysis. Front Genet. 13:9498522022. View Article : Google Scholar : PubMed/NCBI

57 

Jiang ZR, Yang LH, Jin LZ, Yi LM, Bing PP, Zhou J and Yang JS: Identification of novel cuproptosis-related lncRNA signatures to predict the prognosis and immune microenvironment of breast cancer patients. Front Oncol. 12:9886802022. View Article : Google Scholar : PubMed/NCBI

58 

Zhao Q and Qi T: The implications and prospect of cuproptosis-related genes and copper transporters in cancer progression. Front Oncol. 13:11171642023. View Article : Google Scholar : PubMed/NCBI

59 

Song S, Zhang M, Xie P, Wang S and Wang Y: Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front Immunol. 13:9789092022. View Article : Google Scholar : PubMed/NCBI

60 

Ning S, Lyu M, Zhu D, Lam JWY, Huang Q, Zhang T and Tang BZ: Type-I AIE photosensitizer loaded biomimetic system boosting cuproptosis to inhibit breast cancer metastasis and rechallenge. ACS Nano. 17:10206–10217. 2023. View Article : Google Scholar : PubMed/NCBI

61 

Lee SY, Seo JH, Kim S, Hwang C, Jeong DI, Park J, Yang M, Huh JW and Cho HJ: Cuproptosis-Inducible chemotherapeutic/cascade catalytic reactor system for combating with breast cancer. Small. 19:e23014022023. View Article : Google Scholar : PubMed/NCBI

62 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Lu B, Chen XB, Ying MD, He QJ, Cao J and Yang B: The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 8:9922018. View Article : Google Scholar : PubMed/NCBI

66 

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Xie Y, Wang B, Zhao Y, Tao Z, Wang Y, Chen G and Hu X: Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis. J Hematol Oncol. 15:722022. View Article : Google Scholar : PubMed/NCBI

68 

Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, Guerard A, Gilhodes J, Lazar I, Alet N, Laurent V, et al: Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2:e874892017. View Article : Google Scholar : PubMed/NCBI

69 

Yang D, Li Y, Xing L, Tan Y, Sun J, Zeng B, Xiang T, Tan J, Ren G and Wang Y: Utilization of adipocyte-derived lipids and enhanced intracellular trafficking of fatty acids contribute to breast cancer progression. Cell Commun Signal. 16:322018. View Article : Google Scholar : PubMed/NCBI

70 

Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY and McDonnell DP: Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun. 12:51032021. View Article : Google Scholar : PubMed/NCBI

71 

Baek AE, Yu YA, He S, Wardell SE, Chang CY, Kwon S, Pillai RV, McDowell HB, Thompson JW, Dubois LG, et al: The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun. 8:8642017. View Article : Google Scholar : PubMed/NCBI

72 

Vallianou NG, Kostantinou A, Kougias M and Kazazis C: Statins and cancer. Anticancer Agents Med Chem. 14:706–712. 2014. View Article : Google Scholar

73 

Sha R, Xu Y, Yuan C, Sheng X, Wu Z, Peng J, Wang Y, Lin Y, Zhou L, Xu S, et al: Predictive and prognostic impact of ferroptosis-related genes ACSL4 and GPX4 on breast cancer treated with neoadjuvant chemotherapy. EBioMedicine. 71:1035602021. View Article : Google Scholar : PubMed/NCBI

74 

Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y and Zhang Q: Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol. 14:192021. View Article : Google Scholar

75 

Zhang K, Ping L, Du T, Liang G, Huang Y, Li Z, Deng R and Tang J: A Ferroptosis-Related lncRNAs signature predicts prognosis and immune microenvironment for breast cancer. Front Mol Biosci. 8:6788772021. View Article : Google Scholar : PubMed/NCBI

76 

Ping L, Zhang K, Ou X, Qiu X and Xiao X: A novel pyroptosis-associated long Non-coding RNA signature predicts prognosis and tumor immune microenvironment of patients with breast cancer. Front Cell Dev Biol. 9:7271832021. View Article : Google Scholar : PubMed/NCBI

77 

Zhu Z and Leung GKK: More than a metabolic enzyme: MTHFD2 as a novel target for anticancer therapy? Front Oncol. 10:6582020. View Article : Google Scholar : PubMed/NCBI

