MicroRNA‑9 suppresses human prostate cancer cell viability, invasion and migration via modulation of mitogen‑activated protein kinase kinase kinase 3 expression

  • Authors:
    • Zunmeng Sang
    • Xuewen Jiang
    • Longfei Guo
    • Gang Yin
  • View Affiliations

  • Published online on: March 21, 2019     https://doi.org/10.3892/mmr.2019.10065
  • Pages: 4407-4418
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs (miRs) are small non‑coding RNA molecules that regulate gene expression at the post‑transcriptional level. Aberrant expression of miR‑9 has been reported to be involved in the tumorigenesis and progression of various malignancies. However, its role in prostate cancer (PC) has not been completely clarified. In the present study, miR‑9 expression was examined in different PC cell lines, patient tissues and a mouse model. Cell Counting Kit‑8 and BrdU immunofluorescence assays were performed to assess the effect of miR‑9 on the viability of PC cells, while Transwell and wound‑healing assays were utilized to evaluate the migration and invasion of PC cells expressing miR‑9. Furthermore, a dual‑luciferase reporter assay was performed to verify whether mitogen‑activated protein kinase kinase kinase 3 (MEKK3) was a direct target of miR‑9. The results demonstrated significant downregulation of miR‑9 expression in different PC cell lines and 31 human PC tissues, as compared with that in a normal prostate cell line and adjacent normal tissues, respectively. By contrast, upregulation of MEKK3 was confirmed in human PC tissue samples, with its level inversely associated with miR‑9 expression. Overexpression of miR‑9 in six different PC cell lines (DU145, LNCaP, 22Rv1, PC‑3, C4‑2B and VCaP) reduced the cell viability and migration. Furthermore, it was demonstrated that the 3'‑untranslated region of MEKK3 was a target of miR‑9, and that MEKK3 overexpression prevented the inhibitory effects of miR‑9 on the viability, migration and invasion of PC cells. miR‑9 overexpressing tumor cells also exhibited growth delay in comparison with control tumor cells in vivo. Taken together, the current study findings provided novel insights into the underlying molecular mechanisms of PC oncogenesis, which may support the development of new therapeutic approaches for the treatment of PC.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Gomella LG, Singh J, Lallas C and Trabulsi EJ: Hormone therapy in the management of prostate cancer: Evidence-based approaches. Ther Adv Urol. 2:171–181. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Fidler IJ: The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Weigelt B, Peterse JL and van't Veer LJ: Breast cancer metastasis: Markers and models. Nat Rev Cancer. 5:591–602. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Gupta GP and Massague J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

8 

Kozomara A and Griffiths-Jones S: miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39:D152–D157. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Hummel R, Hussey DJ and Haier J: MicroRNAs: Predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer. 46:298–311. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS and Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433:769–773. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, Kim YJ and Choi YC: MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem. 283:18158–18166. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Yuva-Aydemir Y, Simkin A, Gascon E and Gao FB: MicroRNA-9: functional evolution of a conserved small regulatory RNA. RNA Biol. 8:557–564. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Shibata M, Kurokawa D, Nakao H, Ohmura T and Aizawa S: MicroRNA-9 modulates cajal-retzius cell differentiation by suppressing foxg1 expression in mouse medial pallium. J Neurosci. 28:10415–10421. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A and Bally-Cuif L: MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci. 11:641–648. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY, Young WL, Ivey KN and Gao FB: MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell. 6:323–335. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT and Treistman SN: Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron. 59:274–287. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, et al: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 12:247–256. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, et al: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F and Kreipe H: Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol. 214:17–24. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Laios A, O'Toole S, Flavin R, Martin C, Kelly L, Ring M, Finn SP, Barrett C, Loda M, Gleeson N, et al: Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer. 7:352008. View Article : Google Scholar : PubMed/NCBI

