Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review)
- Authors:
- Leyu Ai
- Na Yi
- Chunhan Qiu
- Wanyi Huang
- Keke Zhang
- Qiulian Hou
- Long Jia
- Hui Li
- Ling Liu
-
Affiliations: Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China, Department of Clinical Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China, Central Laboratory of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830017, P.R. China - Published online on: March 8, 2024 https://doi.org/10.3892/ijo.2024.5634
- Article Number: 46
-
Copyright: © Ai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, Castro G Jr, Untch M, Smith I, Gianni L, et al: 11 years' follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: Final analysis of the HERceptin Adjuvant (HERA) trial. Lancet. 389:1195–1205. 2017. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I and Andrews DW: Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
Conradt B: Genetic control of programmed cell death during animal development. Annu Rev Genet. 43:493–523. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fuchs Y and Steller H: Programmed cell death in animal development and disease. Cell. 147:742–758. 2011. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Bravo-San Pedro JM, Kepp O and Kroemer G: Regulated cell death and adaptive stress responses. Cell Mol Life Sci. 73:2405–2410. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lutsenko S: Human copper homeostasis: A network of interconnected pathways. Curr Opin Chem Biol. 14:211–217. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gaggelli E, Kozlowski H, Valensin D and Valensin G: Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev. 106:1995–2044. 2006. View Article : Google Scholar : PubMed/NCBI | |
Festa RA and Thiele DJ: Copper: An essential metal in biology. Curr Biol. 21:R877–R883. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chillappagari S, Seubert A, Trip H, Kuipers OP, Marahiel MA and Miethke M: Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J Bacteriol. 192:2512–2524. 2010. View Article : Google Scholar : PubMed/NCBI | |
Macomber L and Imlay JA: The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA. 106:8344–8349. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang L and Zhou F: Cuproptosis: A new form of programmed cell death. Cell Mol Immunol. 19:867–868. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang D, Chen X and Kroemer G: Cuproptosis: A coppertriggered modality of mitochondrial cell death. Cell Res. 32:417–418. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al: Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 15:681–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
Skrott Z, Majera D, Gursky J, Buchtova T, Hajduch M, Mistrik M and Bartek J: Disulfiram's anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene. 38:6711–6722. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pan M, Zheng Q, Yu Y, Ai H, Xie Y, Zeng X, Wang C, Liu L and Zhao M: Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative. Nat Commun. 12:1212021. View Article : Google Scholar : PubMed/NCBI | |
Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM and Brady DC: Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 22:412–424. 2020. View Article : Google Scholar : PubMed/NCBI | |
Davis CI, Gu X, Kiefer RM, Ralle M, Gade TP and Brady DC: Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. Metallomics. 12:1995–2008. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, et al: Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat Rev Cancer. 22:102–113. 2022. View Article : Google Scholar : | |
Hasinoff BB, Yadav AA, Patel D and Wu X: The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). J Inorg Biochem. 137:22–30. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R and Marchiò L: Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J Am Chem Soc. 133:6235–6242. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pavithra V, Sathisha TG, Kasturi K, Mallika DS, Amos SJ and Ragunatha S: Serum levels of metal ions in female patients with breast cancer. J Clin Diagn Res. 9:BC25–BC27. 2015.PubMed/NCBI | |
Wu J, Zhu Y, Luo M and Li L: Comprehensive analysis of pyroptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front Immunol. 12:7482212021. View Article : Google Scholar : PubMed/NCBI | |
