Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
February-2021 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo

  • Authors:
    • Peter Gál
    • Tomáš Vasilenko
    • Ivan Kováč
    • Matúš Čoma
    • Ján Jakubčo
    • Martina Jakubčová
    • Vlasta Peržeľová
    • Lukáš Urban
    • Michal Kolář
    • František Sabol
    • Ján Luczy
    • Martin Novotný
    • Jaroslav Majerník
    • Hans-Joachim Gabius
    • Karel Jr Smetana
  • View Affiliations / Copyright

    Affiliations: Department of Biomedical Research, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic, Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of The Czech Academy of Sciences, 142 20 Prague, Czech Republic, Department of Heart Surgery, East‑Slovak Institute of Cardiovascular Diseases, 040 66 Košice, Slovak Republic, Department of Medical Informatics, Faculty of Medicine, Pavol Jozef Šafárik University, 040 66 Košice, Slovak Republic, Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig‑Maximilian‑University, D‑80539 Munich, Germany, Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague
    Copyright: © Gál et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 99
    |
    Published online on: November 27, 2020
       https://doi.org/10.3892/mmr.2020.11738
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Understanding the molecular and cellular processes in skin wound healing can pave the way for devising innovative concepts by turning the identified natural effectors into therapeutic tools. Based on the concept of broad‑scale engagement of members of the family of galactoside‑binding lectins (galectins) in pathophysiological processes, such as cancer or tissue repair/regeneration, the present study investigated the potential of galectins‑1 (Gal‑1) and ‑3 (Gal‑3) in wound healing. Human dermal fibroblasts, which are key cells involved in skin wound healing, responded to galectin exposure (Gal‑1 at 300 or Gal‑3 at 600 ng/ml) with selective changes in gene expression among a panel of 84 wound‑healing‑related genes, as well as remodeling of the extracellular matrix. In the case of Gal‑3, positive expression of Ki67 and cell number increased when using a decellularized matrix produced by Gal‑3‑treated fibroblasts as substrate for culture of interfollicular keratinocytes. In vivo wounds were topically treated with 20 µg/ml Gal‑1 or ‑3, and collagen score was found to be elevated in excisional wound repair in rats treated with Gal‑3. The tensile strength measured in incisions was significantly increased from 79.5±17.5 g/mm2 in controls to 103.1±21.4 g/mm2 after 21 days of healing. These data warrant further testing mixtures of galectins and other types of compounds, for example a combination of galectins and TGF‑β1.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Gaylarde PM and Sarkany I: Cell migration and DNA synthesis in organ culture of human skin. Br J Dermatol. 92:375–380. 1975. View Article : Google Scholar

2 

Donaldson DJ and Mason JM: Inhibition of epidermal cell migration by concanavalin A in skin wounds of the adult newt. J Exp Zool. 200:55–64. 1977. View Article : Google Scholar

3 

Harrison FL and Chesterton CJ: Factors mediating cell-cell recognition and adhesion. Galaptins, a recently discovered class of bridging molecules. FEBS Lett. 122:157–165. 1980. View Article : Google Scholar

4 

Barondes SH: Galectins: A personal overview. Trends Glycosci Glycotechnol. 9:1–7. 1997. View Article : Google Scholar

5 

Hughes RC: Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim Biophys Acta. 1473:172–185. 1999. View Article : Google Scholar

6 

Liu FT, Patterson RJ and Wang JL: Intracellular functions of galectins. Biochim Biophys Acta. 1572:263–273. 2002. View Article : Google Scholar

7 

Thiemann S and Baum LG: Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol. 34:243–264. 2016. View Article : Google Scholar

8 

Kaltner H, Toegel S, Caballero GG, Manning JC, Ledeen RW and Gabius HJ: Galectins: Their network and roles in immunity/tumor growth control. Histochem Cell Biol. 147:239–256. 2017. View Article : Google Scholar

9 

Sato S: Cytosolic galectins and their release and roles as carbohydrate-binding proteins in host-pathogen interaction. Trends Glycosci Glycotechnol. 30:SE199–SE209. 2018. View Article : Google Scholar

10 

de Jong CGHM, Gabius HJ and Baron W: The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell Mol Life Sci. 77:1289–1317. 2020. View Article : Google Scholar

11 

García Caballero G, Kaltner H, Kutzner TJ, Ludwig AK, Manning JC, Schmidt S, Sinowatz F and Gabius HJ: How galectins have become multifunctional proteins. Histol Histopathol. 35:509–539. 2020.

12 

Kutzner TJ, Higuero AM, Süssmair M, Kopitz J, Hingar M, Díez-Revuelta N, Caballero GG, Kaltner H, Lindner I, Abad-Rodríguez J, et al: How presence of a signal peptide affects human galectins-1 and −4: Clues to explain common absence of a leader sequence among adhesion/growth-regulatory galectins. Biochim Biophys Acta Gen Subj. 1864:1294492020. View Article : Google Scholar

13 

Flotte TJ, