Downregulation of microRNA‑30a in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients

  • Authors:
    • Bao Liu
    • Tingshu Jiang
    • Xingang Hu
    • Zhida Liu
    • Liming Zhao
    • Hongmei Liu
    • Zhaihua Liu
    • Lijun Ma
  • View Affiliations

  • Published online on: October 18, 2018     https://doi.org/10.3892/mmr.2018.9565
  • Pages: 5799-5806
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRs) are short, highly conserved small noncoding RNA molecules with fundamental roles in regulating gene expression. To identify miR biomarkers associated with idiopathic pulmonary fibrosis (IPF), the expression pattern of miRs in exosomes from bronchoalveolar lavage fluid (BALF) of elderly patients with IPF were evaluated. High‑throughput quantitative detection of miR expression using a microarray indicated that miR‑125b, miR‑128, miR‑21, miR‑100, miR‑140‑3p and miR‑374b were upregulated in patients with IPF, while let‑7d, miR‑103, miR‑26 and miR‑30a‑5p were downregulated. The expression level of miR‑30a‑5p was further examined, and its potential target genes were predicted using target gene prediction analysis software. A direct regulatory association was confirmed between miR‑30a‑5p and TGF‑β activated kinase 1/MAP3K7 binding protein 3 (TAB3) via a dual‑luciferase reporter assay. Overexpression of miR‑30a‑5p decreased TAB3, α‑smooth muscle actin and fibronectin expression in A549 cells with or without transforming growth factor‑β1 treatment. The decreased expression of miR‑30a in the BALF of patients with IPF, along with the consequential increase in TAB3 expression, may be a crucial factor in IPF progression.

References

1 

Zibrak JD and Price D: Interstitial lung disease: Raising the index of suspicion in primary care. NPJ Prim Care Respir Med. 24:140542014. View Article : Google Scholar : PubMed/NCBI

2 

Matsumoto A and Azuma A: Idiopathic pulmonary fibrosis (IPF). Nihon Rinsho. 64:1354–1360. 2006.(In Japanese). PubMed/NCBI

3 

Tzouvelekis A, Tzilas V, Papiris S, Aidinis V and Bouros D: Diagnostic and prognostic challenges in idiopathic pulmonary Fibrosis: A patient's ‘Q and A’ approach. Pulm Pharmacol Ther. 42:21–24. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Selman M, King JTE and Pardo A: American Thoracic Society; European Respiratory Society; American College of Chest Physicians: Idiopathic pulmonary fibrosis: Prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med. 134:136–151. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Xaubet A, Ancochea J and Molina-Molina M: Idiopathic pulmonary fibrosis. Med Clin (Barc). 148:170–175. 2017.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI

6 

Hostettler K: Idiopathic pulmonary fibrosis-Pathogenesis and therapeutic concepts. Ther Umsch. 73:19–24. 2016.(In German). View Article : Google Scholar : PubMed/NCBI

7 

Bargagli E, Lavorini F, Pistolesi M, Rosi E, Prasse A, Rota E and Voltolini L: Trace metals in fluids lining the respiratory system of patients with idiopathic pulmonary fibrosis and diffuse lung diseases. J Trace Elem Med Biol. 42:39–44. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Levänen B, Bhakta NR, Paredes Torregrosa P, Barbeau R, Hiltbrunner S, Pollack JL, Sköld CM, Svartengren M, Grunewald J, Gabrielsson S, et al: Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 131:894–903. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG and Alevizos I: Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16:34–38. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Gallo A, Tandon M, Alevizos I and Illei GG: The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 7:e306792012. View Article : Google Scholar : PubMed/NCBI

11 

Javeed N and Mukhopadhyay D: Exosomes and their role in the micro-/macro-environment: A comprehensive review. J Biomed Res. 31:386–394. 2017.PubMed/NCBI

12 

Chinese Medical Association Respiratory Diseases Branch: Chinese expert consensus on detection of pathogens in bronchoalveolar lavage of pulmonary infectious diseases. Chin J Tuberc Respir Dis. 40:578–583. 2017.

13 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, et al: An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 183:788–824. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Wells AU, Desai SR, Rubens MB, Goh NS, Cramer D, Nicholson AG, Colby TV, du Bois RM and Hansell DM: Idiopathic pulmonary fibrosis: A composite physiologic index derived from disease extent observed by computed tomography. Am J Respir Crit Care Med. 167:962–969. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Sun X, Zhang S and Ma X: Prognostic value of MicroRNA-125 in various human malignant Neoplasms: A meta-analysis. Clin Lab. 61:1667–1674. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, Fu S, Zhang Y, Feng K and Feng Y: microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 50:2336–2350. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Lin L, Tu HB, Wu L, Liu M and Jiang GN: MicroRNA-21 regulates non-small cell lung cancer cell invasion and chemo-sensitivity through SMAD7. Cell Physiol Biochem. 38:2152–2162. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Jeon YJ, Middleton J, Kim T, Laganà A, Piovan C, Secchiero P, Nuovo GJ, Cui R, Joshi P, Romano G, et al: A set of NF-kappaB-regulated microRNAs induces acquired TRAIL resistance in lung cancer. Proc Natl Acad Sci USA. 112:E3355–E3364. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, et al: Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 182:220–229. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Yang D, Wang JJ, Li JS and Xu QY: miR-103 functions as a tumor suppressor by directly targeting programmed cell death 10 in NSCLC. Oncol Res. 2017.

