|
1
|
Wiktor S: How feasible is the global
elimination of HCV infection. Lancet. 393:1265–1267. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Spearman CW, Dusheiko GM, Hellard M and
Sonderup M: Hepatitis C. Lancet. 394:1451–1466. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li Y, Zhao L, Geng N, Zhu W, Liu H and Bai
H: Prevalence and characteristics of hepatitis C virus infection in
Shenyang City, Northeast China, and prediction of HCV RNA
positivity according to serum anti-HCV level: Retrospective review
of hospital data. Virol J. 17:362020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lee MH, Yang HI, Yuan Y, L'Italien G and
Chen CJ: Epidemiology and natural history of hepatitis C virus
infection. World J Gastroenterol. 20:9270–9280. 2014.PubMed/NCBI
|
|
5
|
Martinello M, Hajarizadeh B, Grebely J,
Dore GJ and Matthews GV: Management of acute HCV infection in the
era of direct-acting antiviral therapy. Nat Rev Gastroenterol
Hepatol. 15:412–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Toyoda H, Kumada T, Tada T, Mizuno K, Sone
Y, Akita T, Tanaka J and Johnson PJ: The impact of HCV eradication
by direct-acting antivirals on the transition of precancerous
hepatic nodules to HCC: A prospective observational study. Liver
Int. 39:448–454. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shiffman ML and Benhamou Y: Cure of HCV
related liver disease. Liver Int. 35 (Suppl 1):S71–S77. 2015.
View Article : Google Scholar
|
|
8
|
Owusu Sekyere S, Schlevogt B, Mettke F,
Kabbani M, Deterding K, Wirth TC, Vogel A, Manns MP, Falk CS,
Cornberg M and Wedemeyer H: HCC immune surveillance and antiviral
therapy of hepatitis C virus infection. Liver Cancer. 8:41–65.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lin MV, King LY and Chung RT: Hepatitis C
virus-associated cancer. Annu Rev Pathol. 10:345–370. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang Y, Li J, Wang X, Sang M and Ho W:
Hepatic stellate cells, liver innate immunity, and hepatitis C
virus. J Gastroenterol Hepatol. 28 (Suppl 1):S112–S115. 2013.
View Article : Google Scholar
|
|
11
|
Kocabayoglu P, Lade A, Lee YA, Dragomir
AC, Sun X, Fiel MI, Thung S, Aloman C, Soriano P, Hoshida Y and
Friedman SL: β-PDGF receptor expressed by hepatic stellate cells
regulates fibrosis in murine liver injury, but not carcinogenesis.
J Hepatol. 63:141–147. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cheng JC, Tseng CP, Liao MH, Peng CY, Yu
JS, Chuang PH, Huang JT and Chen JJW: Activation of hepatic
stellate cells by the ubiquitin C-terminal hydrolase 1 protein
secreted from hepatitis C virus-infected hepatocytes. Sci Rep.
7:44482017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Gieseler RK, Marquitan G, Schlattjan M,
Sowa JP, Bechmann LP, Timm J, Roggendorf M, Gerken G, Friedman SL
and Canbay A: Hepatocyte apoptotic bodies encasing nonstructural
HCV proteins amplify hepatic stellate cell activation: Implications
for chronic hepatitis C. J Viral Hepat. 18:760–767. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Saeed A, Baloch K, Brown RJ, Wallis R,
Chen L, Dexter L, McClure CP, Shakesheff K and Thomson BJ: Mannan
binding lectin-associated serine protease 1 is induced by hepatitis
C virus infection and activates human hepatic stellate cells. Clin
Exp Immunol. 174:265–273. 2013.PubMed/NCBI
|
|
15
|
El-Ahwany E, Nagy F, Zoheiry M, Shemis M,
Nosseir M, Taleb HA, El Ghannam M, Atta R and Zada S: Circulating
miRNAs as predictor markers for activation of hepatic stellate
cells and progression of HCV-induced liver fibrosis. Electron
Physician. 8:1804–1810. 2016. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Munsterman ID, Kendall TJ, Khelil N, Popa
M, Lomme R, Drenth JPH and Tjwa ETTL: Extracellular matrix
components indicate remodelling activity in different fibrosis
stages of human non-alcoholic fatty liver disease. Histopathology.
