Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2016 Volume 13 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2016 Volume 13 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Critical role of miRNAs in mediating skeletal muscle atrophy (Review)

  • Authors:
    • Yonghui Yu
    • Wanli Chu
    • Jiake Chai
    • Xiao Li
    • Lingying Liu
    • Li Ma
  • View Affiliations / Copyright

    Affiliations: Burn and Plastic Surgery Department, The First Affiliated Hospital to People's Liberation Army General Hospital, Beijing 100048, P.R. China
  • Pages: 1470-1474
    |
    Published online on: December 30, 2015
       https://doi.org/10.3892/mmr.2015.4748
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Skeletal muscle atrophy, a conventional clinical feature in patients with cancer, chronic obstructive pulmonary disease, sepsis and severe burns, is defined as a reduction in muscle mass. During atrophy, the protein degradation is abnormally activated and the aberrance between protein synthesis and protein degradation results in muscle atrophy. Previous studies have demonstrated that miRNAs, small non‑coding RNA molecules, serve an important role in the regulation of muscle atrophy. Further studies have indicated the implications of the ubiquitin‑proteasome and PI3K/Akt/FoxO signaling pathways and myogenic regulatory factors in miRNA‑mediated muscle atrophy. Therefore, in this review, the effects and molecular mechanisms of miRNAs on muscle atrophy are summarized, leading to the suggestion that miRNAs may serve as potential therapeutic targets in muscle atrophy.
View Figures

Figure 1

Figure 2

View References

1 

Hitachi K and Tsuchida K: Role of microRNAs in skeletal muscle hypertrophy. Front Physiol. 4:4082014. View Article : Google Scholar : PubMed/NCBI

2 

Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y and Kumar A: The E3 Kubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol. 32:1248–1259. 2012. View Article : Google Scholar : PubMed/NCBI

3 

McGregor RA, Poppitt SD and Cameron-Smith D: Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans. Ageing Res Rev. 17:25–33. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Nystrom G, Pruznak A, Huber D, Frost RA and Lang CH: Local insulin-like growth factor I prevents sepsis-induced muscle atrophy. Metabolism. 58:787–797. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Wang H, Lai YJ, Chan YL, Li TL and Wu CJ: Epigallocatechin-3-gallate effectively attenuates skeletal muscle atrophy caused by cancer cachexia. Cancer Lett. 305:40–49. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Bertsch S, Lang CH and Vary TC: Inhibition of glycogen synthase kinase 3[beta] activity with lithium in vitro attenuates sepsis-induced changes in muscle protein turnover. Shock. 35:266–274. 2011. View Article : Google Scholar

7 

Hart DW, Wolf SE, Chinkes DL, Gore DC, Mlcak RP, Beauford RB, Obeng MK, Lal S, Gold WF, Wolfe RR and Herndon DN: Determinants of skeletal muscle catabolism after severe burn. Ann Surg. 232:455–465. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Xu J, Li R, Workeneh B, Dong Y, Wang X and Hu Z: Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486. Kidney Int. 82:401–411. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Metter EJ, Talbot LA, Schrager M and Conwit R: Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 57:B359–B365. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Chai J, Wu Y and Sheng ZZ: Role of ubiquitin-proteasome pathway in skeletal muscle wasting in rats with endotoxemia. Crit Care Med. 31:1802–1807. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Attaix D, Combaret L, Bechet D and Taillandier D: Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia. Curr Opin Support Palliat Care. 2:262–266. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Sishi B, Loos B, Ellis B, Smith W, du Toit EF and Engelbrecht AM: Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp Physiol. 96:179–193. 2011. View Article : Google Scholar

13 

Engelbrecht AM, Smith C, Neethling I, Thomas M, Ellis B, Mattheyse M and Myburgh KH: Daily brief restraint stress alters signaling pathways and induces atrophy and apoptosis in rat skeletal muscle. Stress. 13:132–141. 2010. View Article : Google Scholar

14 

Dupont-Versteegden EE: Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol. 12:7463–7466. 2006.PubMed/NCBI

15 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

16 

Sayed D and Abdellatif M: MicroRNAs in development and disease. Physiol Rev. 91:827–887. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Didiano D and Hobert O: Molecular architecture of a miRNA-regulated 3′ UTR. RNA. 14:1297–1317. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Travaglini L, Vian L, Billi M, Grignani F and Nervi C: Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. Int J Biochem Cell Biol. 41:225–234. 2009. View Article : Google Scholar