78 

Zhang H, Zhu S, Zhou H, Li R, Xia X and Xiong H: Identification of MTHFD2 as a prognostic biomarker and ferroptosis regulator in triple-negative breast cancer. Front Oncol. 13:10983572023. View Article : Google Scholar : PubMed/NCBI

79 

Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK and Karunagaran D: SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett. 522:211–224. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar :

81 

He J, Wang X, Chen K, Zhang M and Wang J: The amino acid transporter SLC7A11-mediated crosstalk implicated in cancer therapy and the tumor microenvironment. Biochem Pharmacol. 205:1152412022. View Article : Google Scholar : PubMed/NCBI

82 

Zhang Y, Liang Y, Wang Y, Ye F, Kong X and Yang Q: A novel ferroptosis-related gene signature for overall survival prediction and immune infiltration in patients with breast cancer. Int J Oncol. 61:1482022. View Article : Google Scholar :

83 

Liu Q, Ma JY and Wu G: Identification and validation of a ferroptosis-related gene signature predictive of prognosis in breast cancer. Aging (Albany NY). 13:21385–21399. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Xu Y, Du Y, Zheng Q, Zhou T, Ye B, Wu Y, Xu Q and Meng X: Identification of ferroptosis-related prognostic signature and subtypes related to the immune microenvironment for breast cancer patients receiving neoadjuvant chemotherapy. Front Immunol. 13:8951102022. View Article : Google Scholar : PubMed/NCBI

85 

Yang YF, Lee YC, Wang YY, Wang CH, Hou MF and Yuan SF: YWHAE promotes proliferation, metastasis, and chemoresistance in breast cancer cells. Kaohsiung J Med Sci. 35:408–416. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Qiao X, Zhang Y, Sun L, Ma Q, Yang J, Ai L, Xue J, Chen G, Zhang H, Ji C, et al: Association of human breast cancer CD44-/CD24-cells with delayed distant metastasis. Elife. 10:e654182021. View Article : Google Scholar

87 

Gong Z, Li Q, Shi J, Liu ET, Shultz LD and Ren G: Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic reprogramming of tumor cells and natural killer cells. Cell Metab. 34:1960–1976.e9. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Li Y, Jin K, van Pelt GW, van Dam H, Yu X, Mesker WE, Ten Dijke P, Zhou F and Zhang L: c-Myb enhances breast cancer invasion and metastasis through the Wnt/β-Catenin/Axin2 pathway. Cancer Res. 76:3364–3375. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Li Y, Zhang Y, Liu X, Wang M, Wang P, Yang J and Zhang S: Lutein inhibits proliferation, invasion and migration of hypoxic breast cancer cells via downregulation of HES1. Int J Oncol. 52:2119–2129. 2018.PubMed/NCBI

90 

Huo Q, Wang J and Xie N: High HSPB1 expression predicts poor clinical outcomes and correlates with breast cancer metastasis. BMC Cancer. 23:5012023. View Article : Google Scholar : PubMed/NCBI

91 

Zhang H, Ge Z, Wang Z, Gao Y, Wang Y and Qu X: Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer. Aging (Albany NY). 13:8115–8126. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Zhou Y, Che Y, Fu Z, Zhang H and Wu H: Triple-Negative breast cancer analysis based on metabolic gene classification and immunotherapy. Front Public Health. 10:9023782022. View Article : Google Scholar : PubMed/NCBI

93 

Zhang J, Yang J, Zuo T, Ma S, Xokrat N, Hu Z, Wang Z, Xu R, Wei Y and Shen Q: Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy. Biomaterials. 266:1204292021. View Article : Google Scholar

94 

Nieto C, Vega MA and Martín Del Valle EM: Tailored-Made polydopamine nanoparticles to induce ferroptosis in breast cancer cells in combination with chemotherapy. Int J Mol Sci. 22:31612021. View Article : Google Scholar : PubMed/NCBI

95 

Zhou Z, Liang H, Yang R, Yang Y, Dong J, Di Y and Sun M: Glutathione depletion-induced activation of dimersomes for potentiating the ferroptosis and immunotherapy of 'cold' tumor. Angew Chem Int Ed Engl. 61:e2022028432022. View Article : Google Scholar

