Therapeutic targets of thunder god vine (Tripterygium wilfordii hook) in rheumatoid arthritis (Review)
- Authors:
- Xinqiang Song
- Yu Zhang
- Erqin Dai
-
Affiliations: Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China - Published online on: April 2, 2020 https://doi.org/10.3892/mmr.2020.11052
- Pages: 2303-2310
This article is mentioned in:
Abstract
Deane KD and Holers VM: The natural history of rheumatoid arthritis. Clin Ther. 41:1256–1269. 2019. View Article : Google Scholar : PubMed/NCBI | |
Burmester GR and Pope JE: Novel treatment strategies in rheumatoid arthritis. Lancet. 389:2338–2348. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ridgley LA, Anderson AE and Pratt AG: What are the dominant cytokines in early rheumatoid arthritis? Curr Opin Rheumatol. 30:207–214. 2018. View Article : Google Scholar : PubMed/NCBI | |
Noack M and Miossec P: Selected cytokine pathways in rheumatoid arthritis. Semin Immunopathol. 39:365–383. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kang S, Tanaka T, Narazaki M and Kishimoto T: Targeting interleukin-6 signaling in clinic. Immunity. 50:1007–1023. 2019. View Article : Google Scholar : PubMed/NCBI | |
Siouti E and Andreakos E: The many facets of macrophages in rheumatoid arthritis. Biochem Pharmacol. 165:152–169. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yasuda K, Takeuchi Y and Hirota K: The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 41:283–297. 2019. View Article : Google Scholar : PubMed/NCBI | |
Arleevskaya MI, Larionova RV, Brooks WH, Bettacchioli E and Renaudineau Y: Toll-like receptors, infections, and rheumatoid arthritis. Clin Rev Allergy Immunol. May 29–2019.(Epub ahead of print). | |
Alam J, Jantan I and Bukhari SNA: Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed Pharmacother. 92:615–633. 2017. View Article : Google Scholar : PubMed/NCBI | |
Silvagni E, Di Battista M, Bonifacio AF, Zucchi D, Governato G and Scirè CA: One year in review 2019: Novelties in the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 37:519–534. 2019.PubMed/NCBI | |
Conigliaro P, Triggianese P, De Martino E, Fonti GL, Chimenti MS, Sunzini F, Viola A, Canofari C and Perricone R: Challenges in the treatment of rheumatoid arthritis. Autoimmun Rev. 18:706–713. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cecchi I, Arias de la Rosa I, Menegatti E, Roccatello D, Collantes-Estevez E, Lopez-Pedrera C and Barbarroja N: Neutrophils: Novel key players in rheumatoid arthritis. Current and future therapeutic targets. Autoimmun Rev. 17:1138–1149. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheung TT and McInnes IB: Future therapeutic targets in rheumatoid arthritis? Semin Immunopathol. 39:487–500. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hou W, Liu B and Xu H: Triptolide: Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem. 176:378–392. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Chen H, Gao J, Liu Y, Li J and Wang J: Bioactive ingredients in Chinese herbal medicines that target non-coding RNAs: Promising new choices for disease treatment. Front Pharmacol. 10:5152019. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Ma S, Wang Y, Yan R, Wang S, Liu N, Chen B, Chen J and Liu L: The role of traditional Chinese herbal medicines and bioactive ingredients on ion channels: A brief review and prospect. CNS Neurol Disord Drug Targets. 18:257–265. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Wang P, Feng X, Li B, Wang Z and Li H: The role of Chinese herbal medicines and bioactive ingredients targeting myocardial KCa and KATP Channels in cardiovascular diseases. Curr Pharm Des. 23:1070–1076. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Jiang L, Zhu M, Li Y, Luo M, Jiang P, Tong S, Zhang H and Yan J: The genus Tripterygium: A phytochemistry and pharmacological review. Fitoterapia. 137:1041902019. View Article : Google Scholar : PubMed/NCBI | |
Venkatesha SH, Dudics S, Astry B and Moudgil KD: Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog Dis. 74(pii): ftw0592016. View Article : Google Scholar : PubMed/NCBI | |
Tu L, Su P, Zhang Z, Gao L, Wang J, Hu T, Zhou J, Zhang Y, Zhao Y, Liu Y, et al: Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat Commun. 11:9712020. View Article : Google Scholar : PubMed/NCBI | |
