Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2020 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2020 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210

  • Authors:
    • Quan Qiu
    • Tao Shen
    • Que Wang
    • Xiaoxue Yu
    • Na Jia
    • Qing He
  • View Affiliations / Copyright

    Affiliations: Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China, The MOH Key Laboratory of Geriatrics, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
  • Pages: 631-640
    |
    Published online on: December 18, 2019
       https://doi.org/10.3892/mmr.2019.10892
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cardiac shock wave therapy (SWT) has been described as a novel therapeutic strategy that is able to alleviate myocardial ischemic injury. microRNA (miRNA/miR)‑210 plays a cytoprotective role in cardiomyocytes in response to hypoxia by regulating cell apoptosis. The aim of the present study was to investigate whether cardiac SWT could protect cardiomyocytes from hypoxia‑induced injury by regulating miR‑210 expression. The murine adult cardiomyocyte cell line HL‑1 was incubated for 5 h in hypoxic conditions, followed by reoxygenation for 12 h and treatment with SWT immediately following hypoxia in the present study. The cell viability was determined using an MTS assay. Western blot analyses were performed in order to detect cell signaling changes. Reactive oxygen species production was detected using dihydroethidium staining, and malondialdehyde levels were measured using the thiobarbituric acid method. miRNA and mRNA expression levels were confirmed via reverse transcription‑quantitative PCR. Apoptosis was evaluated by means of flow cytometry. HL‑1 cells were then transfected with miR‑210 mimics or inhibitors in order to alter miR‑210 expression levels, and the effects on HL‑1 cells were determined. Hypoxia led to elevated oxidative stress, enhanced cell apoptosis and upregulated miR‑210 expression levels in HL‑1 cells, while SWT could alleviate hypoxia‑induced cell injury and further promote miR‑210 expression. miR‑210 overexpression decreased apoptosis and oxidative stress during hypoxic stress in HL‑1 cells, whereas inhibition of miR‑210 increased cell apoptosis and promoted oxidative stress. Furthermore, miR‑210 inhibition could reverse the effects of SWT on HL‑1 cells. Finally, the mRNA analysis revealed that SWT significantly attenuated apoptosis‑inducing factor mitochondrion‑associated 3 and caspase 8 associated protein 2 mRNA expression levels in cardiomyocytes exposed to hypoxia, which were two targets of miR‑210. SWT could exert cardioprotective effects against hypoxia‑induced cardiac injury by modulating miR‑210.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Ibanez B, Heusch G, Ovize M and Van de Werf F: Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Shepard D, VanderZanden A, Moran A, Naghavi M, Murray C and Roth G: Ischemic heart disease worldwide, 1990 to 2013: Estimates from the global burden of disease study 2013. Circulation. Circ Cardiovasc Qual Outcomes. 8:455–456. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:5092014. View Article : Google Scholar : PubMed/NCBI

4 

Tang Y, Zheng J, Sun Y, Wu Z, Liu Z and Huang G: MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J. 50:377–387. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Sayed D, He M, Hong C, Gao S, Rane S, Yang Z and Abdellatif M: MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem. 285:20281–20290. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Ren XP, Wu J, Wang X, Sartor MA, Jones K, Qian J, Nicolaou P, Pritchard TJ and Fan GC: MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation. 119:2357–2366. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Wang JX, Zhang XJ, Li Q, Wang K, Wang Y, Jiao JQ, Feng C, Teng S, Zhou LY, Gong Y, et al: MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res. 117:352–363. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, et al: A microRNA signature of hypoxia. Mol Cell Biol. 27:1859–1867. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Kim HW, Haider HK, Jiang S and Ashraf M: Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem. 284:33161–33168. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Mutharasan RK, Nagpal V, Ichikawa Y and Ardehali H: microRNA-210 is upregulated in hypoxic cardiomyocytes through Akt- and p53-dependent pathways and exerts cytoprotective effects. Am J Physiol Heart Circ Physiol. 301:H1519–H1530. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Kim HW, Jiang S, Ashraf M and Haider KH: Stem cell-based delivery of Hypoxamir-210 to the infarcted heart: Implications on stem cell survival and preservation of infarcted heart function. J Mol Med (Berl). 90:997–1010. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC and Martelli F: MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 283:15878–15883. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Nishida T, Shimokawa H, Oi K, Tatewaki H, Uwatoku T, Abe K, Matsumoto Y, Kajihara N, Eto M, Matsuda T, et al: Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation. 110:3055–3061. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Fukumoto Y, Ito A, Uwatoku T, Matoba T, Kishi T, Tanaka H, Takeshita A, Sunagawa K and Shimokawa H: Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron Artery Dis. 17:63–70. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Cassar A, Prasad M, Rodriguez-Porcel M, Reeder GS, Karia D, DeMaria AN and Lerman A: Safety and efficacy of extracorporeal shock wave myocardial revascularization therapy for refractory angina pectoris. Mayo Clin Proc. 89:346–354. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Khattab AA, Brodersen B, Schuermann-Kuchenbrandt D, Beurich H, Tölg R, Geist V, Schäfer T and Richardt G: Extracorporeal cardiac shock wave therapy: First experience in the everyday practice for treatment of chronic refractory angina pectoris. Int J Cardiol. 121:84–85. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Yu W, Shen T, Liu B, Wang S, Li J, Dai D, Cai J and He Q: Cardiac shock wave therapy attenuates H9c2 myoblast apoptosis by activating the AKT signal pathway. Cell Physiol Biochem. 33:1293–1303. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Zhang Y, Shen T, Liu B, Dai D, Cai J, Zhao C, Du L, Jia N and He Q: Cardiac shock wave therapy attenuates cardiomyocyte apoptosis after acute myocardial infarction in rats. Cell Physiol Biochem. 49:1734–1746. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Hamacher-Brady A, Brady NR and Gottlieb RA: Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem. 281:29776–29787. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Du L, Shen T, Liu B, Zhang Y, Zhao C, Jia N, Wang Q and He Q: Shock wave therapy promotes cardiomyocyte autophagy and survival during hypoxia. Cell Physiol Biochem. 42:673–684. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. 25:402–408. 2001.PubMed/NCBI

22 

White SM, Constantin PE and Claycomb WC: Cardiac physiology at the cellular level: Use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. Am J Physiol Heart Circ Physiol. 286:H823–H829. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Levraut J, Iwase H, Shao ZH, Hoek TLV and Schumacker PT: Cell death during ischemia: Relationship to mitochondrial depolarization and ROS generation. Am J Physiol Heart Circ Physiol. 284:H549–H558. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Pryor WA and Stanley JP: Suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymic production of prostaglandin endoperoxides during autoxidation. J Org Chem. 40:3615–3617. 1975. View Article : Google Scholar : PubMed/NCBI

25 

Chan SY and Loscalzo J: MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle. 9:1072–1083. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Kang Peter M, Haunstetter A, Aoki H, Usheva A and Izumo S: Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res. 87:118–125. 2000. View Article : Google Scholar : PubMed/NCBI

27 

Buja LM: Myocardial ischemia and reperfusion injury. Cardiovasc Pathol. 14:170–175. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T and Fujiwara H: Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation. 94:1506–1512. 1996. View Article : Google Scholar : PubMed/NCBI

29 

Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E and Anversa P: Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol. 28:2005–2016. 1996. View Article : Google Scholar : PubMed/NCBI

30 

Yang BC, Zander DS and Mehta JL: Hypoxia-reoxygenation-induced apoptosis in cultured adult rat myocytes and the protective effect of platelets and transforming growth factor-beta(1). J Pharmacol Exp Ther. 291:733–738. 1999.PubMed/NCBI

31 

See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, Itescu S and Krum H: p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol. 44:1679–1689. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Lima J, Batty JA, Sinclair H and Kunadian V: MicroRNAs in ischemic heart disease: From pathophysiology to potential clinical applications. Cardiol Rev. 25:117–125. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Boon RA and Dimmeler S: MicroRNAs in myocardial infarction. Nat Rev Cardiol. 12:135–142. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, Fasanaro P, Sun N, Wang X, Martelli F, et al: MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation. 122 (11 Suppl):S124–S131. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Arif M, Pandey R, Alam P, Jiang S, Sadayappan S, Paul A and Ahmed RPH: MicroRNA-210-mediated proliferation, survival, and angiogenesis promote cardiac repair post myocardial infarction in rodents. J Mol Med (Berl). 95:1369–1385. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Li T, Song X, Zhang J, Zhao L, Shi Y, Li Z, Liu J, Liu N, Yan Y, Xiao Y, et al: Protection of human umbilical vein endothelial cells against oxidative stress by MicroRNA-210. Oxid Med Cell Longev. 2017:35656132017. View Article : Google Scholar : PubMed/NCBI

37 

Diao H, Liu B, Shi Y, Song C, Guo Z, Liu N, Song X, Lu Y, Lin X and Li Z: MicroRNA-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating BNIP3. Biosci Biotechnol Biochem. 81:1712–1720. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Chen Z, Li Y, Zhang H, Huang P and Luthra R: Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 29:4362–4368. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Kim HW, Mallick F, Durrani S, Ashraf M, Jiang S and Haider KH: Concomitant activation of miR-107/PDCD10 and hypoxamir-210/Casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxid Redox Signal. 17:1053–1065. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K and Yonehara S: The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature. 398:777–785. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Xie Q, Lin T, Zhang Y, Zheng J and Bonanno JA: Molecular cloning and characterization of a human AIF-like gene with ability to induce apoptosis. J Biol Chem. 280:19673–19681. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qiu Q, Shen T, Wang Q, Yu X, Jia N and He Q: Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210. Mol Med Rep 21: 631-640, 2020.
APA
Qiu, Q., Shen, T., Wang, Q., Yu, X., Jia, N., & He, Q. (2020). Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210. Molecular Medicine Reports, 21, 631-640. https://doi.org/10.3892/mmr.2019.10892
MLA
Qiu, Q., Shen, T., Wang, Q., Yu, X., Jia, N., He, Q."Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210". Molecular Medicine Reports 21.2 (2020): 631-640.
Chicago
Qiu, Q., Shen, T., Wang, Q., Yu, X., Jia, N., He, Q."Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210". Molecular Medicine Reports 21, no. 2 (2020): 631-640. https://doi.org/10.3892/mmr.2019.10892
Copy and paste a formatted citation
x
Spandidos Publications style
Qiu Q, Shen T, Wang Q, Yu X, Jia N and He Q: Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210. Mol Med Rep 21: 631-640, 2020.
APA
Qiu, Q., Shen, T., Wang, Q., Yu, X., Jia, N., & He, Q. (2020). Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210. Molecular Medicine Reports, 21, 631-640. https://doi.org/10.3892/mmr.2019.10892
MLA
Qiu, Q., Shen, T., Wang, Q., Yu, X., Jia, N., He, Q."Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210". Molecular Medicine Reports 21.2 (2020): 631-640.
Chicago
Qiu, Q., Shen, T., Wang, Q., Yu, X., Jia, N., He, Q."Cardiac shock wave therapy protects cardiomyocytes from hypoxia‑induced injury by modulating miR‑210". Molecular Medicine Reports 21, no. 2 (2020): 631-640. https://doi.org/10.3892/mmr.2019.10892
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team