96 

Dattachoudhury S, Sharma R, Kumar A and Jaganathan BG: Sorafenib inhibits proliferation, migration and invasion of breast cancer cells. Oncology. 98:478–486. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S and Li W: Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci. 110:3173–3182. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI

99 

Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI

100 

Ma S, Dielschneider RF, Henson ES, Xiao W, Choquette TR, Blankstein AR, Chen Y and Gibson SB: Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells. PLoS One. 12:e01829212017. View Article : Google Scholar : PubMed/NCBI

101 

Chen Z, Li R, Fang M, Wang Y, Bi A, Yang L, Song T, Li Y, Li Q, Lin B, et al: Integrated analysis of FKBP1A/SLC3A2 axis in everolimus inducing ferroptosis of breast cancer and anti-proliferation of T lymphocyte. Int J Med Sci. 20:1060–1078. 2023. View Article : Google Scholar : PubMed/NCBI

102 

Li H, Liu W, Zhang X, Wu F, Sun D and Wang Z: Ketamine suppresses proliferation and induces ferroptosis and apoptosis of breast cancer cells by targeting KAT5/GPX4 axis. Biochem Biophys Res Commun. 585:111–116. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Song X, Wang X, Liu Z and Yu Z: Role of GPX4-Mediated ferroptosis in the sensitivity of triple negative breast cancer cells to gefitinib. Front Oncol. 10:5974342020. View Article : Google Scholar

104 

Yao X, Xie R, Cao Y, Tang J, Men Y, Peng H and Yang W: Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 19:3112021. View Article : Google Scholar : PubMed/NCBI

105 

Zhang Z, Lu M, Chen C, Tong X, Li Y, Yang K, Lv H, Xu J and Qin L: Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics. 11:3167–3182. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Sun D, Li YC and Zhang XY: Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer. Front Pharmacol. 12:6812232021. View Article : Google Scholar

107 

Li R, Zhang J, Zhou Y, Gao Q, Wang R, Fu Y, Zheng L and Yu H: Transcriptome Investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxid Med Cell Longev. 2020:34698402020. View Article : Google Scholar : PubMed/NCBI

108 

Zhai FG, Liang QC, Wu YY, Liu JQ and Liu JW: Red ginseng polysaccharide exhibits anticancer activity through GPX4 downregulation-induced ferroptosis. Pharm Biol. 60:909–914. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Cookson BT and Brennan MA: Pro-inflammatory programmed cell death. Trends Microbiol. 9:113–114. 2001. View Article : Google Scholar : PubMed/NCBI

110 

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Järveläinen HA, Galmiche A and Zychlinsky A: Caspase-1 activation by Salmonella. Trends Cell Biol. 13:204–209. 2003. View Article : Google Scholar : PubMed/NCBI

112 

Martinon F, Burns K and Tschopp J: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI

113 

Feng S, Fox D and Man SM: Mechanisms of gasdermin family members in inflammasome signaling and cell death. J Mol Biol. 430(18 Pt B): 3068–3080. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L and Shao F: Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 514:187–192. 2014. View Article : Google Scholar : PubMed/NCBI

115 

Xia J, Chu C, Li W, Chen H, Xie W, Cheng R, Hu K and Li X: Mitochondrial Protein UCP1 inhibits the malignant behaviors of triple-negative breast cancer through activation of mitophagy and pyroptosis. Int J Biol Sci. 18:2949–2961. 2022. View Article : Google Scholar : PubMed/NCBI

116 

Yu X, Shi M, Wu Q, Wei W, Sun S and Zhu S: Identification of UCP1 and UCP2 as potential prognostic markers in breast cancer: A study based on immunohistochemical analysis and bioinformatics. Front Cell Dev Biol. 10:8917312022. View Article : Google Scholar : PubMed/NCBI

117 

Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al: Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 579:415–420. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Yi M, Niu M, Xu L, Luo S and Wu K: Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 14:102021. View Article : Google Scholar : PubMed/NCBI

119 

Zhang M, Wu K, Wang M, Bai F and Chen H: CASP9 as a prognostic biomarker and promising drug target plays a pivotal role in inflammatory breast cancer. Int J Anal Chem. 2022:10434452022. View Article : Google Scholar : PubMed/NCBI