Brady DC, Crowe MS, Turski ML, Hobbs GA, Yao X, Chaikuad A, Knapp S, Xiao K, Campbell SL, Thiele DJ and Counter CM: Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 509:492–496. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cui L, Gouw AM, LaGory EL, Guo S, Attarwala N, Tang Y, Qi J, Chen YS, Gao Z, Casey KM, et al: Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol. 39:357–367. 2021. View Article : Google Scholar | |
Blockhuys S, Zhang X and Wittung-Stafshede P: Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration. Proc Natl Acad Sci USA. 117:2014–2019. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kirshner JR, He S, Balasubramanyam V, Kepros J, Yang CY, Zhang M, Du Z, Barsoum J and Bertin J: Elesclomol induces cancer cell apoptosis through oxidative stress. Mol Cancer Ther. 7:2319–2327. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nagai M, Vo NH, Shin Ogawa L, Chimmanamada D, Inoue T, Chu J, Beaudette-Zlatanova BC, Lu R, Blackman RK, Barsoum J, et al: The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic Biol Med. 52:2142–2150. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yadav AA, Patel D, Wu X and Hasinoff BB: Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II). J Inorg Biochem. 126:1–6. 2013. View Article : Google Scholar : PubMed/NCBI | |
Renier N, Reinaud O, Jabin I and Valkenier H: Transmembrane transport of copper(i) by imidazole-functionalised calix[4] arenes. Chem Commun (Camb). 56:8206–8209. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI | |
Smirnova J, Kabin E, Järving I, Bragina O, Tõugu V, Plitz T and Palumaa P: Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. α-Lipoic acid as a potential anti-copper agent. Sci Rep. 8:14632018. View Article : Google Scholar | |
He K, Chen Z, Ma Y and Pan Y: Identification of high-copper-responsive target pathways in Atp7b knockout mouse liver by GSEA on microarray data sets. Mamm Genome. 22:703–713. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sheftel AD, Stehling O, Pierik AJ, Elsässer HP, Mühlenhoff U, Webert H, Hobler A, Hannemann F, Bernhardt R and Lill R: Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc Natl Acad Sci USA. 107:11775–11780. 2010. View Article : Google Scholar : PubMed/NCBI | |
Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S and Park HW: Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc Natl Acad Sci USA. 108:10139–10143. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zalewski A, Ma NS, Legeza B, Renthal N, Flück CE and Pandey AV: Vitamin D-Dependent rickets type 1 caused by mutations in CYP27B1 affecting protein interactions with adrenodoxin. J Clin Endocrinol Metab. 101:3409–3418. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moriya M, Ho YH, Grana A, Nguyen L, Alvarez A, Jamil R, Ackland ML, Michalczyk A, Hamer P, Ramos D, et al: Copper is taken up efficiently from albumin and alpha2-macroglobulin by cultured human cells by more than one mechanism. Am J Physiol Cell Physiol. 295:C708–C721. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Yang Y, Gao Y and He J: Cuproptosis: Mechanisms and links with cancers. Mol Cancer. 22:462023. View Article : Google Scholar : PubMed/NCBI | |
Lu Z and Hunter T: Metabolic kinases moonlighting as protein kinases. Trends Biochem Sci. 43:301–310. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li M, Cui Z, Chai D, Guan Y, Chen C and Wang W: Systematic analysis of the role of SLC52A2 in multiple human cancers. Cancer Cell Int. 22:82022. View Article : Google Scholar : PubMed/NCBI | |
Halestrap AP: The SLC16 gene family-structure, role and regulation in health and disease. Mol Aspects Med. 34:337–349. 2013. View Article : Google Scholar : PubMed/NCBI | |
Higuchi K, Sugiyama K, Tomabechi R, Kishimoto H and Inoue K: Mammalian monocarboxylate transporter 7 (MCT7/Slc16a6) is a novel facilitative taurine transporter. J Biol Chem. 298:1018002022. View Article : Google Scholar : PubMed/NCBI | |
Wright ME, Peters U, Gunter MJ, Moore SC, Lawson KA, Yeager M, Weinstein SJ, Snyder K, Virtamo J and Albanes D: Association of variants in two vitamin e transport genes with circulating vitamin e concentrations and prostate cancer risk. Cancer Res. 69:1429–1438. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Bai Z, Srinoulprasert Y, Yang BG, Hayasaka H and Miyasaka M: Chemokines in tumor progression and metastasis. Cancer Sci. 96:317–322. 2005. View Article : Google Scholar : PubMed/NCBI | |