Lin N, Sato T and Ito A: Triptolide, a novel diterpenoid triepoxide from Tripterygium wilfordii Hook. f., suppresses the production and gene expression of pro-matrix metalloproteinases 1 and 3 and augments those of tissue inhibitors of metalloproteinases 1 and 2 in human synovial fibroblasts. Arthritis Rheum. 44:2193–2200. 2001. View Article : Google Scholar : PubMed/NCBI | |
Astry B, Venkatesha SH, Laurence A, Christensen-Quick A, Garzino-Demo A, Frieman MB, O'Shea JJ and Moudgil KD: Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ. Clin Immunol. 157:228–238. 2015. View Article : Google Scholar : PubMed/NCBI | |
Di YM, Zhou ZW, Guang Li C and Zhou SF: Current and future therapeutic targets of rheumatoid arthritis. Antiinflamm Antiallergy Agents Med Chem. 10:92–120. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhou X, Chen XY and Zhong DF: Excretion of [3H]triptolide and its metabolites in rats after oral administration. Acta Pharmacol Sin. 35:549–554. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Q: Triptolide and its expanding multiple pharmacological functions. Int Immunopharmacol. 11:377–383. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li XJ, Jiang ZZ and Zhang LY: Triptolide: Progress on research in pharmacodynamics and toxicology. J Ethnopharmacol. 155:67–79. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Chen G, Wang L, Kong J, Pan J, Xi Y, Shen F and Huang Z: Triptolide-induced mitochondrial damage dysregulates fatty acid metabolism in mouse sertoli cells. Toxicol Lett. 292:136–150. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xi C, Peng S, Wu Z, Zhou Q and Zhou J: Toxicity of triptolide and the molecular mechanisms involved. Biomed Pharmacother. 90:531–541. 2017. View Article : Google Scholar : PubMed/NCBI | |
Song J, Shi F, Zhang Z, Zhu F, Xue J, Tan X, Zhang L and Jia X: Formulation and evaluation of celastrol-loaded liposomes. Molecules. 16:7880–7892. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qi J, Lu Y and Wu W: Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr Drug Metab. 13:418–428. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peng X, Wang J, Song H, Cui D, Li L, Li J, Lin L, Zhou J and Liu Y: Optimized preparation of celastrol-loaded polymeric nanomicelles using rotatable central composite design and response surface methodology. J Biomed Nanotechnol. 8:491–499. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cascao R, Fonseca JE and Moita LF: Celastrol: A spectrum of treatment opportunities in chronic diseases. Front Med (Lausanne). 4:692017. View Article : Google Scholar : PubMed/NCBI | |
Venkatesha SH and Moudgil KD: Celastrol and its role in controlling chronic diseases. Adv Exp Med Biol. 928:267–289. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen YF, Zhang X, Wang Y, Cao FF, Uzan G, Peng B and Zhang DH: Celastrol targets IRAKs to block Toll-like receptor 4-mediated nuclear factor-κB activation. J Integr Med. 14:203–208. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Koo TH, Yoon H, Jung HS, Jin HZ, Lee K, Hong YS and Lee JJ: Inhibition of NF-κB activation through targeting I kappa B kinase by celastrol, a quinone methide triterpenoid. Biochem Pharmacol. 72:1311–1321. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A and Rao A: IKK-1 and IKK-2: Cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science. 278:860–866. 1997. View Article : Google Scholar : PubMed/NCBI | |
Salminen A, Lehtonen M, Paimela T and Kaarniranta K: Celastrol: Molecular targets of thunder God vine. Biochem Biophys Res Commun. 394:439–442. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rigoglou S and Papavassiliou AG: The NF-κB signalling pathway in osteoarthritis. Int J Biochem Cell Biol. 45:2580–2584. 2013. View Article : Google Scholar : PubMed/NCBI | |
Samarpita S, Kim JY, Rasool MK and Kim KS: Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. Arthritis Res Ther. 22:162020. View Article : Google Scholar : PubMed/NCBI | |
Berridge MJ: Calcium signalling remodelling and disease. Biochem Soc Trans. 40:297–309. 2012. View Article : Google Scholar : PubMed/NCBI | |