120 

Chu L, Yi Q, Yan Y, Peng J, Li Z, Jiang F, He Q, Ouyang L, Wu S, Fu C, et al: A prognostic signature consisting of pyroptosis-related genes and SCAF11 for predicting immune response in breast cancer. Front Med (Lausanne). 9:8827632022. View Article : Google Scholar : PubMed/NCBI

121 

Xu D, Ji Z and Qiang L: Molecular characteristics, clinical implication, and cancer immunity interactions of pyroptosis-related genes in breast cancer. Front Med (Lausanne). 8:7026382021. View Article : Google Scholar : PubMed/NCBI

122 

Zhou Y, Zheng J, Bai M, Gao Y and Lin N: Effect of pyroptosis-related genes on the prognosis of breast cancer. Front Oncol. 12:9481692022. View Article : Google Scholar : PubMed/NCBI

123 

Jin H and Kim HJ: NLRC4, ASC and Caspase-1 are inflammasome components that are mediated by P2Y2R activation in breast cancer cells. Int J Mol Sci. 21:33372020. View Article : Google Scholar :

124 

Hergueta-Redondo M, Sarrió D, Molina-Crespo Á, Megias D, Mota A, Rojo-Sebastian A, García-Sanz P, Morales S, Abril S, Cano A, et al: Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One. 9:e900992014. View Article : Google Scholar : PubMed/NCBI

125 

Song C, Kendi AT, Lowe VJ and Lee S: The A20/TNFAIP3-CDC20-CASP1 axis promotes inflammation-mediated metastatic disease in triple-negative breast cancer. Anticancer Res. 42:681–695. 2022. View Article : Google Scholar : PubMed/NCBI

126 

Velloso FJ, Campos AR, Sogayar MC and Correa RG: Proteome profiling of triple negative breast cancer cells overexpressing NOD1 and NOD2 receptors unveils molecular signatures of malignant cell proliferation. BMC Genomics. 20:1522019. View Article : Google Scholar : PubMed/NCBI

127 

Miao H, Wang L, Zhan H, Dai J, Chang Y, Wu F, Liu T, Liu Z, Gao C, Li L and Song X: A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet. 15:e10081442019. View Article : Google Scholar : PubMed/NCBI

128 

Faria SS, Costantini S, de Lima VCC, de Andrade VP, Rialland M, Cedric R, Budillon A and Magalhães KG: NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J Biomed Sci. 28:262021. View Article : Google Scholar : PubMed/NCBI

129 

Siersbæk R, Scabia V, Nagarajan S, Chernukhin I, Papachristou EK, Broome R, Johnston SJ, Joosten SEP, Green AR, Kumar S, et al: IL6/STAT3 signaling hijacks estrogen receptor α enhancers to drive breast cancer metastasis. Cancer Cell. 38:412–423.e9. 2020. View Article : Google Scholar

130 

Wei Y, Huang H, Qiu Z, Li H, Tan J, Ren G and Wang X: NLRP1 overexpression is correlated with the tumorigenesis and proliferation of human breast tumor. Biomed Res Int. 2017:49384732017. View Article : Google Scholar : PubMed/NCBI

131 

Tan Y, Sun R, Liu L, Yang D, Xiang Q, Li L, Tang J, Qiu Z, Peng W, Wang Y, et al: Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Theranostics. 11:5214–5231. 2021. View Article : Google Scholar :

132 

Zhang Z, Zhang H, Li D, Zhou X, Qin Q and Zhang Q: Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med. 25:8159–8168. 2021. View Article : Google Scholar : PubMed/NCBI

133 

An H, Heo JS, Kim P, Lian Z, Lee S, Park J, Hong E, Pang K, Park Y, Ooshima A, et al: Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis. 12:1592021. View Article : Google Scholar : PubMed/NCBI

134 

Ma JH, Qin L and Li X: Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal. 18:332020. View Article : Google Scholar : PubMed/NCBI

135 

Wu L, Bai S, Huang J, Cui G, Li Q, Wang J, Du X, Fu W, Li C, Wei W, et al: Nigericin boosts anti-tumor immune response via inducing pyroptosis in triple-negative breast cancer. Cancers (Basel). 15:32212023. View Article : Google Scholar : PubMed/NCBI