20 

Taulli R, Bersani F, Foglizzo V, Linari A, Vigna E, Ladanyi M, Tuschl T and Ponzetto C: The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xeno-transplanted mice by promoting myogenic differentiation. J Clin Invest. 119:2366–2378. 2009.PubMed/NCBI

21 

Chen Y, Melton DW, Gelfond JA, McManus LM and Shireman PK: MiR-351 transiently increases during muscle regeneration and promotes progenitor cell proliferation and survival upon differentiation. Physiol Genomics. 44:1042–1051. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Motohashi N, Alexander MS, Shimizu-Motohashi Y, Myers JA, Kawahara G and Kunkel LM: Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J Cell Sci. 126:2678–2691. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Hartmann-Petersen R and Gordon C: Proteins interacting with the 26S proteasome. Cell Mol Life Sci. 61:1589–1595. 2004.PubMed/NCBI

24 

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 294:1704–1708. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Eddins MJ, Marblestone JG, Suresh Kumar KG, Leach CA, Sterner DE, Mattern MR and Nicholson B: Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem Biophys. 60:113–118. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Clavel S, Coldefy AS, Kurkdjian E, Salles J, Margaritis I and Derijard B: Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle. Mech Ageing Dev. 127:794–801. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, Schiaffino S, Asahara H, Ushida T and Akimoto T: Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem. 286:38456–38465. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Kukreti H, Amuthavalli K, Harikumar A, Sathiyamoorthy S, Feng PZ, Anantharaj R, Tan SL, Lokireddy S, Bonala S, Sriram S, et al: Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. J Biol Chem. 288:6663–6678. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Baumgarten A, Bang C, Tschirner A, Engelmann A, Adams V, von Haehling S, Doehner W, Pregla R, Anker MS, Blecharz K, et al: TWIST1 regulates the activity of ubiquitin proteasome system via the miR-199/214 cluster in human end-stage dilated cardiomyopathy. Int J Cardiol. 168:1447–1452. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM and Costelli P: Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS One. 5:e136042010. View Article : Google Scholar : PubMed/NCBI

31 

Verhees KJ, Pansters NA, Baarsma HA, Remels AH, Haegens A, de Theije CC, Schols AM, Gosens R and Langen RC: Pharmacological inhibition of GSK-3 in a guinea pig model of LPS-induced pulmonary inflammation: II. Effects on skeletal muscle atrophy. Respir Res. 14:1172013. View Article : Google Scholar : PubMed/NCBI

32 

Shi H, Verma M, Zhang L, Dong C, Flavell RA and Bennett AM: Improved regenerative myogenesis and muscular dystrophy in mice lacking Mkp5. J Clin Invest. 123:2064–2077. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Malena A, Pennuto M, Tezze C, Querin G, D'Ascenzo C, Silani V, Cenacchi G, Scaramozza A, Romito S, Morandi L, et al: Androgen-dependent impairment of myogenesis in spinal and bulbar muscular atrophy. Acta Neuropathol. 126:109–121. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Sacco A, Doyonnas R, Kraft P, Vitorovic S and Blau HM: Self-renewal and expansion of single transplanted muscle stem cells. Nature. 456:502–506. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Dachs E, Hereu M, Piedrafita L, Casanovas A, Calderó J and Esquerda JE: Defective neuromuscular junction organization and postnatal myogenesis in mice with severe spinal muscular atrophy. J Neuropathol Exp Neurol. 70:444–461. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Wang XH: MicroRNA in myogenesis and muscle atrophy. Curr Opin Clin Nutr Metab Care. 16:258–266. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X and Wang DZ: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol. 190:867–879. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Dey BK, Gagan J and Dutta A: miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol. 31:203–214. 2011. View Article : Google Scholar :

39 

Liu N, Williams AH, Maxeiner JM, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R and Olson EN: microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest. 122:2054–2065. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Goljanek-Whysall K, Sweetman D, Abu-Elmagd M, Chapnik E, Dalmay T, Hornstein E and Münsterberg A: MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc Natl Acad Sci USA. 108:11936–11941. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Crist CG, Montarras D, Pallafacchina G, Cumano A, Conway SJ and Buckingham M: Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA. 106:13383–13387. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Chen X, Huang Z, Chen D, Yang T and Liu G: Role of microRNA-27a in myoblast differentiation. Cell Biol Int. 38:266–271. 2014. View Article : Google Scholar