de Marco MC, Martín-Belmonte F, Kremer L, Albar JP, Correas I, Vaerman JP, Marazuela M, Byrne JA and Alonso MA: MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J Cell Biol. 159:37–44. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li DD, Yagüe E, Wang LY, Dai LL, Yang ZB, Zhi S, Zhang N, Zhao XM and Hu YH: Novel copper complexes that inhibit the proteasome and trigger apoptosis in triple-negative breast cancer cells. ACS Med Chem Lett. 10:1328–1335. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee ZY, Leong CH, Lim KUL, Wong CCS, Pongtheerawan P, Arikrishnan SA, Tan KL, Loh JS, Low ML, How CW, et al: Induction of apoptosis and autophagy by ternary copper complex towards breast cancer cells. Anticancer Agents Med Chem. 22:1159–1170. 2022. View Article : Google Scholar | |
Li X, Ma Z and Mei L: Cuproptosis-related gene SLC31A1 is a potential predictor for diagnosis, prognosis and therapeutic response of breast cancer. Am J Cancer Res. 12:3561–3580. 2022.PubMed/NCBI | |
Li L, Li L and Sun Q: High expression of cuproptosis-related SLC31A1 gene in relation to unfavorable outcome and deregulated immune cell infiltration in breast cancer: An analysis based on public databases. BMC Bioinformatics. 23:3502022. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Zhang H, Wang X, Wang Q, Xue J, Shi Y, Wang M, Wang G and Zhang J: Identification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front Immunol. 13:9968362022. View Article : Google Scholar : PubMed/NCBI | |
Sha S, Si L, Wu X, Chen Y, Xiong H, Xu Y, Liu W, Mei H, Wang T and Li M: Prognostic analysis of cuproptosis-related gene in triple-negative breast cancer. Front Immunol. 13:9227802022. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Lu N and Zhang J: Construction of a prognostic model related to copper dependence in breast cancer by single-cell sequencing analysis. Front Genet. 13:9498522022. View Article : Google Scholar : PubMed/NCBI | |
Jiang ZR, Yang LH, Jin LZ, Yi LM, Bing PP, Zhou J and Yang JS: Identification of novel cuproptosis-related lncRNA signatures to predict the prognosis and immune microenvironment of breast cancer patients. Front Oncol. 12:9886802022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q and Qi T: The implications and prospect of cuproptosis-related genes and copper transporters in cancer progression. Front Oncol. 13:11171642023. View Article : Google Scholar : PubMed/NCBI | |
Song S, Zhang M, Xie P, Wang S and Wang Y: Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front Immunol. 13:9789092022. View Article : Google Scholar : PubMed/NCBI | |
Ning S, Lyu M, Zhu D, Lam JWY, Huang Q, Zhang T and Tang BZ: Type-I AIE photosensitizer loaded biomimetic system boosting cuproptosis to inhibit breast cancer metastasis and rechallenge. ACS Nano. 17:10206–10217. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee SY, Seo JH, Kim S, Hwang C, Jeong DI, Park J, Yang M, Huh JW and Cho HJ: Cuproptosis-Inducible chemotherapeutic/cascade catalytic reactor system for combating with breast cancer. Small. 19:e23014022023. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lu B, Chen XB, Ying MD, He QJ, Cao J and Yang B: The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 8:9922018. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Wang B, Zhao Y, Tao Z, Wang Y, Chen G and Hu X: Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis. J Hematol Oncol. 15:722022. View Article : Google Scholar : PubMed/NCBI | |
Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, Guerard A, Gilhodes J, Lazar I, Alet N, Laurent V, et al: Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight. 2:e874892017. View Article : Google Scholar : PubMed/NCBI | |
Yang D, Li Y, Xing L, Tan Y, Sun J, Zeng B, Xiang T, Tan J, Ren G and Wang Y: Utilization of adipocyte-derived lipids and enhanced intracellular trafficking of fatty acids contribute to breast cancer progression. Cell Commun Signal. 16:322018. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Chakraborty B, Safi R, Kazmin D, Chang CY and McDonnell DP: Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat Commun. 12:51032021. View Article : Google Scholar : PubMed/NCBI | |
Baek AE, Yu YA, He S, Wardell SE, Chang CY, Kwon S, Pillai RV, McDowell HB, Thompson JW, Dubois LG, et al: The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun. 8:8642017. View Article : Google Scholar : PubMed/NCBI | |
Vallianou NG, Kostantinou A, Kougias M and Kazazis C: Statins and cancer. Anticancer Agents Med Chem. 14:706–712. 2014. View Article : Google Scholar | |