136 

Wang H, Rong X, Zhao G, Zhou Y, Xiao Y, Ma D, Jin X, Wu Y, Yan Y, Yang H, et al: The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 34:581–594.e8. 2022. View Article : Google Scholar : PubMed/NCBI

137 

Lei S, Li S, Xiao W, Jiang Q, Yan S, Xiao W, Cai J, Wang J, Zou L, Chen F, et al: Azurocidin 1 inhibits the aberrant proliferation of triple-negative breast cancer through the regulation of pyroptosis. Oncol Rep. 50:1882023. View Article : Google Scholar

138 

Pizato N, Luzete BC, Kiffer LFMV, Corrêa LH, de Oliveira Santos I, Assumpção JAF, Ito MK and Magalhães KG: Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 8:19522018. View Article : Google Scholar : PubMed/NCBI

139 

Chen C, Yuan S, Chen X, Xie J and Wei Z: Xihuang pill induces pyroptosis and inhibits progression of breast cancer cells via activating the cAMP/PKA signalling pathway. Am J Cancer Res. 13:1347–1362. 2023.PubMed/NCBI

140 

Li Y, Wang W, Li A, Huang W, Chen S, Han F and Wang L: Dihydroartemisinin induces pyroptosis by promoting the AIM2/caspase-3/DFNA5 axis in breast cancer cells. Chem Biol Interact. 340:1094342021. View Article : Google Scholar : PubMed/NCBI

141 

Zhong C, Li Y, Li W, Lian S, Li Y, Wu C, Zhang K, Zhou G, Wang W, Xu H, et al: Ganoderma lucidum extract promotes tumor cell pyroptosis and inhibits metastasis in breast cancer. Food Chem Toxicol. 174:1136542023. View Article : Google Scholar : PubMed/NCBI

142 

Zhao P, Wang M, Chen M, Chen Z, Peng X, Zhou F, Song J and Qu J: Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials. 254:1201422020. View Article : Google Scholar : PubMed/NCBI

143 

Li L, Tian H, Zhang Z, Ding N, He K, Lu S, Liu R, Wu P, Wang Y, He B, et al: Carrier-Free nanoplatform via evoking pyroptosis and immune response against breast cancer. ACS Appl Mater Interfaces. 15:452–468. 2023. View Article : Google Scholar

144 

Li C, Wang X, Chen T, Li W, Zhou X, Wang L and Yang Q: Huaier induces immunogenic cell death via CircCLASP1/PKR/eIF2α signaling pathway in triple negative breast cancer. Front Cell Dev Biol. 10:9138242022. View Article : Google Scholar

145 

Yamamoto A, Huang Y, Krajina BA, McBirney M, Doak AE, Qu S, Wang CL, Haffner MC and Cheung KJ: Metastasis from the tumor interior and necrotic core formation are regulated by breast cancer-derived angiopoietin-like 7. Proc Natl Acad Sci USA. 120:e22148881202023. View Article : Google Scholar : PubMed/NCBI

146 

Wen N, Lv Q and Du ZG: MicroRNAs involved in drug resistance of breast cancer by regulating autophagy. J Zhejiang Univ Sci B. 21:690–702. 2020. View Article : Google Scholar : PubMed/NCBI

147 

Wu Q and Sharma D: Autophagy and breast cancer: connected in growth, progression, and therapy. Cells. 12:11562023. View Article : Google Scholar : PubMed/NCBI

148 

Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, Ishikita A, Matsushima S, Koumura T, Yamada KI, et al: Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 8:e1697562023. View Article : Google Scholar : PubMed/NCBI

149 

Wang Y, Shi P, Chen Q, Huang Z, Zou D, Zhang J, Gao X and Lin Z: Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol. 11:1069–1082. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Dai S, Chen Y, Fan X, Han J, Zhong L, Zhang Y, Liu Q, Lin J, Huang W, Su L, et al: Emodin attenuates cardiomyocyte pyroptosis in doxorubicin-induced cardiotoxicity by directly binding to GSDMD. Phytomedicine. 121:1551052023. View Article : Google Scholar : PubMed/NCBI

151 

Lu S, Tian H, Li B, Li L, Jiang H, Gao Y, Zheng L, Huang C, Zhou Y, Du Z and Xu J: An ellagic acid coordinated copper-based nanoplatform for efficiently overcoming cancer chemoresistance by cuproptosis and synergistic inhibition of cancer cell stemness. Small. Dec 3–2023.Epub ahead of print.