73:612–621. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Warkad SD, Nimse SB, Song KS and Kim T:
HCV detection, discrimination and genotyping technologies. Sensors
(Basel). 18:34232018. View Article : Google Scholar
|
|
18
|
Vanhommerig JW, van de Laar TJ, Koot M,
van Rooijen MS, Schinkel J, Speksnijder AG, Prins M, de Vries HJ
and Bruisten SM: Evaluation of a hepatitis C virus (HCV) antigen
assay for routine HCV screening among men who have sex with men
infected with HIV. J Virol Methods. 213:147–150. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Laperche S, Le Marrec N, Girault A,
Bouchardeau F, Servant-Delmas A, Maniez-Montreuil M, Gallian P,
Levayer T, Morel P and Simon N: Simultaneous detection of hepatitis
C virus (HCV) core antigen and anti-HCV antibodies improves the
early detection of HCV infection. J Clin Microbiol. 43:3877–3883.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mazzola G, Adamoli L, Calvaruso V,
Macaluso FS, Colletti P, Mazzola S, Cervo A, Trizzino M, Di Lorenzo
F, Iaria C, et al: Suboptimal performance of APRI and FIB-4 in
ruling out significant fibrosis and confirming cirrhosis in HIV/HCV
co-infected and HCV mono-infected patients. Infection. 47:409–415.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sakiani S, Koh C and Heller T:
Understanding the presence of false-positive antibodies in acute
hepatitis. J Infect Dis. 210:1886–1889. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chida T, Ito M, Nakashima K, Kanegae Y,
Aoshima T, Takabayashi S, Kawata K, Nakagawa Y, Yamamoto M, Shimano
H, et al: Critical role of CREBH-mediated induction of transforming
growth factor β 2 by hepatitis C virus infection in fibrogenic
responses in hepatic stellate cells. Hepatology. 66:1430–1443.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wake K: ‘Sternzellen’ in the liver:
Perisinuosoidal cells with special reference to storage of vitamin
A. Am J Anat. 132:429–462. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
No authors listed, . Hepatic stellate cell
nomenclature. Hepatology. 23:1931996.PubMed/NCBI
|
|
25
|
Zhao W, Zhang L, Yin Z, Su W, Ren G, Zhou
C, You J, Fan J and Wang X: Activated hepatic stellate cells
promote hepatocellular carcinoma development in immunocompetent
mice. Int J Cancer. 129:2651–2661. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Higashi T, Friedman SL and Hoshida Y:
Hepatic stellate cells as key target in liver fibrosis. Adv Drug
Deliv Rev. 121:27–42. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhao W, Zhang L, Xu Y, Zhang Z, Ren G,
Tang K, Kuang P, Zhao B, Yin Z and Wang X: Hepatic stellate cells
promote tumor progression by enhancement of immunosuppressive cells
in an orthotopic liver tumor mouse model. Lab Invest. 94:182–191.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhou CL, Kong DL, Liu JF, Lu ZK, Guo HF,
Wang W, Qiu JF, Liu XJ and Wang Y: MHC II−, but not MHC
II+, hepatic stellate cells contribute to liver fibrosis
of mice in infection with schistosoma japonicum. Biochim Biophys
Acta Mol Basis Dis. 1863:1848–1857. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Najar M, Fayyad-Kazan H, Faour WH, El
Taghdouini A, Raicevic G, van Grunsven LA, Najimi M, Sokal E and
Lagneaux L: Immuno-biological comparison of hepatic stellate cells
in a reverted and activated state. Biomed Pharmacother. 98:52–62.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bansal MB: Hepatic stellate cells:
Fibrogenic, regenerative or both? Heterogeneity and context are
key. Hepatol Int. 10:902–908. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lee UE and Friedman SL: Mechanisms of
hepatic fibrogenesis. Best Pract Res Clin Gastroenterol.
25:195–206. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li H, Lan J, Han C, Guo K, Wang G, Hu J,
Gong J, Luo X and Cao Z: Brg1 promotes liver fibrosis via
activation of hepatic stellate cells. Exp Cell Res. 364:191–197.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Senoo H, Mezaki Y and Fujiwara M: The
stellate cell system (vitamin A-storing cell system). Anat Sci Int.
92:387–455. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Senoo H, Kojima N and Sato M: Vitamin
A-storing cells (stellate cells). Vitam Horm. 75:131–159. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bi Y, Mukhopadhyay D, Drinane M, Ji B, Li
X, Cao S and Shah VH: Endocytosis of collagen by hepatic stellate
cells regulates extracellular matrix dynamics. Am J Physiol Cell
Physiol. 307:C622–C633. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen Y, Ou Y, Dong J, Yang G, Zeng Z, Liu
Y, Liu B, Li W, He X and Lan T: Osteopontin promotes collagen I
synthesis in hepatic stellate cells by miRNA-129-5p inhibition. Exp
Cell Res. 362:343–348. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang C, Yang S, Huang J, Chen S, Li Y and
Li Q: Activation of corticotropin releasing factor receptors up
regulates collagen production by hepatic stellate cells via
promoting p300 expression. Biol Chem. 397:437–444. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Testino G, Leone S, Fagoonee S and
Pellicano R: Alcoholic liver fibrosis: Detection and treatment.
Minerva Med. 109:457–471. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Malagnino V, Bottero J, Miailhes P,
Lascoux-Combe C, Girard PM, Zoulim F, Lacombe K and Boyd A:
Hepatitis B virus genotype G and liver fibrosis progression in
chronic hepatitis B and human immunodeficiency virus coinfection. J
Med Virol. 91:630–641. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chung SI, Moon H, Ju HL, Cho KJ, Kim DY,
Han KH, Eun JW, Nam SW, Ribback S, Dombrowski F, et al: Hepatic
expression of sonic hedgehog induces liver fibrosis and promotes
hepatocarcinogenesis in a transgenic mouse model. J Hepatol.