Sha R, Xu Y, Yuan C, Sheng X, Wu Z, Peng J, Wang Y, Lin Y, Zhou L, Xu S, et al: Predictive and prognostic impact of ferroptosis-related genes ACSL4 and GPX4 on breast cancer treated with neoadjuvant chemotherapy. EBioMedicine. 71:1035602021. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y and Zhang Q: Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol. 14:192021. View Article : Google Scholar | |
Zhang K, Ping L, Du T, Liang G, Huang Y, Li Z, Deng R and Tang J: A Ferroptosis-Related lncRNAs signature predicts prognosis and immune microenvironment for breast cancer. Front Mol Biosci. 8:6788772021. View Article : Google Scholar : PubMed/NCBI | |
Ping L, Zhang K, Ou X, Qiu X and Xiao X: A novel pyroptosis-associated long Non-coding RNA signature predicts prognosis and tumor immune microenvironment of patients with breast cancer. Front Cell Dev Biol. 9:7271832021. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z and Leung GKK: More than a metabolic enzyme: MTHFD2 as a novel target for anticancer therapy? Front Oncol. 10:6582020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zhu S, Zhou H, Li R, Xia X and Xiong H: Identification of MTHFD2 as a prognostic biomarker and ferroptosis regulator in triple-negative breast cancer. Front Oncol. 13:10983572023. View Article : Google Scholar : PubMed/NCBI | |
Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK and Karunagaran D: SLC7A11/xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells. Cancer Lett. 522:211–224. 2021. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : | |
He J, Wang X, Chen K, Zhang M and Wang J: The amino acid transporter SLC7A11-mediated crosstalk implicated in cancer therapy and the tumor microenvironment. Biochem Pharmacol. 205:1152412022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liang Y, Wang Y, Ye F, Kong X and Yang Q: A novel ferroptosis-related gene signature for overall survival prediction and immune infiltration in patients with breast cancer. Int J Oncol. 61:1482022. View Article : Google Scholar : | |
Liu Q, Ma JY and Wu G: Identification and validation of a ferroptosis-related gene signature predictive of prognosis in breast cancer. Aging (Albany NY). 13:21385–21399. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Du Y, Zheng Q, Zhou T, Ye B, Wu Y, Xu Q and Meng X: Identification of ferroptosis-related prognostic signature and subtypes related to the immune microenvironment for breast cancer patients receiving neoadjuvant chemotherapy. Front Immunol. 13:8951102022. View Article : Google Scholar : PubMed/NCBI | |
Yang YF, Lee YC, Wang YY, Wang CH, Hou MF and Yuan SF: YWHAE promotes proliferation, metastasis, and chemoresistance in breast cancer cells. Kaohsiung J Med Sci. 35:408–416. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qiao X, Zhang Y, Sun L, Ma Q, Yang J, Ai L, Xue J, Chen G, Zhang H, Ji C, et al: Association of human breast cancer CD44-/CD24-cells with delayed distant metastasis. Elife. 10:e654182021. View Article : Google Scholar | |
Gong Z, Li Q, Shi J, Liu ET, Shultz LD and Ren G: Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic reprogramming of tumor cells and natural killer cells. Cell Metab. 34:1960–1976.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Jin K, van Pelt GW, van Dam H, Yu X, Mesker WE, Ten Dijke P, Zhou F and Zhang L: c-Myb enhances breast cancer invasion and metastasis through the Wnt/β-Catenin/Axin2 pathway. Cancer Res. 76:3364–3375. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang Y, Liu X, Wang M, Wang P, Yang J and Zhang S: Lutein inhibits proliferation, invasion and migration of hypoxic breast cancer cells via downregulation of HES1. Int J Oncol. 52:2119–2129. 2018.PubMed/NCBI | |
Huo Q, Wang J and Xie N: High HSPB1 expression predicts poor clinical outcomes and correlates with breast cancer metastasis. BMC Cancer. 23:5012023. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Ge Z, Wang Z, Gao Y, Wang Y and Qu X: Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer. Aging (Albany NY). 13:8115–8126. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Che Y, Fu Z, Zhang H and Wu H: Triple-Negative breast cancer analysis based on metabolic gene classification and immunotherapy. Front Public Health. 10:9023782022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Yang J, Zuo T, Ma S, Xokrat N, Hu Z, Wang Z, Xu R, Wei Y and Shen Q: Heparanase-driven sequential released nanoparticles for ferroptosis and tumor microenvironment modulations synergism in breast cancer therapy. Biomaterials. 266:1204292021. View Article : Google Scholar | |
