Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
November-2020 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review)

  • Authors:
    • Wei Wang
    • Xuelian Huang
    • Xuzhou Fan
    • Jingmei Yan
    • Jianfeng Luan
  • View Affiliations / Copyright

    Affiliations: Department of Blood Transfusion Medicine, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
  • Pages: 4116-4124
    |
    Published online on: September 17, 2020
       https://doi.org/10.3892/mmr.2020.11516
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatitis C virus (HCV) infection is a global public health problem. Cirrhosis and hepatocellular carcinoma are the main causes of death in patients with chronic hepatitis C (CHC) infection. Liver fibrosis is an important cause of cirrhosis and end‑stage liver disease after CHC infection. Along with the course of infection, liver fibrosis exhibits a progressive exacerbation. Hepatic stellate cells (HSCs) are involved in both physiological and pathological processes of the liver. During the chronic liver injury process, the activated HSCs transform into myofibroblasts, which are important cells in the development of liver fibrosis. At present, HCV infection still lacks specific markers for the accurate detection of the disease condition and progression. Therefore, the present review focused on HSCs, which are closely related to HCV‑infected liver fibrosis, and analyzed the changes in the HSCs, including their surface‑specific markers, cytokine production, activation, cell function and morphological structure. The present review aimed to propose novel diagnostic markers, at both the cellular and molecular level, which would be of great significance for the timely diagnosis of the disease. According to this aim, the characteristic changes of HSCs during HCV infection were reviewed in the present article.
View Figures

Figure 1

View References

1 

Wiktor S: How feasible is the global elimination of HCV infection. Lancet. 393:1265–1267. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Spearman CW, Dusheiko GM, Hellard M and Sonderup M: Hepatitis C. Lancet. 394:1451–1466. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Li Y, Zhao L, Geng N, Zhu W, Liu H and Bai H: Prevalence and characteristics of hepatitis C virus infection in Shenyang City, Northeast China, and prediction of HCV RNA positivity according to serum anti-HCV level: Retrospective review of hospital data. Virol J. 17:362020. View Article : Google Scholar : PubMed/NCBI

4 

Lee MH, Yang HI, Yuan Y, L'Italien G and Chen CJ: Epidemiology and natural history of hepatitis C virus infection. World J Gastroenterol. 20:9270–9280. 2014.PubMed/NCBI

5 

Martinello M, Hajarizadeh B, Grebely J, Dore GJ and Matthews GV: Management of acute HCV infection in the era of direct-acting antiviral therapy. Nat Rev Gastroenterol Hepatol. 15:412–424. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Toyoda H, Kumada T, Tada T, Mizuno K, Sone Y, Akita T, Tanaka J and Johnson PJ: The impact of HCV eradication by direct-acting antivirals on the transition of precancerous hepatic nodules to HCC: A prospective observational study. Liver Int. 39:448–454. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Shiffman ML and Benhamou Y: Cure of HCV related liver disease. Liver Int. 35 (Suppl 1):S71–S77. 2015. View Article : Google Scholar

8 

Owusu Sekyere S, Schlevogt B, Mettke F, Kabbani M, Deterding K, Wirth TC, Vogel A, Manns MP, Falk CS, Cornberg M and Wedemeyer H: HCC immune surveillance and antiviral therapy of hepatitis C virus infection. Liver Cancer. 8:41–65. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Lin MV, King LY and Chung RT: Hepatitis C virus-associated cancer. Annu Rev Pathol. 10:345–370. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Wang Y, Li J, Wang X, Sang M and Ho W: Hepatic stellate cells, liver innate immunity, and hepatitis C virus. J Gastroenterol Hepatol. 28 (Suppl 1):S112–S115. 2013. View Article : Google Scholar

11 

Kocabayoglu P, Lade A, Lee YA, Dragomir AC, Sun X, Fiel MI, Thung S, Aloman C, Soriano P, Hoshida Y and Friedman SL: β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol. 63:141–147. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Cheng JC, Tseng CP, Liao MH, Peng CY, Yu JS, Chuang PH, Huang JT and Chen JJW: Activation of hepatic stellate cells by the ubiquitin C-terminal hydrolase 1 protein secreted from hepatitis C virus-infected hepatocytes. Sci Rep. 7:44482017. View Article : Google Scholar : PubMed/NCBI

13 

Gieseler RK, Marquitan G, Schlattjan M, Sowa JP, Bechmann LP, Timm J, Roggendorf M, Gerken G, Friedman SL and Canbay A: Hepatocyte apoptotic bodies encasing nonstructural HCV proteins amplify hepatic stellate cell activation: Implications for chronic hepatitis C. J Viral Hepat. 18:760–767. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Saeed A, Baloch K, Brown RJ, Wallis R, Chen L, Dexter L, McClure CP, Shakesheff K and Thomson BJ: Mannan binding lectin-associated serine protease 1 is induced by hepatitis C virus infection and activates human hepatic stellate cells. Clin Exp Immunol. 174:265–273. 2013.PubMed/NCBI