22 

Zhang S, Liu H, Liu Y, Zhang J, Li H, Liu W, Cao G, Xv P, Zhang J, Lv C and Song X: miR-30a as potential therapeutics by targeting TET1 through regulation of Drp-1 promoter hydroxymethylation in idiopathic pulmonary fibrosis. Int J Mol Sci. 18:E6332017. View Article : Google Scholar : PubMed/NCBI

23 

Zhou H, Liu Y, Xiao L, Hu Z and Xia K: Overexpression of MicroRNA-27b inhibits proliferation, migration, and invasion via suppression of MET expression. Oncol Res. 25:147–154. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Rajasekaran S, Rajaguru P and Gandhi Sudhakar PS: MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol. 6:2542015. View Article : Google Scholar : PubMed/NCBI

25 

Willis BC and Borok Z: TGF-beta-induced EMT: Mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 293:L525–L534. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Kis K, Liu X and Hagood JS: Myofibroblast differentiation and survival in fibrotic disease. Expert Rev Mol Med. 13:e272011. View Article : Google Scholar : PubMed/NCBI

27 

Choi ME, Ding Y and Kim SI: TGF-β signaling via TAK1 pathway: Role in kidney fibrosis. Semin Nephrol. 244–252. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Usuki J, Matsuda K, Azuma A, Kudoh S and Gemma A: Sequential analysis of myofibroblast differentiation and transforming growth factor-β1/Smad pathway activation in murine pulmonary fibrosis. J Nippon Med Sch. 79:46–59. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Crosby LM and Waters CM: Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol. 298:L715–L731. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Hsu E, Yasuoka H and Feghali-Bostwick CA: Gene expression in pulmonary fibrosis. Crit Rev Eukaryot Gene Expr. 18:47–56. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Xu W, Wang Z and Liu Y: The characterization of microRNA-mediated gene regulation as impacted by both target site location and seed match type. PLoS One. 9:e1082602014. View Article : Google Scholar : PubMed/NCBI

32 

Oglesby I, McElvaney N and Greene C: MicroRNAs in inflammatory lung disease-master regulators or target practice? Respir Res. 11:1482010. View Article : Google Scholar : PubMed/NCBI

33 

Barh D, Malhotra R, Ravi B and Sindhurani P: Microrna let-7: An emerging next-generation cancer therapeutic. Curr Oncol. 17:70–80. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Vannella KM and Wynn TA: Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 79:593–617. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Han ZC, Zhang HN, Wang YZ, Lv CY and Xu ZY: Effect of the human insulin-like growth factor 1 gene transfection to human umbilical cord blood mesenchymal stem cells. Saudi Med J. 35:435–441. 2014.PubMed/NCBI

36 

Pandit KV, Milosevic J and Kaminski N: MicroRNAs in idiopathic pulmonary fibrosis. Transl Res. 157:191–199. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Du C, Ren Y, Yao F, Duan J, Zhao H, Du Y, Xiao X, Duan H and Shi Y: Sphingosine kinase 1 protects renal tubular epithelial cells from renal fibrosis via induction of autophagy. Int J Biochem Cell Biol. 90:17–28. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Ozcan C, Battaglia E, Young R and Suzuki G: LKB1 knockout mouse develops spontaneous atrial fibrillation and provides mechanistic insights into human disease process. J Am Heart Assoc. 4:e0017332015. View Article : Google Scholar : PubMed/NCBI

39 

Wang J, Lesko M, Badri MH, Kapoor BC, Wu BG, Li Y, Smaldone GC, Bonneau R, Kurtz ZD, Condos R and Segal LN: Lung microbiome and host immune tone in subjects with idiopathic pulmonary fibrosis treated with inhaled interferon-gamma. ERJ Open Res. 3:00008–2017. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Zhong M, Bian Z and Wu Z: miR-30a Suppresses cell migration and invasion through downregulation of PIK3CD in colorectal carcinoma. Cell Physiol Biochem. 31:209–218. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Jin Y, Chen Z, Liu X and Zhou X: Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol. 936:117–127. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Clarke DL, Murray LA, Crestani B and Sleeman MA: Is personalised medicine the key to heterogeneity in idiopathic pulmonary fibrosis? Pharmacol Ther. 169:35–46. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Wolters PJ, Collard HR and Jones KD: Pathogenesis of idiopathic pulmonary fibrosis. Ann Rev Pathol. 9:157–179. 2014. View Article : Google Scholar

44 

Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, Nguyen C, Flodby P, Zhong Q, Krishnaveni MS, et al: Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem. 287:7026–7038. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Marmai C, Sutherland RE, Kim KK, Dolganov GM, Fang X, Kim SS, Jiang S, Golden JA, Hoopes CW, Matthay MA, et al: Alveolar epithelial cells express mesenchymal proteins in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 301:L71–L78. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Kasai H, Allen J, Mason R, Kamimura T and Zhang Z: TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res. 6:562005. View Article : Google Scholar : PubMed/NCBI

47 

Pardo A, Gibson K, Cisneros J, Richards TJ, Yang Y, Becerril C, Yousem S, Herrera I, Ruiz V, Selman M and Kaminski N: Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Med. 2:e2512005. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December 2018
Volume 18 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, B., Jiang, T., Hu, X., Liu, Z., Zhao, L., Liu, H. ... Ma, L. (2018). Downregulation of microRNA‑30a in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients. Molecular Medicine Reports, 18, 5799-5806. https://doi.org/10.3892/mmr.2018.9565
MLA
Liu, B., Jiang, T., Hu, X., Liu, Z., Zhao, L., Liu, H., Liu, Z., Ma, L."Downregulation of microRNA‑30a in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients". Molecular Medicine Reports 18.6 (2018): 5799-5806.
Chicago
Liu, B., Jiang, T., Hu, X., Liu, Z., Zhao, L., Liu, H., Liu, Z., Ma, L."Downregulation of microRNA‑30a in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients". Molecular Medicine Reports 18, no. 6 (2018): 5799-5806. https://doi.org/10.3892/mmr.2018.9565