Nieto C, Vega MA and Martín Del Valle EM: Tailored-Made polydopamine nanoparticles to induce ferroptosis in breast cancer cells in combination with chemotherapy. Int J Mol Sci. 22:31612021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Liang H, Yang R, Yang Y, Dong J, Di Y and Sun M: Glutathione depletion-induced activation of dimersomes for potentiating the ferroptosis and immunotherapy of 'cold' tumor. Angew Chem Int Ed Engl. 61:e2022028432022. View Article : Google Scholar | |
Dattachoudhury S, Sharma R, Kumar A and Jaganathan BG: Sorafenib inhibits proliferation, migration and invasion of breast cancer cells. Oncology. 98:478–486. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Gai C, Li Z, Ding D, Zheng J, Zhang W, Lv S and Li W: Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci. 110:3173–3182. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhou Y, Xie S, Wang J, Li Z, Chen L, Mao M, Chen C, Huang A, Chen Y, et al: Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J Exp Clin Cancer Res. 40:2062021. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Dielschneider RF, Henson ES, Xiao W, Choquette TR, Blankstein AR, Chen Y and Gibson SB: Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells. PLoS One. 12:e01829212017. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Li R, Fang M, Wang Y, Bi A, Yang L, Song T, Li Y, Li Q, Lin B, et al: Integrated analysis of FKBP1A/SLC3A2 axis in everolimus inducing ferroptosis of breast cancer and anti-proliferation of T lymphocyte. Int J Med Sci. 20:1060–1078. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li H, Liu W, Zhang X, Wu F, Sun D and Wang Z: Ketamine suppresses proliferation and induces ferroptosis and apoptosis of breast cancer cells by targeting KAT5/GPX4 axis. Biochem Biophys Res Commun. 585:111–116. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song X, Wang X, Liu Z and Yu Z: Role of GPX4-Mediated ferroptosis in the sensitivity of triple negative breast cancer cells to gefitinib. Front Oncol. 10:5974342020. View Article : Google Scholar | |
Yao X, Xie R, Cao Y, Tang J, Men Y, Peng H and Yang W: Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 19:3112021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Lu M, Chen C, Tong X, Li Y, Yang K, Lv H, Xu J and Qin L: Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics. 11:3167–3182. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Li YC and Zhang XY: Lidocaine promoted ferroptosis by targeting miR-382-5p/SLC7A11 axis in ovarian and breast cancer. Front Pharmacol. 12:6812232021. View Article : Google Scholar | |
Li R, Zhang J, Zhou Y, Gao Q, Wang R, Fu Y, Zheng L and Yu H: Transcriptome Investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells. Oxid Med Cell Longev. 2020:34698402020. View Article : Google Scholar : PubMed/NCBI | |
Zhai FG, Liang QC, Wu YY, Liu JQ and Liu JW: Red ginseng polysaccharide exhibits anticancer activity through GPX4 downregulation-induced ferroptosis. Pharm Biol. 60:909–914. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cookson BT and Brennan MA: Pro-inflammatory programmed cell death. Trends Microbiol. 9:113–114. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Järveläinen HA, Galmiche A and Zychlinsky A: Caspase-1 activation by Salmonella. Trends Cell Biol. 13:204–209. 2003. View Article : Google Scholar : PubMed/NCBI | |
Martinon F, Burns K and Tschopp J: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Fox D and Man SM: Mechanisms of gasdermin family members in inflammasome signaling and cell death. J Mol Biol. 430(18 Pt B): 3068–3080. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L and Shao F: Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 514:187–192. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Chu C, Li W, Chen H, Xie W, Cheng R, Hu K and Li X: Mitochondrial Protein UCP1 inhibits the malignant behaviors of triple-negative breast cancer through activation of mitophagy and pyroptosis. Int J Biol Sci. 18:2949–2961. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Shi M, Wu Q, Wei W, Sun S and Zhu S: Identification of UCP1 and UCP2 as potential prognostic markers in breast cancer: A study based on immunohistochemical analysis and bioinformatics. Front Cell Dev Biol. 10:8917312022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al: Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 579:415–420. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Niu M, Xu L, Luo S and Wu K: Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 14:102021. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wu K, Wang M, Bai F and Chen H: CASP9 as a prognostic biomarker and promising drug target plays a pivotal role in inflammatory breast cancer. Int J Anal Chem. 2022:10434452022. View Article : Google Scholar : PubMed/NCBI | |