43 

Wong CF and Tellam RL: MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J Biol Chem. 283:9836–9843. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Dey BK, Gagan J, Yan Z and Dutta A: miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev. 26:2180–2191. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Antoniou A, Mastroyiannopoulos NP, Uney JB and Phylactou LA: miR-186 inhibits muscle cell differentiation through myogenin regulation. J Biol Chem. 289:3923–3935. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Huang Z, Chen X, Yu B, He J and Chen D: MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochem Biophys Res Commun. 423:265–269. 2012. View Article : Google Scholar : PubMed/NCBI

47 

McFarlane C, Vajjala A, Arigela H, Lokireddy S, Ge X, Bonala S, Manickam R, Kambadur R and Sharma M: Negative auto-regulation of myostatin expression is mediated by Smad3 and microRNA-27. PLoS One. 9:e876872014. View Article : Google Scholar : PubMed/NCBI

48 

Yang T, Chen XL, Huang ZQ, Wen WX, Xu M, Chen DW, Yu B, He J, Luo JQ, Yu J, et al: MicroRNA-27a promotes porcine myoblast proliferation by downregulating myostatin expression. Animal. 8:1867–1872. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Ge Y, Sun Y and Chen J: IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol. 192:69–81. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Huang MB, Xu H, Xie SJ, Zhou H and Qu LH: Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis. PLoS One. 6:e291732011. View Article : Google Scholar : PubMed/NCBI

51 

Jia L, Li YF, Wu GF, Song ZY, Lu HZ, Song CC, Zhang QL, Zhu JY, Yang GS and Shi XE: MiRNA-199a-3p regulates C2C12 myoblast differentiation through IGF-1/AKT/mTOR signal pathway. Int J Mol Sci. 15:296–308. 2013. View Article : Google Scholar

52 

Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, Zheng X, Lin S, Nie Q and Zhang X: The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death Dis. 5:e13472014. View Article : Google Scholar : PubMed/NCBI

53 

Seok HY, Tatsuguchi M, Callis TE, He A, Pu WT and Wang DZ: miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation. J Biol Chem. 286:35339–35346. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Wei W, He HB, Zhang WY, Zhang HX, Bai JB, Liu HZ, Cao JH, Chang KC, Li XY and Zhao SH: miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis. 4:e6682013. View Article : Google Scholar : PubMed/NCBI

55 

Zhou L, Wang L, Lu L, Jiang P, Sun H and Wang H: A novel target of microRNA-29, Ring1 and YY1-binding protein (Rybp), negatively regulates skeletal myogenesis. J Biol Chem. 287:25255–25265. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Dupont-Versteegden EE: Apoptosis in muscle atrophy: Relevance to sarcopenia. Exp Gerontol. 40:473–481. 2005. View Article : Google Scholar : PubMed/NCBI

57 

Dirks AJ and Leeuwenburgh C: The role of apoptosis in age-related skeletal muscle atrophy. Sports Med. 35:473–483. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Lee HY, Kaneki M, Andreas J, Tompkins RG and Martyn JA: Novel mitochondria-targeted antioxidant peptide ameliorates burn-induced apoptosis and endoplasmic reticulum stress in the skeletal muscle of mice. Shock. 36:580–585. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Fanzani A, Conraads VM, Penna F and Martinet W: Molecular and cellular mechanisms of skeletal muscle atrophy: An update. J Cachexia Sarcopenia Muscle. 3:163–179. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Libera LD, Zennaro R, Sandri M, Ambrosio GB and Vescovo G: Apoptosis and atrophy in rat slow skeletal muscles in chronic heart failure. Am J Physiol. 277:C982–C986. 1999.PubMed/NCBI

61 

Yasuhara S, Perez ME, Kanakubo E, Yasuhara Y, Shin YS, Kaneki M, Fujita T and Martyn JA: Skeletal muscle apoptosis after burns is associated with activation of proapoptotic signals. Am J Physiol Endocrinol Metab. 279:E1114–E1121. 2000.PubMed/NCBI

62 

Marzetti E, Lawler JM, Hiona A, Manini T, Seo AY and Leeuwenburgh C: Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic Biol Med. 44:160–168. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Callis TE, Chen JF and Wang DZ: MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 26:219–225. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Idris NM, Ashraf M, Ahmed RP, Shujia J and Haider KH: Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress. Regen Med. 7:47–57. 2012. View Article : Google Scholar

65 

Haider KH, Idris NM, Kim HW, Ahmed RP, Shujia J and Ashraf M: MicroRNA-21 is a key determinant in IL-11/Stat3 anti-apoptotic signalling pathway in preconditioning of skeletal myoblasts. Cardiovasc Res. 88:168–178. 2010. View Article : Google Scholar : PubMed/NCBI