15 

El-Ahwany E, Nagy F, Zoheiry M, Shemis M, Nosseir M, Taleb HA, El Ghannam M, Atta R and Zada S: Circulating miRNAs as predictor markers for activation of hepatic stellate cells and progression of HCV-induced liver fibrosis. Electron Physician. 8:1804–1810. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Munsterman ID, Kendall TJ, Khelil N, Popa M, Lomme R, Drenth JPH and Tjwa ETTL: Extracellular matrix components indicate remodelling activity in different fibrosis stages of human non-alcoholic fatty liver disease. Histopathology. 73:612–621. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Warkad SD, Nimse SB, Song KS and Kim T: HCV detection, discrimination and genotyping technologies. Sensors (Basel). 18:34232018. View Article : Google Scholar

18 

Vanhommerig JW, van de Laar TJ, Koot M, van Rooijen MS, Schinkel J, Speksnijder AG, Prins M, de Vries HJ and Bruisten SM: Evaluation of a hepatitis C virus (HCV) antigen assay for routine HCV screening among men who have sex with men infected with HIV. J Virol Methods. 213:147–150. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Laperche S, Le Marrec N, Girault A, Bouchardeau F, Servant-Delmas A, Maniez-Montreuil M, Gallian P, Levayer T, Morel P and Simon N: Simultaneous detection of hepatitis C virus (HCV) core antigen and anti-HCV antibodies improves the early detection of HCV infection. J Clin Microbiol. 43:3877–3883. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Mazzola G, Adamoli L, Calvaruso V, Macaluso FS, Colletti P, Mazzola S, Cervo A, Trizzino M, Di Lorenzo F, Iaria C, et al: Suboptimal performance of APRI and FIB-4 in ruling out significant fibrosis and confirming cirrhosis in HIV/HCV co-infected and HCV mono-infected patients. Infection. 47:409–415. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Sakiani S, Koh C and Heller T: Understanding the presence of false-positive antibodies in acute hepatitis. J Infect Dis. 210:1886–1889. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Chida T, Ito M, Nakashima K, Kanegae Y, Aoshima T, Takabayashi S, Kawata K, Nakagawa Y, Yamamoto M, Shimano H, et al: Critical role of CREBH-mediated induction of transforming growth factor β 2 by hepatitis C virus infection in fibrogenic responses in hepatic stellate cells. Hepatology. 66:1430–1443. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Wake K: ‘Sternzellen’ in the liver: Perisinuosoidal cells with special reference to storage of vitamin A. Am J Anat. 132:429–462. 1971. View Article : Google Scholar : PubMed/NCBI

24 

No authors listed, . Hepatic stellate cell nomenclature. Hepatology. 23:1931996.PubMed/NCBI

25 

Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou C, You J, Fan J and Wang X: Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer. 129:2651–2661. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Higashi T, Friedman SL and Hoshida Y: Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 121:27–42. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Zhao W, Zhang L, Xu Y, Zhang Z, Ren G, Tang K, Kuang P, Zhao B, Yin Z and Wang X: Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest. 94:182–191. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Zhou CL, Kong DL, Liu JF, Lu ZK, Guo HF, Wang W, Qiu JF, Liu XJ and Wang Y: MHC II−, but not MHC II+, hepatic stellate cells contribute to liver fibrosis of mice in infection with schistosoma japonicum. Biochim Biophys Acta Mol Basis Dis. 1863:1848–1857. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Najar M, Fayyad-Kazan H, Faour WH, El Taghdouini A, Raicevic G, van Grunsven LA, Najimi M, Sokal E and Lagneaux L: Immuno-biological comparison of hepatic stellate cells in a reverted and activated state. Biomed Pharmacother. 98:52–62. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Bansal MB: Hepatic stellate cells: Fibrogenic, regenerative or both? Heterogeneity and context are key. Hepatol Int. 10:902–908. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Lee UE and Friedman SL: Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol. 25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Li H, Lan J, Han C, Guo K, Wang G, Hu J, Gong J, Luo X and Cao Z: Brg1 promotes liver fibrosis via activation of hepatic stellate cells. Exp Cell Res. 364:191–197. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Senoo H, Mezaki Y and Fujiwara M: The stellate cell system (vitamin A-storing cell system). Anat Sci Int. 92:387–455. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Senoo H, Kojima N and Sato M: Vitamin A-storing cells (stellate cells). Vitam Horm. 75:131–159. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Bi Y, Mukhopadhyay D, Drinane M, Ji B, Li X, Cao S and Shah VH: Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics. Am J Physiol Cell Physiol. 307:C622–C633. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Chen Y, Ou Y, Dong J, Yang G, Zeng Z, Liu Y, Liu B, Li W, He X and Lan T: Osteopontin promotes collagen I synthesis in hepatic stellate cells by miRNA-129-5p inhibition. Exp Cell Res. 362:343–348. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Wang C, Yang S, Huang J, Chen S, Li Y and Li Q: Activation of corticotropin releasing factor receptors up regulates collagen production by hepatic stellate cells via promoting p300 expression. Biol Chem. 397:437–444. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Testino G, Leone S, Fagoonee S and Pellicano R: Alcoholic liver fibrosis: Detection and treatment. Minerva Med. 109:457–471. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Malagnino V, Bottero J, Miailhes P, Lascoux-Combe C, Girard PM, Zoulim F, Lacombe K and Boyd A: Hepatitis B virus genotype G and liver fibrosis progression in chronic hepatitis B and human immunodeficiency virus coinfection. J Med Virol. 91:630–641. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Chung SI, Moon H, Ju HL, Cho KJ, Kim DY, Han KH, Eun JW, Nam SW, Ribback S, Dombrowski F, et al: Hepatic expression of sonic hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. J Hepatol. 64:618–627. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Tsuchida T and Friedman SL: Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 14:397–411. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman R, et al: Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 58:1461–1473. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Jin H, Jia Y, Yao Z, Huang J, Hao M, Yao S, Lian N, Zhang F, Zhang C, Chen X, et al: Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell. Cell Signal. 33:79–85. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Li X, Su Y, Hua X, Xie C, Liu J, Huang Y, Zhou L, Zhang M, Li X and Gao Z: Levels of hepatic Th17 cells and regulatory T cells upregulated by hepatic stellate cells in advanced HBV-related liver fibrosis. J Transl Med. 15:752017. View Article : Google Scholar : PubMed/NCBI