Clapham DE: Calcium signaling. Cell. 131:1047–1058. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wong VKW, Qiu C, Xu SW, Law BYK, Zeng W, Wang H, Michelangeli F, Dias IRSR, Qu YQ, Chan TW, et al: Ca2+ signalling plays a role in celastrol-mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in rats. Br J Pharmacol. 176:2922–2944. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yoo SA, Park BH, Park GS, Koh HS, Lee MS, Ryu SH, Miyazawa K, Park SH, Cho CS and Kim WU: Calcineurin is expressed and plays a critical role in inflammatory arthritis. J Immunol. 177:2681–2690. 2006. View Article : Google Scholar : PubMed/NCBI | |
Villalobo A, Ishida H, Vogel HJ and Berchtold MW: Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. Biochim Biophys Acta Mol Cell Res. 1865:507–521. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Wu G, Wei X, Chen X, Wang Y and Chen L: Celastrol induced DNA damage, cell cycle arrest, and apoptosis in human rheumatoid fibroblast-like synovial cells. Am J Chin Med. 41:615–628. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fan XX, Li N, Wu JL, Zhou YL, He JX, Liu L and Leung EL: Celastrol induces apoptosis in gefitinib-resistant non-small cell lung cancer cells via caspases-dependent pathways and Hsp90 client protein degradation. Molecules. 19:3508–3522. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu LM, Zheng YJ, Wang Y, Yang Y, Cao FF, Peng B, Xu XF, An HZ, Zheng AX, Zhang DH, et al: Celastrol inhibits lung infiltration in differential syndrome animal models by reducing TNF-α and ICAM-1 levels while preserving differentiation in ATRA-induced acute promyelocytic leukemia cells. PLoS One. 9:e1051312014. View Article : Google Scholar : PubMed/NCBI | |
Fang Z, He D, Yu B, Liu F, Zuo J, Li Y, Lin Q, Zhou X and Wang Q: High-throughput study of the effects of celastrol on activated fibroblast-like synoviocytes from patients with rheumatoid arthritis. Genes (Basel). 8(pii): E2212017. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Huda S and Sinha Babu SP: Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand J Immunol. 90:e127712019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang Y, Ge HY, Gu YJ, Cao FF, Yang CX, Uzan G, Peng B and Zhang DH: Celastrol reverses palmitic acid (PA)-caused TLR4-MD2 activation-dependent insulin resistance via disrupting MD2-related cellular binding to PA. J Cell Physiol. 233:6814–6824. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khan MA, Khurana N, Ahmed RS, Umar S, Md G Sarwar AH, Alam Q, Kamal MA and Ashraf GM: Chemokines: A potential therapeutic target to suppress autoimmune arthritis. Curr Pharm Des. 25:2937–2946. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eustace AD, McNaughton EF, King S, Kehoe O, Kungl A, Mattey D, Nobbs AH, Williams N and Middleton J: Soluble syndecan-3 binds chemokines, reduces leukocyte migration in vitro and ameliorates disease severity in models of rheumatoid arthritis. Arthritis Res Ther. 21:1722019. View Article : Google Scholar : PubMed/NCBI | |
Bahlas S, Damiati L, Dandachi N, Sait H, Alsefri M and Pushparaj PN: Rapid immunoprofiling of cytokines, chemokines and growth factors in patients with active rheumatoid arthritis using luminex multiple analyte profiling technology for precision medicine. Clin Exp Rheumatol. 37:112–119. 2019.PubMed/NCBI | |
Lee JY, Lee BH, Kim ND and Lee JY: Celastrol blocks binding of lipopolysaccharides to a Toll-like receptor4/myeloid differentiation factor2 complex in a thiol-dependent manner. J Ethnopharmacol. 172:254–260. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li G, Liu D, Zhang Y, Qian Y, Zhang H, Guo S, Sunagawa M, Hisamitsu T and Liu Y: Celastrol inhibits lipopolysaccharide-stimulated rheumatoid fibroblast-like synoviocyte invasion through suppression of TLR4/NF-κB-mediated matrix metalloproteinase-9 expression. PLoS One. 8:e689052013. View Article : Google Scholar : PubMed/NCBI | |
Venkatesha SH, Astry B, Nanjundaiah SM, Yu H and Moudgil KD: Suppression of autoimmune arthritis by celastrus-derived celastrol through modulation of pro-inflammatory chemokines. Bioorg Med Chem. 20:5229–5234. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li GQ, Liu D, Zhang Y, Qian YY, Zhu YD, Guo SY, Sunagawa M, Hisamitsu T and Liu YQ: Anti-invasive effects of celastrol in hypoxia-induced fibroblast-like synoviocyte through suppressing of HIF-1α/CXCR4 signaling pathway. Int Immunopharmacol. 17:1028–1036. 2013. View Article : Google Scholar : PubMed/NCBI | |