66 

He WA, Calore F, Londhe P, Canella A, Guttridge DC and Croce CM: Microvesicles containing miRNAs promote muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci USA. 111:4525–4529. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Hirai H, Verma M, Watanabe S, Tastad C, Asakura Y and Asakura A: MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J Cell Biol. 191:347–365. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD and Glass DJ: The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 14:395–403. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Sugita H, Kaneki M, Sugita M, Yasukawa T, Yasuhara S and Martyn JA: Burn injury impairs insulin-stimulated Akt/PKB activation in skeletal muscle. Am J Physiol Endocrinol Metab. 288:E585–E591. 2005. View Article : Google Scholar

70 

Du K, Yu Y, Zhang D, Luo W, Huang H, Chen J, Gao J and Huang C: NFkappaB1 (p50) suppresses SOD2 expression by inhibiting FoxO3a transactivation in a miR190/PHLPP1/Akt-dependent axis. Mol Biol Cell. 24:3577–3583. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH and Goldberg AL: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 117:399–412. 2004. View Article : Google Scholar : PubMed/NCBI

72 

Sheriff S, Kadeer N, Joshi R, Friend LA, James JH and Balasubramaniam A: Des-acyl ghrelin exhibits pro-anabolic and anti-catabolic effects on C2C12 myotubes exposed to cytokines and reduces burn-induced muscle proteolysis in rats. Mol Cell Endocrinol. 351:286–295. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Alexander MS, Casar JC, Motohashi N, Myers JA, Eisenberg I, Gonzalez RT, Estrella EA, Kang PB, Kawahara G and Kunkel LM: Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle. 1:272011. View Article : Google Scholar : PubMed/NCBI

74 

Chen D, Goswami CP, Burnett RM, Anjanappa M, Bhat-Nakshatri P, Muller W and Nakshatri H: Cancer affects microRNA expression, release and function in cardiac and skeletal muscle. Cancer Res. 74:4270–4281. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Hitachi K, Nakatani M and Tsuchida K: Myostatin signaling regulates Akt activity via the regulation of miR-486 expression. Int J Biochem Cell Biol. 47:93–103. 2014. View Article : Google Scholar

76 

Hudson MB, Rahnert JA, Zheng B, Woodworth-Hobbs ME, Franch HA and Price SR: miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle. Am J Physiol Cell Physiol. 307:C314–C319. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yu Y, Chu W, Chai J, Li X, Liu L and Ma L: Critical role of miRNAs in mediating skeletal muscle atrophy (Review). Mol Med Rep 13: 1470-1474, 2016.
APA
Yu, Y., Chu, W., Chai, J., Li, X., Liu, L., & Ma, L. (2016). Critical role of miRNAs in mediating skeletal muscle atrophy (Review). Molecular Medicine Reports, 13, 1470-1474. https://doi.org/10.3892/mmr.2015.4748
MLA
Yu, Y., Chu, W., Chai, J., Li, X., Liu, L., Ma, L."Critical role of miRNAs in mediating skeletal muscle atrophy (Review)". Molecular Medicine Reports 13.2 (2016): 1470-1474.
Chicago
Yu, Y., Chu, W., Chai, J., Li, X., Liu, L., Ma, L."Critical role of miRNAs in mediating skeletal muscle atrophy (Review)". Molecular Medicine Reports 13, no. 2 (2016): 1470-1474. https://doi.org/10.3892/mmr.2015.4748
Copy and paste a formatted citation
x
Spandidos Publications style
Yu Y, Chu W, Chai J, Li X, Liu L and Ma L: Critical role of miRNAs in mediating skeletal muscle atrophy (Review). Mol Med Rep 13: 1470-1474, 2016.
APA
Yu, Y., Chu, W., Chai, J., Li, X., Liu, L., & Ma, L. (2016). Critical role of miRNAs in mediating skeletal muscle atrophy (Review). Molecular Medicine Reports, 13, 1470-1474. https://doi.org/10.3892/mmr.2015.4748
MLA
Yu, Y., Chu, W., Chai, J., Li, X., Liu, L., Ma, L."Critical role of miRNAs in mediating skeletal muscle atrophy (Review)". Molecular Medicine Reports 13.2 (2016): 1470-1474.
Chicago
Yu, Y., Chu, W., Chai, J., Li, X., Liu, L., Ma, L."Critical role of miRNAs in mediating skeletal muscle atrophy (Review)". Molecular Medicine Reports 13, no. 2 (2016): 1470-1474. https://doi.org/10.3892/mmr.2015.4748
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team