45 

Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, Housset C and Rosmorduc O: Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. 35:1010–1021. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Hong IH, Park SJ, Goo MJ, Lee HR, Park JK, Ki MR, Kim SH, Lee EM, Kim AY and Jeong KS: JNK1 and JNK2 regulate α-SMA in hepatic stellate cells during CCl4-induced fibrosis in the rat liver. Pathol Int. 63:483–491. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Giannandrea M and Parks WC: Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech. 7:193–203. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Holm Nielsen S, Willumsen N, Leeming DJ, Daniels SJ, Brix S, Karsdal MA, Genovese F and Nielsen MJ: Serological assessment of activated fibroblasts by alpha-smooth muscle actin (α-SMA): A noninvasive biomarker of activated fibroblasts in lung disorders. Transl Oncol. 12:368–374. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Elzamly S, Agina HA, Elbalshy AE, Abuhashim M, Saad E and Abd Elmageed ZY: Integration of VEGF and α-SMA expression improves the prediction accuracy of fibrosis in chronic hepatitis C liver biopsy. Appl Immunohistochem Mol Morphol. 25:261–270. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Stefanovic L and Stefanovic B: Role of cytokine receptor-like factor 1 in hepatic stellate cells and fibrosis. World J Hepatol. 4:356–364. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD and Fattman CL: Secreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in mice. Environ Health Perspect. 124:1199–1207. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Kumar P, Smith T, Raeman R, Chopyk DM, Brink H, Liu Y, Sulchek T and Anania FA: Periostin promotes liver fibrogenesis by activating lysyl oxidase in hepatic stellate cells. J Biol Chem. 293:12781–12792. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Dongiovanni P, Meroni M, Baselli GA, Bassani GA, Rametta R, Pietrelli A, Maggioni M, Facciotti F, Trunzo V, Badiali S, et al: Insulin resistance promotes lysyl oxidase like 2 induction and fibrosis accumulation in non-alcoholic fatty liver disease. Clin Sci (Lond). 131:1301–1315. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Zhang SC, Zheng YH, Yu PP, Min TH, Yu FX, Ye C, Xie YK and Zhang QY: Lentiviral vector-mediated down-regulation of IL-17A receptor in hepatic stellate cells results in decreased secretion of IL-6. World J Gastroenterol. 18:3696–3704. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Ehling J and Tacke F: Role of chemokine pathways in hepatobiliary cancer. Cancer Lett. 379:173–183. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Kim BM, Abdelfattah AM, Vasan R, Fuchs BC and Choi MY: Hepatic stellate cells secrete Ccl5 to induce hepatocyte steatosis. Sci Rep. 8:74992018. View Article : Google Scholar : PubMed/NCBI