21 

Nie K, Gomez M, Landgraf P, Garcia JF, Liu Y, Tan LH, Chadburn A, Tuschl T, Knowles DM and Tam W: MicroRNA-mediated down-regulation of PRDM1/blimp-1 in hodgkin/reed-sternberg cells: A potential pathogenetic lesion in hodgkin lymphomas. Am J Pathol. 173:242–252. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Hu Q, Shen W, Huang H, Liu J, Zhang J, Huang X, Wu J and Shi Y: Insight into the binding properties of MEKK3 PB1 to MEK5 PB1 from its solution structure. Biochemistry. 46:13478–13489. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Nakamura K, Kimple AJ, Siderovski DP and Johnson GL: PB1 domain interaction of p62/sequestosome 1 and MEKK3 regulates NF-kappaB activation. J Biol Chem. 285:2077–2089. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Fan Y, Ge N, Wang X, Sun W, Mao R, Bu W, Creighton CJ, Zheng P, Vasudevan S, An L, et al: Amplification and over-expression of MAP3K3 gene in human breast cancer promotes formation and survival of breast cancer cells. J Pathol. 232:75–86. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Deng Y, Yang J, McCarty M and Su B: MEKK3 is required for endothelium function but is not essential for tumor growth and angiogenesis. Am J Physiol Cell Physiol. 293:C1404–C1411. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Alimirah F, Chen J, Basrawala Z, Xin H and Choubey D: DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: Implications for the androgen receptor functions and regulation. FEBS Lett. 580:2294–2300. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Sramkoski RM, Pretlow TG II, Giaconia JM, Pretlow TP, Schwartz S, Sy MS, Marengo SR, Rhim JS, Zhang D and Jacobberger JW: A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim. 35:403–409. 1999. View Article : Google Scholar : PubMed/NCBI

28 

Korenchuk S, Lehr JE, Mclean L, Lee YG, Whitney S, Vessella R, Lin DL and Pienta KJ: VCaP, a cell-based model system of human prostate cancer. In Vivo. 15:163–168. 2001.PubMed/NCBI

29 

Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, Pathak S, von Eschenbach AC and Chung LW: Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54:2577–2581. 1994.PubMed/NCBI

30 

Claxton K, Martin S, Soares M, Rice N, Spackman E, Hinde S, Devlin N, Smith PC and Sculpher M: Methods for the estimation of the National Institute for Health and Care Excellence cost-effectiveness threshold. Health Technol Assess. 19:1–503. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Jayandharan GR, Zhong L, Sack BK, Rivers AE, Li M, Li B, Herzog RW and Srivastava A: Optimized adeno-associated virus (AAV)-protein phosphatase-5 helper viruses for efficient liver transduction by single-stranded AAV vectors: Therapeutic expression of factor IX at reduced vector doses. Hum Gene Ther. 21:271–283. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Hasan R, Sharma R, Saraya A, Chattopadhyay TK, DattaGupta S, Walfish PG, Chauhan SS and Ralhan R: Mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3) overexpression is an early event in esophageal tumorigenesis and is a predictor of poor disease prognosis. BMC Cancer. 14:22014. View Article : Google Scholar : PubMed/NCBI

33 

Samanta AK, Huang HJ, Bast RC Jr and Liao WS: Overexpression of MEKK3 confers resistance to apoptosis through activation of NFkappaB. J Biol Chem. 279:7576–7583. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

35 

Liu Y, Xu X, Xu X, Li S, Liang Z, Hu Z, Wu J, Zhu Y, Jin X, Wang X, et al: MicroRNA-193a-3p inhibits cell proliferation in prostate cancer by targeting cyclin D1. Oncol Lett. 14:5121–5128. 2017.PubMed/NCBI

36 

Huang S, Wa Q, Pan J, Peng X, Ren D, Huang Y, Chen X and Tang Y: Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. J Exp Clin Cancer Res. 36:1732017. View Article : Google Scholar : PubMed/NCBI

37 

Cao XQ, Lu HS, Zhang L, Chen LL and Gan MF: MEKK3 and survivin expression in cervical cancer: Association with clinicopathological factors and prognosis. Asian Pac J Cancer Prev. 15:5271–5276. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Chen Q, Lu HS, Gan MF, Chen LX, He K, Fan GM and Cao XQ: Expression and prognostic role of MEKK3 and pERK in patients with renal clear cell carcinoma. Asian Pac J Cancer Prev. 16:2495–2499. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Santoro R, Zanotto M, Carbone C, Piro G, Tortora G and Melisi D: MEKK3 sustains EMT and stemness in pancreatic cancer by regulating YAP and TAZ transcriptional activity. Anticancer Res. 38:1937–1946. 2018.PubMed/NCBI