64:618–627. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tsuchida T and Friedman SL: Mechanisms of
hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol.
14:397–411. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pradere JP, Kluwe J, De Minicis S, Jiao
JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman
R, et al: Hepatic macrophages but not dendritic cells contribute to
liver fibrosis by promoting the survival of activated hepatic
stellate cells in mice. Hepatology. 58:1461–1473. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jin H, Jia Y, Yao Z, Huang J, Hao M, Yao
S, Lian N, Zhang F, Zhang C, Chen X, et al: Hepatic stellate cell
interferes with NK cell regulation of fibrogenesis via curcumin
induced senescence of hepatic stellate cell. Cell Signal. 33:79–85.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li X, Su Y, Hua X, Xie C, Liu J, Huang Y,
Zhou L, Zhang M, Li X and Gao Z: Levels of hepatic Th17 cells and
regulatory T cells upregulated by hepatic stellate cells in
advanced HBV-related liver fibrosis. J Transl Med. 15:752017.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Corpechot C, Barbu V, Wendum D, Kinnman N,
Rey C, Poupon R, Housset C and Rosmorduc O: Hypoxia-induced VEGF
and collagen I expressions are associated with angiogenesis and
fibrogenesis in experimental cirrhosis. Hepatology. 35:1010–1021.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hong IH, Park SJ, Goo MJ, Lee HR, Park JK,
Ki MR, Kim SH, Lee EM, Kim AY and Jeong KS: JNK1 and JNK2 regulate
α-SMA in hepatic stellate cells during CCl4-induced fibrosis in the
rat liver. Pathol Int. 63:483–491. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Giannandrea M and Parks WC: Diverse
functions of matrix metalloproteinases during fibrosis. Dis Model
Mech. 7:193–203. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Holm Nielsen S, Willumsen N, Leeming DJ,
Daniels SJ, Brix S, Karsdal MA, Genovese F and Nielsen MJ:
Serological assessment of activated fibroblasts by alpha-smooth
muscle actin (α-SMA): A noninvasive biomarker of activated
fibroblasts in lung disorders. Transl Oncol. 12:368–374. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Elzamly S, Agina HA, Elbalshy AE,
Abuhashim M, Saad E and Abd Elmageed ZY: Integration of VEGF and
α-SMA expression improves the prediction accuracy of fibrosis in
chronic hepatitis C liver biopsy. Appl Immunohistochem Mol Morphol.
25:261–270. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Stefanovic L and Stefanovic B: Role of
cytokine receptor-like factor 1 in hepatic stellate cells and
fibrosis. World J Hepatol. 4:356–364. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Latoche JD, Ufelle AC, Fazzi F, Ganguly K,
Leikauf GD and Fattman CL: Secreted phosphoprotein 1 and
sex-specific differences in silica-induced pulmonary fibrosis in
mice. Environ Health Perspect. 124:1199–1207. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kumar P, Smith T, Raeman R, Chopyk DM,
Brink H, Liu Y, Sulchek T and Anania FA: Periostin promotes liver
fibrogenesis by activating lysyl oxidase in hepatic stellate cells.
J Biol Chem. 293:12781–12792. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Dongiovanni P, Meroni M, Baselli GA,
Bassani GA, Rametta R, Pietrelli A, Maggioni M, Facciotti F, Trunzo
V, Badiali S, et al: Insulin resistance promotes lysyl oxidase like
2 induction and fibrosis accumulation in non-alcoholic fatty liver
disease. Clin Sci (Lond). 131:1301–1315. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhang SC, Zheng YH, Yu PP, Min TH, Yu FX,
Ye C, Xie YK and Zhang QY: Lentiviral vector-mediated
down-regulation of IL-17A receptor in hepatic stellate cells
results in decreased secretion of IL-6. World J Gastroenterol.
18:3696–3704. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ehling J and Tacke F: Role of chemokine
pathways in hepatobiliary cancer. Cancer Lett. 379:173–183. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kim BM, Abdelfattah AM, Vasan R, Fuchs BC
and Choi MY: Hepatic stellate cells secrete Ccl5 to induce
hepatocyte steatosis. Sci Rep. 8:74992018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li Z, Zhang Q, Zhang Q, Xu M, Qu Y, Cai X
and Lu L: CXCL6 promotes human hepatocyte proliferation through the
CXCR1-NFkB pathway and inhibits collagen I secretion by hepatic
stellate cells. Biochem Cell Biol. 94:229–235. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Puche JE, Saiman Y and Friedman SL:
Hepatic stellate cells and liver fibrosis. Compr Physiol.