Chu L, Yi Q, Yan Y, Peng J, Li Z, Jiang F, He Q, Ouyang L, Wu S, Fu C, et al: A prognostic signature consisting of pyroptosis-related genes and SCAF11 for predicting immune response in breast cancer. Front Med (Lausanne). 9:8827632022. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Ji Z and Qiang L: Molecular characteristics, clinical implication, and cancer immunity interactions of pyroptosis-related genes in breast cancer. Front Med (Lausanne). 8:7026382021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zheng J, Bai M, Gao Y and Lin N: Effect of pyroptosis-related genes on the prognosis of breast cancer. Front Oncol. 12:9481692022. View Article : Google Scholar : PubMed/NCBI | |
Jin H and Kim HJ: NLRC4, ASC and Caspase-1 are inflammasome components that are mediated by P2Y2R activation in breast cancer cells. Int J Mol Sci. 21:33372020. View Article : Google Scholar : | |
Hergueta-Redondo M, Sarrió D, Molina-Crespo Á, Megias D, Mota A, Rojo-Sebastian A, García-Sanz P, Morales S, Abril S, Cano A, et al: Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One. 9:e900992014. View Article : Google Scholar : PubMed/NCBI | |
Song C, Kendi AT, Lowe VJ and Lee S: The A20/TNFAIP3-CDC20-CASP1 axis promotes inflammation-mediated metastatic disease in triple-negative breast cancer. Anticancer Res. 42:681–695. 2022. View Article : Google Scholar : PubMed/NCBI | |
Velloso FJ, Campos AR, Sogayar MC and Correa RG: Proteome profiling of triple negative breast cancer cells overexpressing NOD1 and NOD2 receptors unveils molecular signatures of malignant cell proliferation. BMC Genomics. 20:1522019. View Article : Google Scholar : PubMed/NCBI | |
Miao H, Wang L, Zhan H, Dai J, Chang Y, Wu F, Liu T, Liu Z, Gao C, Li L and Song X: A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet. 15:e10081442019. View Article : Google Scholar : PubMed/NCBI | |
Faria SS, Costantini S, de Lima VCC, de Andrade VP, Rialland M, Cedric R, Budillon A and Magalhães KG: NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J Biomed Sci. 28:262021. View Article : Google Scholar : PubMed/NCBI | |
Siersbæk R, Scabia V, Nagarajan S, Chernukhin I, Papachristou EK, Broome R, Johnston SJ, Joosten SEP, Green AR, Kumar S, et al: IL6/STAT3 signaling hijacks estrogen receptor α enhancers to drive breast cancer metastasis. Cancer Cell. 38:412–423.e9. 2020. View Article : Google Scholar | |
Wei Y, Huang H, Qiu Z, Li H, Tan J, Ren G and Wang X: NLRP1 overexpression is correlated with the tumorigenesis and proliferation of human breast tumor. Biomed Res Int. 2017:49384732017. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Sun R, Liu L, Yang D, Xiang Q, Li L, Tang J, Qiu Z, Peng W, Wang Y, et al: Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Theranostics. 11:5214–5231. 2021. View Article : Google Scholar : | |
Zhang Z, Zhang H, Li D, Zhou X, Qin Q and Zhang Q: Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med. 25:8159–8168. 2021. View Article : Google Scholar : PubMed/NCBI | |
An H, Heo JS, Kim P, Lian Z, Lee S, Park J, Hong E, Pang K, Park Y, Ooshima A, et al: Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis. 12:1592021. View Article : Google Scholar : PubMed/NCBI | |
Ma JH, Qin L and Li X: Role of STAT3 signaling pathway in breast cancer. Cell Commun Signal. 18:332020. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Bai S, Huang J, Cui G, Li Q, Wang J, Du X, Fu W, Li C, Wei W, et al: Nigericin boosts anti-tumor immune response via inducing pyroptosis in triple-negative breast cancer. Cancers (Basel). 15:32212023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Rong X, Zhao G, Zhou Y, Xiao Y, Ma D, Jin X, Wu Y, Yan Y, Yang H, et al: The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 34:581–594.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lei S, Li S, Xiao W, Jiang Q, Yan S, Xiao W, Cai J, Wang J, Zou L, Chen F, et al: Azurocidin 1 inhibits the aberrant proliferation of triple-negative breast cancer through the regulation of pyroptosis. Oncol Rep. 50:1882023. View Article : Google Scholar | |