152 

Zhong Y, Peng Z, Peng Y, Li B, Pan Y, Ouyang Q, Sakiyama H, Muddassir M and Liu J: Construction of Fe-doped ZIF-8/DOX nanocomposites for ferroptosis strategy in the treatment of breast cancer. J Mater Chem B. 11:6335–6345. 2023. View Article : Google Scholar : PubMed/NCBI

153 

Wang J, Li Y, Zhang J and Luo C: Isoliquiritin modulates ferroptosis via NF-κB signaling inhibition and alleviates doxorubicin resistance in breast cancer. Immunopharmacol Immunotoxicol. 45:443–454. 2023. View Article : Google Scholar : PubMed/NCBI

154 

Yu R, Wang L, Ji X and Mao C: SBP-0636457, a novel smac mimetic, cooperates with doxorubicin to induce necroptosis in breast cancer cells during apoptosis blockage. J Oncol. 2022:23900782022. View Article : Google Scholar : PubMed/NCBI

155 

Wei T, Xiaojun X and Peilong C: Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways. Biomed Pharmacother. 121:1091392020. View Article : Google Scholar

156 

Lu Y, Pan Q, Gao W, Pu Y and He B: Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B. 10:6296–6306. 2022. View Article : Google Scholar : PubMed/NCBI

157 

Roh JL, Kim EH, Jang HJ, Park JY and Shin D: Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett. 381:96–103. 2016. View Article : Google Scholar : PubMed/NCBI

158 

Wang Y, Pang X, Liu Y, Mu G and Wang Q: SOCS1 acts as a ferroptosis driver to inhibit the progression and chemotherapy resistance of triple-negative breast cancer. Carcinogenesis. 44:708–715. 2023. View Article : Google Scholar : PubMed/NCBI

159 

Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S and Zheng X: Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 235:3425–3437. 2020. View Article : Google Scholar

160 

Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L, Ke X, Wu J and Yuan J: Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int J Biol Sci. 17:2606–2621. 2021. View Article : Google Scholar : PubMed/NCBI

161 

Shen M, Duan WM, Wu MY, Wang WJ, Liu L, Xu MD, Zhu J, Li DM, Gui Q, Lian L, et al: Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol Rep. 34:359–367. 2015. View Article : Google Scholar : PubMed/NCBI

162 

Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y and Han B: Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct Target Ther. 7:2862022. View Article : Google Scholar : PubMed/NCBI

163 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI

164 

Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-Mediated programmed necrotic cell death. Trends Biochem Sci. 42:245–254. 2017. View Article : Google Scholar

165 

Song L, Zeng R, Yang K, Liu W, Xu Z and Kang F: The biological significance of cuproptosis-key gene MTF1 in pan-cancer and its inhibitory effects on ROS-mediated cell death of liver hepatocellular carcinoma. Discov Oncol. 14:1132023. View Article : Google Scholar : PubMed/NCBI

166 

Zheng D, Liu J, Piao H, Zhu Z, Wei R and Liu K: ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 13:10392412022. View Article : Google Scholar : PubMed/NCBI

167 

Abais JM, Xia M, Zhang Y, Boini KM and Li PL: Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 22:1111–1129. 2015. View Article : Google Scholar :

168 

Li C and Zhang Y: Construction and validation of a cuproptosis-related five-lncRNA signature for predicting prognosis, immune response and drug sensitivity in breast cancer. BMC Med Genomics. 16:1582023. View Article : Google Scholar : PubMed/NCBI

169 

Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J and Xu Y: RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol. 68:1029522023. View Article : Google Scholar : PubMed/NCBI

170 

Xu W, Song C, Wang X, Li Y, Bai X, Liang X, Wu J and Liu J: Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging (Albany NY). 13:228–240. 2021. View Article : Google Scholar : PubMed/NCBI