3:1473–1492. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ,
Zhao Y, Ye YC, Bai J, Zheng QJ, Dou KF, et al: Cytotherapy with
M1-polarized macrophages ameliorates liver fibrosis by modulating
immune microenvironment in mice. J Hepatol. 67:770–779. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sasaki R, Devhare PB, Steele R, Ray R and
Ray RB: Hepatitis C virus-induced CCL5 secretion from macrophages
activates hepatic stellate cells. Hepatology. 66:746–757. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Höchst B, Schildberg FA, Sauerborn P,
Gäbel YA, Gevensleben H, Goltz D, Heukamp LC, Türler A, Ballmaier
M, Gieseke F, et al: Activated human hepatic stellate cells induce
myeloid derived suppressor cells from peripheral blood monocytes in
a CD44-dependent fashion. J Hepatol. 59:528–535. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang B, Trippler M, Pei R, Lu M, Broering
R, Gerken G and Schlaak JF: Toll-like receptor activated human and
murine hepatic stellate cells are potent regulators of hepatitis C
virus replication. J Hepatol. 51:1037–1045. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jeong WI, Park O, Suh YG, Byun JS, Park
SY, Choi E, Kim JK, Ko H, Wang H, Miller AM and Gao B: Suppression
of innate immunity (natural killer cell/interferon-γ) in the
advanced stages of liver fibrosis in mice. Hepatology.
53:1342–1351. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Radaeva S, Wang L, Radaev S, Jeong WI,
Park O and Gao B: Retinoic acid signaling sensitizes hepatic
stellate cells to NK cell killing via upregulation of NK cell
activating ligand RAE1. Am J Physiol Gastrointest Liver Physiol.
293:G809–G816. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Langhans B, Alwan AW, Krämer B, Glässner
A, Lutz P, Strassburg CP, Nattermann J and Spengler U: Regulatory
CD4+T cells modulate the interaction between NK cells
and hepatic stellate cells by acting on either cell type. J
Hepatol. 62:398–404. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li Y, Lu L, Qian S, Fung JJ and Lin F:
Hepatic stellate cells directly inhibit B cells via programmed
death-ligand 1. J Immunol. 196:1617–1625. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bedossa P and Paradis V: Approaches for
treatment of liver fibrosis in chronic hepatitis C. Clin Liver Dis.
7:195–210. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ignat SR, Dinescu S, Hermenean A and
Costache M: Cellular interplay as a consequence of inflammatory
signals leading to liver fibrosis development. Cells. 9:4612020.
View Article : Google Scholar
|
|
69
|
Shahin K, Hosseini SY, Jamali H, Karimi
MH, Azarpira N and Zeraatian M: The enhancing impact of amino
termini of hepatitis C virus core protein on activation of hepatic
stellate cells. Gastroenterol Hepatol Bed Bench. 13:57–63.
2020.PubMed/NCBI
|
|
70
|
Wang L, Wang Y and Quan J: Exosomes
derived from natural killer cells inhibit hepatic stellate cell
activation and liver fibrosis. Hum Cell. 33:582–589. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cai B, Dongiovanni P, Corey KE, Wang X,
Shmarakov IO, Zheng Z, Kasikara C, Davra V, Meroni M, Chung RT, et
al: Macrophage MerTK promotes liver fibrosis in nonalcoholic
steatohepatitis. Cell Metab. 31:406–421. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tsukamoto H: Cytokine regulation of
hepatic stellate cells in liver fibrosis. Alcohol Clin Exp Res.
23:911–916. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang S, Li M, Zhao X, Wang H, Zhu J, Wang
C, Zhou M, Dong H and Zhou R: Upregulation of KSRP by miR-27b
attenuates schistosomiasis-induced hepatic fibrosis by targeting
TGF-β1. FASEB J. 34:4120–4133. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Huang JL, Fu YP, Gan W, Liu G, Zhou PY,
Zhou C, Sun BY, Guan RY, Zhou J, Fan J, et al: Hepatic stellate
cells promote the progression of hepatocellular carcinoma through
microRNA-1246-RORα-Wnt/β-Catenin axis. Cancer Lett. 476:140–151.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Winkler I, Bitter C, Winkler S, Weichenhan
D, Thavamani A, Hengstler JG, Borkham-Kamphorst E, Kohlbacher O,
Plass C, Geffers R, et al: Identification of Pparγ-modulated miRNA
hubs that target the fibrotic tumor microenvironment. Proc Natl
Acad Sci USA. 117:454–463. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Dawood RM, El-Meguid MA, Ibrahim MK, Bader
El Din NG, Barakat A, El-Wakeel K, Alla MDAA, Wu GY and El Awady
MK: Dysregulation of fibrosis related genes in HCV induced liver
disease. Gene. 664:58–69. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chouteau P, Defer N, Florimond A,
Caldéraro J, Higgs M, Gaudin A, Mérour E, Dhumeaux D, Lerat H and
Pawlotsky JM: Hepatitis C virus (HCV) protein expression enhances
hepatic fibrosis in HCV transgenic mice exposed to a fibrogenic
agent. J Hepatol. 57:499–507. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mazzocca A, Sciammetta SC, Carloni V,
Cosmi L, Annunziato F, Harada T, Abrignani S and Pinzani M: Binding
of hepatitis C virus envelope protein E2 to CD81 up-regulates
matrix metalloproteinase-2 in human hepatic stellate cells. J Biol
Chem. 280:11329–11339. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bataller R, Paik YH, Lindquist JN,
Lemasters JJ and Brenner DA: Hepatitis C virus core and
nonstructural proteins induce fibrogenic effects in hepatic
stellate cells. Gastroenterology. 126:529–540. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Coenen M, Nischalke HD, Krämer B, Langhans
B, Glässner A, Schulte D, Körner C, Sauerbruch T, Nattermann J and
Spengler U: Hepatitis C virus core protein induces fibrogenic
actions of hepatic stellate cells via toll-like receptor 2. Lab
Invest. 91:1375–1382. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Charrier A, Chen R, Chen L, Kemper S,
Hattori T, Takigawa M and Brigstock DR: Exosomes mediate
intercellular transfer of pro-fibrogenic connective tissue growth
factor (CCN2) between hepatic stellate cells, the principal
fibrotic cells in the liver. Surgery. 156:548–555. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li M, Jiang M, Meng J and Tao L: Exosomes:
Carriers of pro-fibrotic signals and therapeutic targets in
fibrosis. Curr Pharm Des. 25:4496–4509. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kim JH, Lee CH and Lee SW: Exosomal
transmission of MicroRNA from HCV replicating cells stimulates
transdifferentiation in hepatic stellate cells. Mol Ther Nucleic
Acids. 14:483–497. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Khatun M and Ray RB: Mechanisms underlying
hepatitis C virus-associated hepatic fibrosis. Cells. 8:12492019.