57 

Li Z, Zhang Q, Zhang Q, Xu M, Qu Y, Cai X and Lu L: CXCL6 promotes human hepatocyte proliferation through the CXCR1-NFkB pathway and inhibits collagen I secretion by hepatic stellate cells. Biochem Cell Biol. 94:229–235. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Puche JE, Saiman Y and Friedman SL: Hepatic stellate cells and liver fibrosis. Compr Physiol. 3:1473–1492. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ, Zhao Y, Ye YC, Bai J, Zheng QJ, Dou KF, et al: Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 67:770–779. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Sasaki R, Devhare PB, Steele R, Ray R and Ray RB: Hepatitis C virus-induced CCL5 secretion from macrophages activates hepatic stellate cells. Hepatology. 66:746–757. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Höchst B, Schildberg FA, Sauerborn P, Gäbel YA, Gevensleben H, Goltz D, Heukamp LC, Türler A, Ballmaier M, Gieseke F, et al: Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol. 59:528–535. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Wang B, Trippler M, Pei R, Lu M, Broering R, Gerken G and Schlaak JF: Toll-like receptor activated human and murine hepatic stellate cells are potent regulators of hepatitis C virus replication. J Hepatol. 51:1037–1045. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Jeong WI, Park O, Suh YG, Byun JS, Park SY, Choi E, Kim JK, Ko H, Wang H, Miller AM and Gao B: Suppression of innate immunity (natural killer cell/interferon-γ) in the advanced stages of liver fibrosis in mice. Hepatology. 53:1342–1351. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Radaeva S, Wang L, Radaev S, Jeong WI, Park O and Gao B: Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am J Physiol Gastrointest Liver Physiol. 293:G809–G816. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Langhans B, Alwan AW, Krämer B, Glässner A, Lutz P, Strassburg CP, Nattermann J and Spengler U: Regulatory CD4+T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type. J Hepatol. 62:398–404. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Li Y, Lu L, Qian S, Fung JJ and Lin F: Hepatic stellate cells directly inhibit B cells via programmed death-ligand 1. J Immunol. 196:1617–1625. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Bedossa P and Paradis V: Approaches for treatment of liver fibrosis in chronic hepatitis C. Clin Liver Dis. 7:195–210. 2003. View Article : Google Scholar : PubMed/NCBI

68 

Ignat SR, Dinescu S, Hermenean A and Costache M: Cellular interplay as a consequence of inflammatory signals leading to liver fibrosis development. Cells. 9:4612020. View Article : Google Scholar

69 

Shahin K, Hosseini SY, Jamali H, Karimi MH, Azarpira N and Zeraatian M: The enhancing impact of amino termini of hepatitis C virus core protein on activation of hepatic stellate cells. Gastroenterol Hepatol Bed Bench. 13:57–63. 2020.PubMed/NCBI

70 

Wang L, Wang Y and Quan J: Exosomes derived from natural killer cells inhibit hepatic stellate cell activation and liver fibrosis. Hum Cell. 33:582–589. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Cai B, Dongiovanni P, Corey KE, Wang X, Shmarakov IO, Zheng Z, Kasikara C, Davra V, Meroni M, Chung RT, et al: Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis. Cell Metab. 31:406–421. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Tsukamoto H: Cytokine regulation of hepatic stellate cells in liver fibrosis. Alcohol Clin Exp Res. 23:911–916. 1999. View Article : Google Scholar : PubMed/NCBI

73 

Wang S, Li M, Zhao X, Wang H, Zhu J, Wang C, Zhou M, Dong H and Zhou R: Upregulation of KSRP by miR-27b attenuates schistosomiasis-induced hepatic fibrosis by targeting TGF-β1. FASEB J. 34:4120–4133. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Huang JL, Fu YP, Gan W, Liu G, Zhou PY, Zhou C, Sun BY, Guan RY, Zhou J, Fan J, et al: Hepatic stellate cells promote the progression of hepatocellular carcinoma through microRNA-1246-RORα-Wnt/β-Catenin axis. Cancer Lett. 476:140–151. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Winkler I, Bitter C, Winkler S, Weichenhan D, Thavamani A, Hengstler JG, Borkham-Kamphorst E, Kohlbacher O, Plass C, Geffers R, et al: Identification of Pparγ-modulated miRNA hubs that target the fibrotic tumor microenvironment. Proc Natl Acad Sci USA. 117:454–463. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Dawood RM, El-Meguid MA, Ibrahim MK, Bader El Din NG, Barakat A, El-Wakeel K, Alla MDAA, Wu GY and El Awady MK: Dysregulation of fibrosis related genes in HCV induced liver disease. Gene. 664:58–69. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Chouteau P, Defer N, Florimond A, Caldéraro J, Higgs M, Gaudin A, Mérour E, Dhumeaux D, Lerat H and Pawlotsky JM: Hepatitis C virus (HCV) protein expression enhances hepatic fibrosis in HCV transgenic mice exposed to a fibrogenic agent. J Hepatol. 57:499–507. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Mazzocca A, Sciammetta SC, Carloni V, Cosmi L, Annunziato F, Harada T, Abrignani S and Pinzani M: Binding of hepatitis C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells. J Biol Chem. 280:11329–11339. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Bataller R, Paik YH, Lindquist JN, Lemasters JJ and Brenner DA: Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology. 126:529–540. 2004. View Article : Google Scholar : PubMed/NCBI

80 

Coenen M, Nischalke HD, Krämer B, Langhans B, Glässner A, Schulte D, Körner C, Sauerbruch T, Nattermann J and Spengler U: Hepatitis C virus core protein induces fibrogenic actions of hepatic stellate cells via toll-like receptor 2. Lab Invest. 91:1375–1382. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Charrier A, Chen R, Chen L, Kemper S, Hattori T, Takigawa M and Brigstock DR: Exosomes mediate intercellular transfer of pro-fibrogenic connective tissue growth factor (CCN2) between hepatic stellate cells, the principal fibrotic cells in the liver. Surgery. 156:548–555. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Li M, Jiang M, Meng J and Tao L: Exosomes: Carriers of pro-fibrotic signals and therapeutic targets in fibrosis. Curr Pharm Des. 25:4496–4509. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Kim JH, Lee CH and Lee SW: Exosomal transmission of MicroRNA from HCV replicating cells stimulates transdifferentiation in hepatic stellate cells. Mol Ther Nucleic Acids. 14:483–497. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Khatun M and Ray RB: Mechanisms underlying hepatitis C virus-associated hepatic fibrosis. Cells. 8:12492019. View Article : Google Scholar