Park B, Sung B, Yadav VR, Chaturvedi MM and Aggarwal BB: Triptolide, histone acetyltransferase inhibitor, suppresses growth and chemosensitizes leukemic cells through inhibition of gene expression regulated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK pathway. Biochem Pharmacol. 82:1134–1144. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Ye Y, Qiu Q, Xiao Y, Huang M, Shi M, Liang L, Yang X and Xu H: Triptolide inhibits the migration and invasion of rheumatoid fibroblast-like synoviocytes by blocking the activation of the JNK MAPK pathway. Int Immunopharmacol. 41:8–16. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fan D, He X, Bian Y, Guo Q, Zheng K, Zhao Y, Lu C, Liu B, Xu X, Zhang G and Lu A: Triptolide modulates TREM-1 signal pathway to inhibit the inflammatory response in rheumatoid arthritis. Int J Mol Sci. 17:4982016. View Article : Google Scholar : PubMed/NCBI | |
Ho LJ, Chang WL, Chen A, Chao P and Lai JH: Differential immunomodulatory effects by Tripterygium wilfordii Hook f-derived refined extract PG27 and its purified component PG490 (triptolide) in human peripheral blood T cells: Potential therapeutics for arthritis and possible mechanisms explaining in part Chinese herbal theory ‘Junn-Chenn-Zuou-SS’. J Transl Med. 11:2942013. View Article : Google Scholar : PubMed/NCBI | |
Ruland J: Return to homeostasis: Downregulation of NF-κB responses. Nat Immunol. 12:709–714. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kanarek N and Ben-Neriah Y: Regulation of NF-κB by ubiquitination and degradation of the IκBs. Immunol Rev. 246:77–94. 2012. View Article : Google Scholar : PubMed/NCBI | |
Criswell LA: Gene discovery in rheumatoid arthritis highlights the CD40/NF-kappaB signaling pathway in disease pathogenesis. Immunol Rev. 233:55–61. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schonthaler HB, Guinea-Viniegra J and Wagner EF: Targeting inflammation by modulating the Jun/AP-1 pathway. Ann Rheum Dis. 70 (Suppl 1):i109–i112. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiao C, Zhou J, He Y, Jia H, Zhao L, Zhao N and Lu A: Effects of triptolide from radix Tripterygium wilfordii (Leigongteng) on cartilage cytokines and transcription factor NF-kappaB: A study on induced arthritis in rats. Chin Med. 4:132009. View Article : Google Scholar : PubMed/NCBI | |
Bezerra MC, Carvalho JF, Prokopowitsch AS and Pereira RM: RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz J Med Biol Res. 38:161–170. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ho TY, Santora K, Chen JC, Frankshun AL and Bagnell CA: Effects of relaxin and estrogens on bone remodeling markers, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), in rat adjuvant-induced arthritis. Bone. 48:1346–1353. 2011. View Article : Google Scholar : PubMed/NCBI | |
Geusens P: The role of RANK ligand/osteoprotegerin in rheumatoid arthritis. Ther Adv Musculoskelet Dis. 4:225–233. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Chen T, Chen G, Shu X, Sun A, Ma P, Lu L and Cao X: Triptolide impairs dendritic cell migration by inhibiting CCR7 and COX-2 expression through PI3-K/Akt and NF-kappaB pathways. Mol Immunol. 44:2686–2696. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhang Y, Kong X, Zhu L, Pang J, Xu Y, Chen W, Zhan H, Lu A and Lin N: Triptolide prevents bone destruction in the collagen-induced arthritis model of rheumatoid arthritis by targeting RANKL/RANK/OPG signal pathway. Evid Based Complement Alternat Med. 2013:6260382013.PubMed/NCBI | |
Brinker AM, Ma J, Lipsky PE and Raskin I: Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry. 68:732–766. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xue M, McKelvey K, Shen K, Minhas N, March L, Park SY and Jackson CJ: Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology (Oxford). 53:2270–2279. 2014. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Blanco FJ, Cornelisson M and Lotz M: Regulation of cyclooxygenase-2 expression in normal human articular chondrocytes. J Immunol. 155:796–801. 1995.PubMed/NCBI | |
Maekawa K, Yoshikawa N, Du J, Nishida S, Kitasato H, Okamoto K, Tanaka H, Mizushima Y and Kawai S: The molecular mechanism of inhibition of interleukin-1beta-induced cyclooxygenase-2 expression in human synovial cells by Tripterygium wilfordii Hook F extract. Inflamm Res. 48:575–581. 1999. View Article : Google Scholar : PubMed/NCBI | |