View Article : Google Scholar
|
|
85
|
Devhare PB, Sasaki R, Shrivastava S, Di
Bisceglie AM, Ray R and Ray RB: Exosome-mediated intercellular
communication between hepatitis C virus-infected hepatocytes and
hepatic stellate cells. J Virol. 91:e02225–e02216. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Njiomegnie GF, Read SA, Fewings N, George
J, McKay F and Ahlenstiel G: Immunomodulation of the natural killer
cell phenotype and response during HCV infection. J Clin Med.
9:10302020. View Article : Google Scholar
|
|
87
|
Glässner A, Eisenhardt M, Krämer B, Körner
C, Coenen M, Sauerbruch T, Spengler U and Nattermann J: NK cells
from HCV-infected patients effectively induce apoptosis of
activated primary human hepatic stellate cells in a TRAIL-, FasL-
and NKG2D-dependent manner. Lab Invest. 92:967–977. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang H and Yin S: Natural killer T cells
in liver injury, inflammation and cancer. Expert Rev Gastroenterol
Hepatol. 9:1077–1085. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
de Lalla C, Galli G, Aldrighetti L, Romeo
R, Mariani M, Monno A, Nuti S, Colombo M, Callea F, Porcelli SA, et
al: Production of profibrotic cytokines by invariant NKT cells
characterizes cirrhosis progression in chronic viral hepatitis. J
Immunol. 173:1417–1425. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Locati M, Curtale G and Mantovani A:
Diversity, mechanisms, and significance of macrophage plasticity.
Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Suzuki K, Meguro K, Nakagomi D and
Nakajima H: Roles of alternatively activated M2 macrophages in
allergic contact dermatitis. Allergol Int. 66:392–397. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Brass A and Brenndörfer ED: The role of
chemokines in hepatitis C virus-mediated liver disease. Int J Mol
Sci. 15:4747–4779. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wasmuth HE and Weiskirchen R: Pathogenesis
of liver fibrosis: Modulation of stellate cells by chemokines. Z
Gastroenterol. 48:38–45. 2010.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liang YJ, Luo J, Lu Q, Zhou Y, Wu HW,
Zheng D, Ren YY, Sun KY, Wang Y and Zhang ZS: Gene profile of
chemokines on hepatic stellate cells of schistosome-infected mice
and antifibrotic roles of CXCL9/10 on liver non-parenchymal cells.
PLoS One. 7:e424902012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Marra F and Tacke F: Roles for chemokines
in liver disease. Gastroenterology. 147:577–594. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tan HX, Gong WZ, Zhou K, Xiao ZG, Hou FT,
Huang T, Zhang L, Dong HY, Zhang WL, Liu Y and Huang ZC:
CXCR4/TGF-β1 mediated hepatic stellate cells differentiation into
carcinoma-associated fibroblasts and promoted liver metastasis of
colon cancer. Cancer Biol Ther. 21:258–268. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ferrari SM, Fallahi P, Ruffilli I, Elia G,
Ragusa F, Paparo SR, Patrizio A, Mazzi V, Colaci M, Giuggioli D, et
al: Immunomodulation of CXCL10 secretion by hepatitis C virus:
Could CXCL10 Be a prognostic marker of chronic hepatitis C? J
Immunol Res. 2019:58789602019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Pineda-Tenor D, Berenguer J, Jiménez-Sousa
MA, Guzmán-Fulgencio M, Aldámiz-Echevarria T, Carrero A,
García-Álvarez M, Diez C, Tejerina F, Briz V and Resino S: CXCL9,
CXCL10 and CXCL11 polymorphisms are associated with sustained
virologic response in HIV/HCV-coinfected patients. J Clin Virol.
61:423–429. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Liu Y, Chen L, Zou Z, Zhu B, Hu Z, Zeng P,
Wu L and Xiong J: Hepatitis C virus infection induces elevation of
CXCL10 in human brain microvascular endothelial cells. J Med Virol.
88:1596–1603. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zeremski M, Dimova R, Astemborski J,
Thomas DL and Talal AH: CXCL9 and CXCL10 chemokines as predictors
of liver fibrosis in a cohort of primarily African-American
injection drug users with chronic hepatitis C. J Infect Dis.
204:832–836. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sahin H, Borkham-Kamphorst E, Kuppe C,
Zaldivar MM, Grouls C, Al-samman M, Nellen A, Schmitz P, Heinrichs
D, Berres ML, et al: Chemokine Cxcl9 attenuates liver
fibrosis-associated angiogenesis in mice. Hepatology. 55:1610–1619.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Joshi D, Carey I, Foxton M, Al-Freah M,
Bruce M, Heaton N, Quaglia A, O'Grady J, Aluvihare V and Agarwal K:
CXCL10 levels identify individuals with rapid fibrosis at 12 months
post-transplant for hepatitis C virus and predict treatment
response. Clin Transplant. 28:569–578. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Gorin JB, Malone DFG, Strunz B, Carlsson
T, Aleman S, Björkström NK, Falconer K and Sandberg JK: Plasma
FABP4 is associated with liver disease recovery during
treatment-induced clearance of chronic HCV infection. Sci Rep.
10:20812020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lu Y, Lin LY, Tan JG, Deng HP, Li XH,
Zhang Z, Li Y, Zhou Z, Xu X, Xie X and Mei SJ: A correlation study
between gene polymorphism of Th cell expressed chemokine receptor
CXCR3 and its ligand levels with HCV infection prognosis. Eur Rev
Med Pharmacol Sci. 21:1290–1295. 2017.PubMed/NCBI
|
|
105
|
Berres ML, Asmacher S, Lehmann J, Jansen
C, Görtzen J, Klein S, Meyer C, Strunk HM, Fimmers R, Tacke F, et
al: CXCL9 is a prognostic marker in patients with liver cirrhosis
receiving transjugular intrahepatic portosystemic shunt. J Hepatol.
62:332–339. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chalin A, Lefevre B, Devisme C, Barget N,
Amiot L and Samson M: Circulating levels of CXCL11 and CXCL12 are
biomarkers of cirrhosis in patients with chronic hepatitis C
infection. Cytokine. 117:72–78. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Patidar M, Yadav N and Dalai SK:
Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth
Factor Rev. 31:49–59. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Jiao J, Ooka K, Fey H, Fiel MI, Rahmman
AH, Kojima K, Hoshida Y, Chen X, de Paula T, Vetter D, et al:
Interleukin-15 receptor α on hepatic stellate cells regulates
hepatic fibrogenesis in mice. J Hepatol. 65:344–353. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Golden-Mason L, Kelly AM, Doherty DG,
Traynor O, McEntee G, Kelly J, Hegarty JE and O'Farrelly C: Hepatic
interleuklin 15 (IL-15) expression: Implications for local NK/NKT
cell homeostasis and development. Clin Exp Immunol. 138:94–101.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Vahedi F, Lee AJ, Collins SE, Chew MV,
Lusty E, Chen B, Dubey A, Richards CD, Feld JJ, Russell RS, et al:
IL-15 and IFN-γ signal through the ERK pathway to inhibit HCV
replication, independent of type I IFN signaling. Cytokine.
124:1544392019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Isailovic N, Daigo K, Mantovani A and
Selmi C: Interleukin-17 and innate immunity in infections and
chronic inflammation. J Autoimmun. 60:1–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Abou El-Khier NT, Elhammady D, Arafa MM,
Shahin D, Eladl E, Abousamra NK, Sharaf-Eldeen O, Shaker G and
Esmael ME: Th17 and IL-17 as predictors of hepatic inflammation in
patients with chronic hepatitis C virus infection and treated with
direct antiviral therapy. Egypt J Immunol. 25:61–74.
2018.PubMed/NCBI
|
|
113
|
Gu Y, Hu X, Liu C, Qv X and Xu C:
Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and
tumour necrosis factor-alpha in aplastic anaemia. Br J Haematol.
142:109–114. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang Y, Huang D, Gao W, Yan J, Zhou W,
Hou X, Liu M, Ren C, Wang S and Shen J: Lack of IL-17 signaling
decreases liver fibrosis in murine schistosomiasis japonica. Int
Immunol. 27:317–325. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Amara S, Lopez K, Banan B, Brown SK,
Whalen M, Myles E, Ivy MT, Johnson T, Schey KL and Tiriveedhi V:
Synergistic effect of pro-inflammatory TNFα and IL-17 in periostin
mediated collagen deposition: Potential role in liver fibrosis. Mol
Immunol. 64:26–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Elkhawaga AA, Hosni A, Zaky DZ, Kamel AA,
Mohamed NA, Abozaid MA and El-Masry MA: Association of treg and
TH17 cytokines with HCV pathogenesis and liver pathology. Egypt J
Immunol. 26:55–63. 2019.PubMed/NCBI
|
|
117
|
Zhang LJ, Yu JP, Li D, Huang YH, Chen ZX
and Wang XZ: Effects of cytokines on carbon tetrachloride-induced
hepatic fibrogenesis in rats. World J Gastroenterol. 10:77–81.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Niess JH and Francés R: Editorial: The
IL-20 cytokines and related family members in immunity and
diseases. Front Immunol. 10:19762019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Chiu YS, Wei CC, Lin YJ, Hsu YH and Chang
MS: IL-20 and IL-20R1 antibodies protect against liver fibrosis.
Hepatology. 60:1003–1014. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Rutz S, Eidenschenk C and Ouyang W: IL-22,
not simply a Th17 cytokine. Immunol Rev. 252:116–132. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kronenberger B, Rudloff I, Bachmann M,
Brunner F, Kapper L, Filmann N, Waidmann O, Herrmann E,
Pfeilschifter J, Zeuzem S, et al: Interleukin-22 predicts severity
and death in advanced liver cirrhosis: A prospective cohort study.
BMC Med. 10:1022012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Sertorio M, Hou X, Carmo RF, Dessein H,
Cabantous S, Abdelwahed M, Romano A, Albuquerque F, Vasconcelos L,
Carmo T, et al: IL-22 and IL-22 binding protein (IL-22BP) regulate
fibrosis and cirrhosis in hepatitis C virus and schistosome
infections. Hepatology. 61:1321–1331. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kong X, Feng D, Wang H, Hong F, Bertola A,
Wang FS and Gao B: Interleukin-22 induces hepatic stellate cell
senescence and restricts liver fibrosis in mice. Hepatology.
56:1150–1159. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lu DH, Guo XY, Qin SY, Luo W, Huang XL,
Chen M, Wang JX, Ma SJ, Yang XW and Jiang HX: Interleukin-22
ameliorates liver fibrogenesis by attenuating hepatic stellate cell
activation and downregulating the levels of inflammatory cytokines.
World J Gastroenterol. 21:1531–1545. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zhao Z, Lin CY and Cheng K: siRNA- and
miRNA-based therapeutics for liver fibrosis. Transl Res. 214:17–29.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Shaker OG and Senousy MA: Serum microRNAs
as predictors for liver fibrosis staging in hepatitis C
virus-associated chronic liver disease patients. J Viral Hepat.
24:636–644. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Coll M, El Taghdouini A, Perea L,
Mannaerts I, Vila-Casadesús M, Blaya D, Rodrigo-Torres D, Affò S,
Morales-Ibanez O, Graupera I, et al: Integrative miRNA and gene
expression profiling analysis of human quiescent hepatic stellate
cells. Sci Rep. 5:115492015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Marquez RT, Bandyopadhyay S, Wendlandt EB,
Keck K, Hoffer BA, Icardi MS, Christensen RN, Schmidt WN and
McCaffrey AP: Correlation between microRNA expression levels and
clinical parameters associated with chronic hepatitis C viral
infection in humans. Lab Invest. 90:1727–1736. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Appourchaux K, Dokmak S, Resche-Rigon M,
Treton X, Lapalus M, Gattolliat CH, Porchet E, Martinot-Peignoux M,
Boyer N, Vidaud M, et al: MicroRNA-based diagnostic tools for
advanced fibrosis and cirrhosis in patients with chronic hepatitis
B and C. Sci Rep. 6:349352016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Ogawa T, Enomoto M, Fujii H, Sekiya Y,
Yoshizato K, Ikeda K and Kawada N: MicroRNA-221/222 upregulation
indicates the activation of stellate cells and the progression of
liver fibrosis. Gut. 61:1600–1609. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Chen L, Charrier A, Zhou Y, Chen R, Yu B,
Agarwal K, Tsukamoto H, Lee LJ, Paulaitis ME and Brigstock DR:
Epigenetic regulation of connective tissue growth factor by
MicroRNA-214 delivery in exosomes from mouse or human hepatic
stellate cells. Hepatology. 59:1118–1129. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Guo CJ, Pan Q, Li DG, Sun H and Liu BW:
miR-15b and miR-16 are implicated in activation of the rat hepatic
stellate cell: An essential role for apoptosis. J Hepatol.
50:766–778. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Li J, Ghazwani M, Zhang Y, Lu J, Li J, Fan
J, Gandhi CR and Li S: miR-122 regulates collagen production via
targeting hepatic stellate cells and suppressing P4HA1 expression.
J Hepatol. 58:522–528. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zheng J, Lin Z, Dong P, Lu Z, Gao S, Chen
X, Wu C and Yu F: Activation of hepatic stellate cells is
suppressed by microRNA-150. Int J Mol Med. 32:17–24. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Leask A: CCN2/decorin interactions: A
novel approach to combating fibrosis? J Cell Commun Signal.
5:249–250. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Yue ZH, Xia CS and Wang H: Performance
evaluation of the mindray anti-HCV assay for the detection of
hepatitis C virus infection. J Clin Lab Anal. 32:e226002018.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Wasitthankasem R, Vongpunsawad S, Siripon
N, Suya C, Chulothok P, Chaiear K, Rujirojindakul P, Kanjana S,
Theamboonlers A, Tangkijvanich P and Poovorawan Y: Genotypic
distribution of hepatitis C virus in Thailand and Southeast Asia.
PLoS One. 10:e01267642015. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
He J, Xiu B, Wang G, Chen K, Feng X, Song
X, Zhu C, Ling S and Zhang H: Double-antigen sandwich ELISA for the
detection of anti-hepatitis C virus antibodies. J Virol Methods.
171:163–168. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Kim S, Kim JH, Yoon S, Park YH and Kim HS:
Clinical performance evaluation of four automated chemiluminescence
immunoassays for hepatitis C virus antibody detection. J Clin
Microbiol. 46:3919–3923. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Heinrichs A, Antoine M, Steensels D,
Montesinos I and Delforge ML: HCV false positive immunoassays in
patients with LVAD: A potential trap! J Clin Virol. 78:44–46. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Ali A and Lal A: False positivity of
serological tests for hepatitis C virus. J Ayub Med Coll
Abbottabad. 22:43–45. 2010.PubMed/NCBI
|
|
142
|
Vo MT, Bruhn R, Kaidarova Z, Custer BS,
Murphy EL and Bloch EM: A retrospective analysis of false-positive
infectious screening results in blood donors. Transfusion.
56:457–465. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Moorman AC, Drobenuic J and Kamili S:
Prevalence of false-positive hepatitis C antibody results, national
health and nutrition examination study (NHANES) 2007–2012. J Clin
Virol. 89:1–4. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Scott JD and Gretch DR: Molecular
diagnostics of hepatitis C virus infection: A systematic review.
JAMA. 297:724–732. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Safic Stanic H, Babic I, Maslovic M, Dogic
V, Bingulac-Popovic J, Miletic M, Jurakovic-Loncar N, Vuk T,
Strauss-Patko M and Jukic I: Three-year experience in NAT screening
of blood donors for transfusion transmitted viruses in croatia.
Transfus Med Hemother. 44:415–420. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Bustin SA: Quantification of mRNA using
real-time reverse transcription PCR (RT-PCR): Trends and problems.
J Mol Endocrinol. 29:23–39. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Papadopoulos N, Vasileiadi S, Papavdi M,
Sveroni E, Antonakaki P, Dellaporta E, Koutli E, Michalea S,
Manolakopoulos S, Koskinas J and Deutsch M: Liver fibrosis staging
with combination of APRI and FIB-4 scoring systems in chronic
hepatitis C as an alternative to transient elastography. Ann
Gastroenterol. 32:498–503. 2019.PubMed/NCBI
|
|
148
|
Kim WR, Berg T, Asselah T, Flisiak R, Fung
S, Gordon SC, Janssen HL, Lampertico P, Lau D, Bornstein JD, et al:
Evaluation of APRI and FIB-4 scoring systems for non-invasive
assessment of hepatic fibrosis in chronic hepatitis B patients. J
Hepatol. 64:773–780. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Sagnelli C, Uberti-Foppa C, Pasquale G, De
Pascalis S, Coppola N, Albarello L, Doglioni C, Lazzarin A and
Sagnelli E: Factors influencing liver fibrosis and
necroinflammation in HIV/HCV coinfection and HCV monoinfection.
Infection. 41:959–967. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Bedossa P and Patel K: Biopsy and
noninvasive methods to assess progression of nonalcoholic fatty
liver disease. Gastroenterology. 150:1811–1822. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Francque SM, De Pauw FF, Van den Steen GH,
Van Marck EA, Pelckmans PA and Michielsen PP: Biopsy of focal liver
lesions: Guidelines, comparison of techniques and cost-analysis.
Acta Gastroenterol Belg. 66:160–165. 2003.PubMed/NCBI
|
|
152
|
Childers RE and Ahn J: Diagnosis of
alcoholic liver disease: Key foundations and new developments. Clin
Liver Dis. 20:457–471. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Colli A, Fraquelli M, Andreoletti M,
Marino B, Zuccoli E and Conte D: Severe liver fibrosis or
cirrhosis: Accuracy of US for detection-analysis of 300 cases.
Radiology. 227:89–94. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Shiha G, Seif S, Eldesoky A, Elbasiony M,
Soliman R, Metwally A, Zalata K and Mikhail N: A simple bedside
blood test (Fibrofast; FIB-5) is superior to FIB-4 index for the
differentiation between non-significant and significant fibrosis in
patients with chronic hepatitis C. Hepatol Int. 11:286–291. 2017.
View Article : Google Scholar : PubMed/NCBI
|