85 

Devhare PB, Sasaki R, Shrivastava S, Di Bisceglie AM, Ray R and Ray RB: Exosome-mediated intercellular communication between hepatitis C virus-infected hepatocytes and hepatic stellate cells. J Virol. 91:e02225–e02216. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Njiomegnie GF, Read SA, Fewings N, George J, McKay F and Ahlenstiel G: Immunomodulation of the natural killer cell phenotype and response during HCV infection. J Clin Med. 9:10302020. View Article : Google Scholar

87 

Glässner A, Eisenhardt M, Krämer B, Körner C, Coenen M, Sauerbruch T, Spengler U and Nattermann J: NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab Invest. 92:967–977. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Wang H and Yin S: Natural killer T cells in liver injury, inflammation and cancer. Expert Rev Gastroenterol Hepatol. 9:1077–1085. 2015. View Article : Google Scholar : PubMed/NCBI

89 

de Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, Monno A, Nuti S, Colombo M, Callea F, Porcelli SA, et al: Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol. 173:1417–1425. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Suzuki K, Meguro K, Nakagomi D and Nakajima H: Roles of alternatively activated M2 macrophages in allergic contact dermatitis. Allergol Int. 66:392–397. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Brass A and Brenndörfer ED: The role of chemokines in hepatitis C virus-mediated liver disease. Int J Mol Sci. 15:4747–4779. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Wasmuth HE and Weiskirchen R: Pathogenesis of liver fibrosis: Modulation of stellate cells by chemokines. Z Gastroenterol. 48:38–45. 2010.(In German). View Article : Google Scholar : PubMed/NCBI

94 

Liang YJ, Luo J, Lu Q, Zhou Y, Wu HW, Zheng D, Ren YY, Sun KY, Wang Y and Zhang ZS: Gene profile of chemokines on hepatic stellate cells of schistosome-infected mice and antifibrotic roles of CXCL9/10 on liver non-parenchymal cells. PLoS One. 7:e424902012. View Article : Google Scholar : PubMed/NCBI

95 

Marra F and Tacke F: Roles for chemokines in liver disease. Gastroenterology. 147:577–594. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Tan HX, Gong WZ, Zhou K, Xiao ZG, Hou FT, Huang T, Zhang L, Dong HY, Zhang WL, Liu Y and Huang ZC: CXCR4/TGF-β1 mediated hepatic stellate cells differentiation into carcinoma-associated fibroblasts and promoted liver metastasis of colon cancer. Cancer Biol Ther. 21:258–268. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Ferrari SM, Fallahi P, Ruffilli I, Elia G, Ragusa F, Paparo SR, Patrizio A, Mazzi V, Colaci M, Giuggioli D, et al: Immunomodulation of CXCL10 secretion by hepatitis C virus: Could CXCL10 Be a prognostic marker of chronic hepatitis C? J Immunol Res. 2019:58789602019. View Article : Google Scholar : PubMed/NCBI

98 

Pineda-Tenor D, Berenguer J, Jiménez-Sousa MA, Guzmán-Fulgencio M, Aldámiz-Echevarria T, Carrero A, García-Álvarez M, Diez C, Tejerina F, Briz V and Resino S: CXCL9, CXCL10 and CXCL11 polymorphisms are associated with sustained virologic response in HIV/HCV-coinfected patients. J Clin Virol. 61:423–429. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Liu Y, Chen L, Zou Z, Zhu B, Hu Z, Zeng P, Wu L and Xiong J: Hepatitis C virus infection induces elevation of CXCL10 in human brain microvascular endothelial cells. J Med Virol. 88:1596–1603. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Zeremski M, Dimova R, Astemborski J, Thomas DL and Talal AH: CXCL9 and CXCL10 chemokines as predictors of liver fibrosis in a cohort of primarily African-American injection drug users with chronic hepatitis C. J Infect Dis. 204:832–836. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Sahin H, Borkham-Kamphorst E, Kuppe C, Zaldivar MM, Grouls C, Al-samman M, Nellen A, Schmitz P, Heinrichs D, Berres ML, et al: Chemokine Cxcl9 attenuates liver fibrosis-associated angiogenesis in mice. Hepatology. 55:1610–1619. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Joshi D, Carey I, Foxton M, Al-Freah M, Bruce M, Heaton N, Quaglia A, O'Grady J, Aluvihare V and Agarwal K: CXCL10 levels identify individuals with rapid fibrosis at 12 months post-transplant for hepatitis C virus and predict treatment response. Clin Transplant. 28:569–578. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Gorin JB, Malone DFG, Strunz B, Carlsson T, Aleman S, Björkström NK, Falconer K and Sandberg JK: Plasma FABP4 is associated with liver disease recovery during treatment-induced clearance of chronic HCV infection. Sci Rep. 10:20812020. View Article : Google Scholar : PubMed/NCBI

104 

Lu Y, Lin LY, Tan JG, Deng HP, Li XH, Zhang Z, Li Y, Zhou Z, Xu X, Xie X and Mei SJ: A correlation study between gene polymorphism of Th cell expressed chemokine receptor CXCR3 and its ligand levels with HCV infection prognosis. Eur Rev Med Pharmacol Sci. 21:1290–1295. 2017.PubMed/NCBI

105 

Berres ML, Asmacher S, Lehmann J, Jansen C, Görtzen J, Klein S, Meyer C, Strunk HM, Fimmers R, Tacke F, et al: CXCL9 is a prognostic marker in patients with liver cirrhosis receiving transjugular intrahepatic portosystemic shunt. J Hepatol. 62:332–339. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Chalin A, Lefevre B, Devisme C, Barget N, Amiot L and Samson M: Circulating levels of CXCL11 and CXCL12 are biomarkers of cirrhosis in patients with chronic hepatitis C infection. Cytokine. 117:72–78. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Patidar M, Yadav N and Dalai SK: Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev. 31:49–59. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Jiao J, Ooka K, Fey H, Fiel MI, Rahmman AH, Kojima K, Hoshida Y, Chen X, de Paula T, Vetter D, et al: Interleukin-15 receptor α on hepatic stellate cells regulates hepatic fibrogenesis in mice. J Hepatol. 65:344–353. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Golden-Mason L, Kelly AM, Doherty DG, Traynor O, McEntee G, Kelly J, Hegarty JE and O'Farrelly C: Hepatic interleuklin 15 (IL-15) expression: Implications for local NK/NKT cell homeostasis and development. Clin Exp Immunol. 138:94–101. 2004. View Article : Google Scholar : PubMed/NCBI

110 

Vahedi F, Lee AJ, Collins SE, Chew MV, Lusty E, Chen B, Dubey A, Richards CD, Feld JJ, Russell RS, et al: IL-15 and IFN-γ signal through the ERK pathway to inhibit HCV replication, independent of type I IFN signaling. Cytokine. 124:1544392019. View Article : Google Scholar : PubMed/NCBI

111 

Isailovic N, Daigo K, Mantovani A and Selmi C: Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun. 60:1–11. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Abou El-Khier NT, Elhammady D, Arafa MM, Shahin D, Eladl E, Abousamra NK, Sharaf-Eldeen O, Shaker G and Esmael ME: Th17 and IL-17 as predictors of hepatic inflammation in patients with chronic hepatitis C virus infection and treated with direct antiviral therapy. Egypt J Immunol. 25:61–74. 2018.PubMed/NCBI

113 

Gu Y, Hu X, Liu C, Qv X and Xu C: Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-alpha in aplastic anaemia. Br J Haematol. 142:109–114. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Zhang Y, Huang D, Gao W, Yan J, Zhou W, Hou X, Liu M, Ren C, Wang S and Shen J: Lack of IL-17 signaling decreases liver fibrosis in murine schistosomiasis japonica. Int Immunol. 27:317–325. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Amara S, Lopez K, Banan B, Brown SK, Whalen M, Myles E, Ivy MT, Johnson T, Schey KL and Tiriveedhi V: Synergistic effect of pro-inflammatory TNFα and IL-17 in periostin mediated collagen deposition: Potential role in liver fibrosis. Mol Immunol. 64:26–35. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Elkhawaga AA, Hosni A, Zaky DZ, Kamel AA, Mohamed NA, Abozaid MA and El-Masry MA: Association of treg and TH17 cytokines with HCV pathogenesis and liver pathology. Egypt J Immunol. 26:55–63. 2019.PubMed/NCBI

117 

Zhang LJ, Yu JP, Li D, Huang YH, Chen ZX and Wang XZ: Effects of cytokines on carbon tetrachloride-induced hepatic fibrogenesis in rats. World J Gastroenterol. 10:77–81. 2004. View Article : Google Scholar : PubMed/NCBI

118 

Niess JH and Francés R: Editorial: The IL-20 cytokines and related family members in immunity and diseases. Front Immunol. 10:19762019. View Article : Google Scholar : PubMed/NCBI

119 

Chiu YS, Wei CC, Lin YJ, Hsu YH and Chang MS: IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology. 60:1003–1014. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Rutz S, Eidenschenk C and Ouyang W: IL-22, not simply a Th17 cytokine. Immunol Rev. 252:116–132. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Kronenberger B, Rudloff I, Bachmann M, Brunner F, Kapper L, Filmann N, Waidmann O, Herrmann E, Pfeilschifter J, Zeuzem S, et al: Interleukin-22 predicts severity and death in advanced liver cirrhosis: A prospective cohort study. BMC Med. 10:1022012. View Article : Google Scholar : PubMed/NCBI