Flower RJ: The development of COX2 inhibitors. Nat Rev Drug Discov. 2:179–191. 2003. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Fang M, Wang J, Yu H, Hu Z, Yew DT and Chen W: Triptolide down-regulates COX-2 expression and PGE2 release by suppressing the activity of NF-κB and MAP kinases in lipopolysaccharide-treated PC12 cells. Phytother Res. 26:337–343. 2012.PubMed/NCBI | |
Ma J, Dey M, Yang H, Poulev A, Pouleva R, Dorn R, Lipsky PE, Kennelly EJ and Raskin I: Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry. 68:1172–1178. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liacini A, Sylvester J and Zafarullah M: Triptolide suppresses proinflammatory cytokine-induced matrix metalloproteinase and aggrecanase-1 gene expression in chondrocytes. Biochem Biophys Res Commun. 327:320–327. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lin N, Liu C, Xiao C, Jia H, Imada K, Wu H and Ito A: Triptolide, a diterpenoid triepoxide, suppresses inflammation and cartilage destruction in collagen-induced arthritis mice. Biochem Pharmacol. 73:136–146. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Ma X: Triptolide inhibits IL-12/IL-23 expression in APCs via CCAAT/enhancer-binding protein alpha. J Immunol. 184:3866–3877. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Wang N, Guan Z and Houshan LV: Programmed cell death 5 factor enhances triptolide-induced fibroblast-like synoviocyte apoptosis of rheumatoid arthritis. Artif Cells Blood Substit Immobil Biotechnol. 38:38–42. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tasneem S, Liu B, Li B, Choudhary MI and Wang W: Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res. 139:126–140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ziaei S and Halaby R: Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review. Avicenna J Phytomed. 6:149–164. 2016.PubMed/NCBI | |
Kong X, Zhang Y, Liu C, Guo W, Li X, Su X, Wan H, Sun Y and Lin N: Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade. PLoS One. 8:e775132013. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Li F and Gao W: Tripterygium wilfordii inhibiting angiogenesis for rheumatoid arthritis treatment. J Natl Med Assoc. 109:142–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ramgolam V, Ang SG, Lai YH, Loh CS and Yap HK: Traditional Chinese medicines as immunosuppressive agents. Ann Acad Med Singapore. 29:11–16. 2000.PubMed/NCBI | |
Cameron M, Gagnier JJ and Chrubasik S: Herbal therapy for treating rheumatoid arthritis. Cochrane Database Syst Rev. CD0029482011.PubMed/NCBI | |
Lipsky PE and Tao XL: A potential new treatment for rheumatoid arthritis: Thunder god vine. Semin Arthritis Rheum. 26:713–723. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lv QW, Zhang W, Shi Q, Zheng WJ, Li X, Chen H, Wu QJ, Jiang WL, Li HB, Gong L, et al: Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of active rheumatoid arthritis (TRIFRA): A randomised, controlled clinical trial. Ann Rheum Dis. 74:1078–1086. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tao X, Younger J, Fan FZ, Wang B and Lipsky PE: Benefit of an extract of Tripterygium Wilfordii Hook F in patients with rheumatoid arthritis: A double-blind, placebo-controlled study. Arthritis Rheum. 46:1735–1743. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Liu F, Cheng Y, Xiao XR, Hu DD, Tang YM, Bao WM, Yang JH, Jiang T, Hu JP, et al: Celastrol protects from cholestatic liver injury through modulation of SIRT1-FXR signaling. Mol Cell Proteomics. 18:520–533. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Jiang Z, Xue M, Zhang S, Wang Y and Zhang L: Toxicogenomic analysis of the gene expression changes in rat liver after a 28-day oral Tripterygium wilfordii multiglycoside exposure. J Ethnopharmacol. 141:170–177. 2012. View Article : Google Scholar : PubMed/NCBI | |
Freag MS, Saleh WM and Abdallah OY: Self-assembled phospholipid-based phytosomal nanocarriers as promising platforms for improving oral bioavailability of the anticancer celastrol. Int J Pharm. 535:18–26. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu H and Liu B: Triptolide-targeted delivery methods. Eur J Med Chem. 164:342–351. 2019. View Article : Google Scholar : PubMed/NCBI |