Pizato N, Luzete BC, Kiffer LFMV, Corrêa LH, de Oliveira Santos I, Assumpção JAF, Ito MK and Magalhães KG: Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 8:19522018. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Yuan S, Chen X, Xie J and Wei Z: Xihuang pill induces pyroptosis and inhibits progression of breast cancer cells via activating the cAMP/PKA signalling pathway. Am J Cancer Res. 13:1347–1362. 2023.PubMed/NCBI | |
Li Y, Wang W, Li A, Huang W, Chen S, Han F and Wang L: Dihydroartemisinin induces pyroptosis by promoting the AIM2/caspase-3/DFNA5 axis in breast cancer cells. Chem Biol Interact. 340:1094342021. View Article : Google Scholar : PubMed/NCBI | |
Zhong C, Li Y, Li W, Lian S, Li Y, Wu C, Zhang K, Zhou G, Wang W, Xu H, et al: Ganoderma lucidum extract promotes tumor cell pyroptosis and inhibits metastasis in breast cancer. Food Chem Toxicol. 174:1136542023. View Article : Google Scholar : PubMed/NCBI | |
Zhao P, Wang M, Chen M, Chen Z, Peng X, Zhou F, Song J and Qu J: Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials. 254:1201422020. View Article : Google Scholar : PubMed/NCBI | |
Li L, Tian H, Zhang Z, Ding N, He K, Lu S, Liu R, Wu P, Wang Y, He B, et al: Carrier-Free nanoplatform via evoking pyroptosis and immune response against breast cancer. ACS Appl Mater Interfaces. 15:452–468. 2023. View Article : Google Scholar | |
Li C, Wang X, Chen T, Li W, Zhou X, Wang L and Yang Q: Huaier induces immunogenic cell death via CircCLASP1/PKR/eIF2α signaling pathway in triple negative breast cancer. Front Cell Dev Biol. 10:9138242022. View Article : Google Scholar | |
Yamamoto A, Huang Y, Krajina BA, McBirney M, Doak AE, Qu S, Wang CL, Haffner MC and Cheung KJ: Metastasis from the tumor interior and necrotic core formation are regulated by breast cancer-derived angiopoietin-like 7. Proc Natl Acad Sci USA. 120:e22148881202023. View Article : Google Scholar : PubMed/NCBI | |
Wen N, Lv Q and Du ZG: MicroRNAs involved in drug resistance of breast cancer by regulating autophagy. J Zhejiang Univ Sci B. 21:690–702. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu Q and Sharma D: Autophagy and breast cancer: connected in growth, progression, and therapy. Cells. 12:11562023. View Article : Google Scholar : PubMed/NCBI | |
Tadokoro T, Ikeda M, Ide T, Deguchi H, Ikeda S, Okabe K, Ishikita A, Matsushima S, Koumura T, Yamada KI, et al: Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 8:e1697562023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Shi P, Chen Q, Huang Z, Zou D, Zhang J, Gao X and Lin Z: Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol. 11:1069–1082. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai S, Chen Y, Fan X, Han J, Zhong L, Zhang Y, Liu Q, Lin J, Huang W, Su L, et al: Emodin attenuates cardiomyocyte pyroptosis in doxorubicin-induced cardiotoxicity by directly binding to GSDMD. Phytomedicine. 121:1551052023. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Tian H, Li B, Li L, Jiang H, Gao Y, Zheng L, Huang C, Zhou Y, Du Z and Xu J: An ellagic acid coordinated copper-based nanoplatform for efficiently overcoming cancer chemoresistance by cuproptosis and synergistic inhibition of cancer cell stemness. Small. Dec 3–2023.Epub ahead of print. | |
Zhong Y, Peng Z, Peng Y, Li B, Pan Y, Ouyang Q, Sakiyama H, Muddassir M and Liu J: Construction of Fe-doped ZIF-8/DOX nanocomposites for ferroptosis strategy in the treatment of breast cancer. J Mater Chem B. 11:6335–6345. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li Y, Zhang J and Luo C: Isoliquiritin modulates ferroptosis via NF-κB signaling inhibition and alleviates doxorubicin resistance in breast cancer. Immunopharmacol Immunotoxicol. 45:443–454. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu R, Wang L, Ji X and Mao C: SBP-0636457, a novel smac mimetic, cooperates with doxorubicin to induce necroptosis in breast cancer cells during apoptosis blockage. J Oncol. 2022:23900782022. View Article : Google Scholar : PubMed/NCBI | |
Wei T, Xiaojun X and Peilong C: Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways. Biomed Pharmacother. 121:1091392020. View Article : Google Scholar | |
Lu Y, Pan Q, Gao W, Pu Y and He B: Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B. 10:6296–6306. 2022. View Article : Google Scholar : PubMed/NCBI | |