122 

Sertorio M, Hou X, Carmo RF, Dessein H, Cabantous S, Abdelwahed M, Romano A, Albuquerque F, Vasconcelos L, Carmo T, et al: IL-22 and IL-22 binding protein (IL-22BP) regulate fibrosis and cirrhosis in hepatitis C virus and schistosome infections. Hepatology. 61:1321–1331. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS and Gao B: Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology. 56:1150–1159. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Lu DH, Guo XY, Qin SY, Luo W, Huang XL, Chen M, Wang JX, Ma SJ, Yang XW and Jiang HX: Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines. World J Gastroenterol. 21:1531–1545. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Zhao Z, Lin CY and Cheng K: siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res. 214:17–29. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Shaker OG and Senousy MA: Serum microRNAs as predictors for liver fibrosis staging in hepatitis C virus-associated chronic liver disease patients. J Viral Hepat. 24:636–644. 2017. View Article : Google Scholar : PubMed/NCBI

127 

Coll M, El Taghdouini A, Perea L, Mannaerts I, Vila-Casadesús M, Blaya D, Rodrigo-Torres D, Affò S, Morales-Ibanez O, Graupera I, et al: Integrative miRNA and gene expression profiling analysis of human quiescent hepatic stellate cells. Sci Rep. 5:115492015. View Article : Google Scholar : PubMed/NCBI

128 

Marquez RT, Bandyopadhyay S, Wendlandt EB, Keck K, Hoffer BA, Icardi MS, Christensen RN, Schmidt WN and McCaffrey AP: Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab Invest. 90:1727–1736. 2010. View Article : Google Scholar : PubMed/NCBI

129 

Appourchaux K, Dokmak S, Resche-Rigon M, Treton X, Lapalus M, Gattolliat CH, Porchet E, Martinot-Peignoux M, Boyer N, Vidaud M, et al: MicroRNA-based diagnostic tools for advanced fibrosis and cirrhosis in patients with chronic hepatitis B and C. Sci Rep. 6:349352016. View Article : Google Scholar : PubMed/NCBI

130 

Ogawa T, Enomoto M, Fujii H, Sekiya Y, Yoshizato K, Ikeda K and Kawada N: MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut. 61:1600–1609. 2012. View Article : Google Scholar : PubMed/NCBI

131 

Chen L, Charrier A, Zhou Y, Chen R, Yu B, Agarwal K, Tsukamoto H, Lee LJ, Paulaitis ME and Brigstock DR: Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology. 59:1118–1129. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Guo CJ, Pan Q, Li DG, Sun H and Liu BW: miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol. 50:766–778. 2009. View Article : Google Scholar : PubMed/NCBI

133 

Li J, Ghazwani M, Zhang Y, Lu J, Li J, Fan J, Gandhi CR and Li S: miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J Hepatol. 58:522–528. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Zheng J, Lin Z, Dong P, Lu Z, Gao S, Chen X, Wu C and Yu F: Activation of hepatic stellate cells is suppressed by microRNA-150. Int J Mol Med. 32:17–24. 2013. View Article : Google Scholar : PubMed/NCBI

135 

Leask A: CCN2/decorin interactions: A novel approach to combating fibrosis? J Cell Commun Signal. 5:249–250. 2011. View Article : Google Scholar : PubMed/NCBI

136 

Yue ZH, Xia CS and Wang H: Performance evaluation of the mindray anti-HCV assay for the detection of hepatitis C virus infection. J Clin Lab Anal. 32:e226002018. View Article : Google Scholar : PubMed/NCBI

137 

Wasitthankasem R, Vongpunsawad S, Siripon N, Suya C, Chulothok P, Chaiear K, Rujirojindakul P, Kanjana S, Theamboonlers A, Tangkijvanich P and Poovorawan Y: Genotypic distribution of hepatitis C virus in Thailand and Southeast Asia. PLoS One. 10:e01267642015. View Article : Google Scholar : PubMed/NCBI

138 

He J, Xiu B, Wang G, Chen K, Feng X, Song X, Zhu C, Ling S and Zhang H: Double-antigen sandwich ELISA for the detection of anti-hepatitis C virus antibodies. J Virol Methods. 171:163–168. 2011. View Article : Google Scholar : PubMed/NCBI

139 

Kim S, Kim JH, Yoon S, Park YH and Kim HS: Clinical performance evaluation of four automated chemiluminescence immunoassays for hepatitis C virus antibody detection. J Clin Microbiol. 46:3919–3923. 2008. View Article : Google Scholar : PubMed/NCBI

140 

Heinrichs A, Antoine M, Steensels D, Montesinos I and Delforge ML: HCV false positive immunoassays in patients with LVAD: A potential trap! J Clin Virol. 78:44–46. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Ali A and Lal A: False positivity of serological tests for hepatitis C virus. J Ayub Med Coll Abbottabad. 22:43–45. 2010.PubMed/NCBI