171 

Shen Y, Li D, Liang Q, Yang M, Pan Y and Li H: Cross-talk between cuproptosis and ferroptosis regulators defines the tumor microenvironment for the prediction of prognosis and therapies in lung adenocarcinoma. Front Immunol. 13:10290922022. View Article : Google Scholar

172 

Yang X, Deng L, Diao X, Yang S, Zou L, Yang Q, Li J, Nie J, Zhao L and Jiao B: Targeting cuproptosis by zinc pyrithione in triple-negative breast cancer. iScience. 26:1082182023. View Article : Google Scholar : PubMed/NCBI

173 

Li Y, Li T, Zhai D, Xie C, Kuang X, Lin Y and Shao N: Quantification of ferroptosis pathway status revealed heterogeneity in breast cancer patients with distinct immune microenvironment. Front Oncol. 12:9569992022. View Article : Google Scholar : PubMed/NCBI

174 

Wu Y, Lin Z, Tang X, Tong Z, Ji Y, Xu Y, Zhou Z, Yang J, Li Z and Liu T: Ferroptosis-related gene HIC1 in the prediction of the prognosis and immunotherapeutic efficacy with immunological activity. Front Immunol. 14:11820302023. View Article : Google Scholar : PubMed/NCBI

175 

Zeng L, Ding S, Cao Y, Li C, Zhao B, Ma Z, Zhou J, Hu Y, Zhang X, Yang Y, et al: A MOF-Based potent ferroptosis inducer for enhanced radiotherapy of triple negative breast cancer. ACS Nano. 17:13195–13210. 2023. View Article : Google Scholar : PubMed/NCBI

176 

Yang X, Weng X, Yang Y and Jiang Z: Pyroptosis-Related lncRNAs predict the prognosis and immune response in patients with breast cancer. Front Genet. 12:7921062021. View Article : Google Scholar

177 

Huang QF, Fang DL, Nong BB and Zeng J: Focal pyroptosis-related genes AIM2 and ZBP1 are prognostic markers for triple-negative breast cancer with brain metastases. Transl Cancer Res. 10:4845–4858. 2021. View Article : Google Scholar

178 

Ma L, Bian M, Gao H, Zhou Z and Yi W: A novel 3-acyl isoquinolin-1(2H)-one induces G2 phase arrest, apoptosis and GSDME-dependent pyroptosis in breast cancer. PLoS One. 17:e02680602022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ai L, Yi N, Qiu C, Huang W, Zhang K, Hou Q, Jia L, Li H and Liu L: Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review). Int J Oncol 64: 46, 2024.
APA
Ai, L., Yi, N., Qiu, C., Huang, W., Zhang, K., Hou, Q. ... Liu, L. (2024). Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review). International Journal of Oncology, 64, 46. https://doi.org/10.3892/ijo.2024.5634
MLA
Ai, L., Yi, N., Qiu, C., Huang, W., Zhang, K., Hou, Q., Jia, L., Li, H., Liu, L."Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review)". International Journal of Oncology 64.5 (2024): 46.
Chicago
Ai, L., Yi, N., Qiu, C., Huang, W., Zhang, K., Hou, Q., Jia, L., Li, H., Liu, L."Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review)". International Journal of Oncology 64, no. 5 (2024): 46. https://doi.org/10.3892/ijo.2024.5634
Copy and paste a formatted citation
x
Spandidos Publications style
Ai L, Yi N, Qiu C, Huang W, Zhang K, Hou Q, Jia L, Li H and Liu L: Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review). Int J Oncol 64: 46, 2024.
APA
Ai, L., Yi, N., Qiu, C., Huang, W., Zhang, K., Hou, Q. ... Liu, L. (2024). Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review). International Journal of Oncology, 64, 46. https://doi.org/10.3892/ijo.2024.5634
MLA
Ai, L., Yi, N., Qiu, C., Huang, W., Zhang, K., Hou, Q., Jia, L., Li, H., Liu, L."Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review)". International Journal of Oncology 64.5 (2024): 46.
Chicago
Ai, L., Yi, N., Qiu, C., Huang, W., Zhang, K., Hou, Q., Jia, L., Li, H., Liu, L."Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review)". International Journal of Oncology 64, no. 5 (2024): 46. https://doi.org/10.3892/ijo.2024.5634
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team