Roh JL, Kim EH, Jang HJ, Park JY and Shin D: Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett. 381:96–103. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Pang X, Liu Y, Mu G and Wang Q: SOCS1 acts as a ferroptosis driver to inhibit the progression and chemotherapy resistance of triple-negative breast cancer. Carcinogenesis. 44:708–715. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S and Zheng X: Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 235:3425–3437. 2020. View Article : Google Scholar | |
Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L, Ke X, Wu J and Yuan J: Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int J Biol Sci. 17:2606–2621. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shen M, Duan WM, Wu MY, Wang WJ, Liu L, Xu MD, Zhu J, Li DM, Gui Q, Lian L, et al: Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol Rep. 34:359–367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y and Han B: Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct Target Ther. 7:2862022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-Mediated programmed necrotic cell death. Trends Biochem Sci. 42:245–254. 2017. View Article : Google Scholar | |
Song L, Zeng R, Yang K, Liu W, Xu Z and Kang F: The biological significance of cuproptosis-key gene MTF1 in pan-cancer and its inhibitory effects on ROS-mediated cell death of liver hepatocellular carcinoma. Discov Oncol. 14:1132023. View Article : Google Scholar : PubMed/NCBI | |
Zheng D, Liu J, Piao H, Zhu Z, Wei R and Liu K: ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 13:10392412022. View Article : Google Scholar : PubMed/NCBI | |
Abais JM, Xia M, Zhang Y, Boini KM and Li PL: Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal. 22:1111–1129. 2015. View Article : Google Scholar : | |
Li C and Zhang Y: Construction and validation of a cuproptosis-related five-lncRNA signature for predicting prognosis, immune response and drug sensitivity in breast cancer. BMC Med Genomics. 16:1582023. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J and Xu Y: RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol. 68:1029522023. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Song C, Wang X, Li Y, Bai X, Liang X, Wu J and Liu J: Downregulation of miR-155-5p enhances the anti-tumor effect of cetuximab on triple-negative breast cancer cells via inducing cell apoptosis and pyroptosis. Aging (Albany NY). 13:228–240. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Li D, Liang Q, Yang M, Pan Y and Li H: Cross-talk between cuproptosis and ferroptosis regulators defines the tumor microenvironment for the prediction of prognosis and therapies in lung adenocarcinoma. Front Immunol. 13:10290922022. View Article : Google Scholar | |
Yang X, Deng L, Diao X, Yang S, Zou L, Yang Q, Li J, Nie J, Zhao L and Jiao B: Targeting cuproptosis by zinc pyrithione in triple-negative breast cancer. iScience. 26:1082182023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li T, Zhai D, Xie C, Kuang X, Lin Y and Shao N: Quantification of ferroptosis pathway status revealed heterogeneity in breast cancer patients with distinct immune microenvironment. Front Oncol. 12:9569992022. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Lin Z, Tang X, Tong Z, Ji Y, Xu Y, Zhou Z, Yang J, Li Z and Liu T: Ferroptosis-related gene HIC1 in the prediction of the prognosis and immunotherapeutic efficacy with immunological activity. Front Immunol. 14:11820302023. View Article : Google Scholar : PubMed/NCBI | |
Zeng L, Ding S, Cao Y, Li C, Zhao B, Ma Z, Zhou J, Hu Y, Zhang X, Yang Y, et al: A MOF-Based potent ferroptosis inducer for enhanced radiotherapy of triple negative breast cancer. ACS Nano. 17:13195–13210. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Weng X, Yang Y and Jiang Z: Pyroptosis-Related lncRNAs predict the prognosis and immune response in patients with breast cancer. Front Genet. 12:7921062021. View Article : Google Scholar | |
Huang QF, Fang DL, Nong BB and Zeng J: Focal pyroptosis-related genes AIM2 and ZBP1 are prognostic markers for triple-negative breast cancer with brain metastases. Transl Cancer Res. 10:4845–4858. 2021. View Article : Google Scholar | |
Ma L, Bian M, Gao H, Zhou Z and Yi W: A novel 3-acyl isoquinolin-1(2H)-one induces G2 phase arrest, apoptosis and GSDME-dependent pyroptosis in breast cancer. PLoS One. 17:e02680602022. View Article : Google Scholar : PubMed/NCBI |