40 

Wa Q, Li L, Lin H, Peng X, Ren D, Huang Y, He P and Huang S: Downregulation of miR19a3p promotes invasion, migration and bone metastasis via activating TGFβ signaling in prostate cancer. Oncol Rep. 39:81–90. 2018.PubMed/NCBI

41 

Yang Y, Ji C, Guo S, Su X, Zhao X, Zhang S, Liu G, Qiu X, Zhang Q, Guo H and Chen H: The miR-486-5p plays a causative role in prostate cancer through negative regulation of multiple tumor suppressor pathways. Oncotarget. 8:72835–72846. 2017.PubMed/NCBI

42 

Yamada Y, Nishikawa R, Kato M, Okato A, Arai T, Kojima S, Yamazaki K, Naya Y, Ichikawa T and Seki N: Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis. J Hum Genet. 63:195–205. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Kanwal R, Plaga AR, Liu X, Shukla GC and Gupta S: MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett. 407:9–20. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, et al: MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol. 19:375–383. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Shiiyama R, Fukushima S, Jinnin M, Yamashita J, Miyashita A, Nakahara S, Kogi A, Aoi J, Masuguchi S, Inoue Y and Ihn H: Sensitive detection of melanoma metastasis using circulating microRNA expression profiles. Melanoma Res. 23:366–372. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Zhang J, Jia J, Zhao L, Li X, Xie Q, Chen X, Wang J and Lu F: Down-regulation of microRNA-9 leads to activation of IL-6/Jak/STAT3 pathway through directly targeting IL-6 in HeLa cell. Mol Carcinog. 55:732–742. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Mohammadi-Yeganeh S, Mansouri A and Paryan M: Targeting of miR9/NOTCH1 interaction reduces metastatic behavior in triple-negative breast cancer. Chem Biol Drug Des. 86:1185–1191. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Higashi T, Hayashi H, Ishimoto T, Takeyama H, Kaida T, Arima K, Taki K, Sakamoto K, Kuroki H, Okabe H, et al: miR-9-3p plays a tumour-suppressor role by targeting TAZ (WWTR1) in hepatocellular carcinoma cells. Br J Cancer. 113:252–258. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J, Nie N, Liu B and Wu X: Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res. 28:822009. View Article : Google Scholar : PubMed/NCBI

50 

Di Y, Li S, Wang L, Zhang Y and Dorf ME: Homeostatic interactions between MEKK3 and TAK1 involved in NF-kappaB signaling. Cell Signal. 20:705–713. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Dhillon AS, Hagan S, Rath O and Kolch W: MAP kinase signalling pathways in cancer. Oncogene. 26:3279–3290. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Guarino M: Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol. 39:2153–2160. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Baigude H, Ahsanullah, Li Z, Zhou Y and Rana TM: miR-TRAP: A benchtop chemical biology strategy to identify microRNA targets. Angew Chem Int Ed Engl. 51:5880–5883. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2019
Volume 19 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Sang, Z., Jiang, X., Guo, L., & Yin, G. (2019). MicroRNA‑9 suppresses human prostate cancer cell viability, invasion and migration via modulation of mitogen‑activated protein kinase kinase kinase 3 expression. Molecular Medicine Reports, 19, 4407-4418. https://doi.org/10.3892/mmr.2019.10065
MLA
Sang, Z., Jiang, X., Guo, L., Yin, G."MicroRNA‑9 suppresses human prostate cancer cell viability, invasion and migration via modulation of mitogen‑activated protein kinase kinase kinase 3 expression". Molecular Medicine Reports 19.5 (2019): 4407-4418.
Chicago
Sang, Z., Jiang, X., Guo, L., Yin, G."MicroRNA‑9 suppresses human prostate cancer cell viability, invasion and migration via modulation of mitogen‑activated protein kinase kinase kinase 3 expression". Molecular Medicine Reports 19, no. 5 (2019): 4407-4418. https://doi.org/10.3892/mmr.2019.10065