142 

Vo MT, Bruhn R, Kaidarova Z, Custer BS, Murphy EL and Bloch EM: A retrospective analysis of false-positive infectious screening results in blood donors. Transfusion. 56:457–465. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Moorman AC, Drobenuic J and Kamili S: Prevalence of false-positive hepatitis C antibody results, national health and nutrition examination study (NHANES) 2007–2012. J Clin Virol. 89:1–4. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Scott JD and Gretch DR: Molecular diagnostics of hepatitis C virus infection: A systematic review. JAMA. 297:724–732. 2007. View Article : Google Scholar : PubMed/NCBI

145 

Safic Stanic H, Babic I, Maslovic M, Dogic V, Bingulac-Popovic J, Miletic M, Jurakovic-Loncar N, Vuk T, Strauss-Patko M and Jukic I: Three-year experience in NAT screening of blood donors for transfusion transmitted viruses in croatia. Transfus Med Hemother. 44:415–420. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Bustin SA: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J Mol Endocrinol. 29:23–39. 2002. View Article : Google Scholar : PubMed/NCBI

147 

Papadopoulos N, Vasileiadi S, Papavdi M, Sveroni E, Antonakaki P, Dellaporta E, Koutli E, Michalea S, Manolakopoulos S, Koskinas J and Deutsch M: Liver fibrosis staging with combination of APRI and FIB-4 scoring systems in chronic hepatitis C as an alternative to transient elastography. Ann Gastroenterol. 32:498–503. 2019.PubMed/NCBI

148 

Kim WR, Berg T, Asselah T, Flisiak R, Fung S, Gordon SC, Janssen HL, Lampertico P, Lau D, Bornstein JD, et al: Evaluation of APRI and FIB-4 scoring systems for non-invasive assessment of hepatic fibrosis in chronic hepatitis B patients. J Hepatol. 64:773–780. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Sagnelli C, Uberti-Foppa C, Pasquale G, De Pascalis S, Coppola N, Albarello L, Doglioni C, Lazzarin A and Sagnelli E: Factors influencing liver fibrosis and necroinflammation in HIV/HCV coinfection and HCV monoinfection. Infection. 41:959–967. 2013. View Article : Google Scholar : PubMed/NCBI

150 

Bedossa P and Patel K: Biopsy and noninvasive methods to assess progression of nonalcoholic fatty liver disease. Gastroenterology. 150:1811–1822. 2016. View Article : Google Scholar : PubMed/NCBI

151 

Francque SM, De Pauw FF, Van den Steen GH, Van Marck EA, Pelckmans PA and Michielsen PP: Biopsy of focal liver lesions: Guidelines, comparison of techniques and cost-analysis. Acta Gastroenterol Belg. 66:160–165. 2003.PubMed/NCBI

152 

Childers RE and Ahn J: Diagnosis of alcoholic liver disease: Key foundations and new developments. Clin Liver Dis. 20:457–471. 2016. View Article : Google Scholar : PubMed/NCBI

153 

Colli A, Fraquelli M, Andreoletti M, Marino B, Zuccoli E and Conte D: Severe liver fibrosis or cirrhosis: Accuracy of US for detection-analysis of 300 cases. Radiology. 227:89–94. 2003. View Article : Google Scholar : PubMed/NCBI

154 

Shiha G, Seif S, Eldesoky A, Elbasiony M, Soliman R, Metwally A, Zalata K and Mikhail N: A simple bedside blood test (Fibrofast; FIB-5) is superior to FIB-4 index for the differentiation between non-significant and significant fibrosis in patients with chronic hepatitis C. Hepatol Int. 11:286–291. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang W, Huang X, Fan X, Yan J and Luan J: Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review). Mol Med Rep 22: 4116-4124, 2020.
APA
Wang, W., Huang, X., Fan, X., Yan, J., & Luan, J. (2020). Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review). Molecular Medicine Reports, 22, 4116-4124. https://doi.org/10.3892/mmr.2020.11516
MLA
Wang, W., Huang, X., Fan, X., Yan, J., Luan, J."Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review)". Molecular Medicine Reports 22.5 (2020): 4116-4124.
Chicago
Wang, W., Huang, X., Fan, X., Yan, J., Luan, J."Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review)". Molecular Medicine Reports 22, no. 5 (2020): 4116-4124. https://doi.org/10.3892/mmr.2020.11516
Copy and paste a formatted citation
x
Spandidos Publications style
Wang W, Huang X, Fan X, Yan J and Luan J: Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review). Mol Med Rep 22: 4116-4124, 2020.
APA
Wang, W., Huang, X., Fan, X., Yan, J., & Luan, J. (2020). Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review). Molecular Medicine Reports, 22, 4116-4124. https://doi.org/10.3892/mmr.2020.11516
MLA
Wang, W., Huang, X., Fan, X., Yan, J., Luan, J."Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review)". Molecular Medicine Reports 22.5 (2020): 4116-4124.
Chicago
Wang, W., Huang, X., Fan, X., Yan, J., Luan, J."Progress in evaluating the status of hepatitis C infection based on the functional changes of hepatic stellate cells (Review)". Molecular Medicine Reports 22, no. 5 (2020): 4116-4124. https://doi.org/10.3892/mmr.2020.11516
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team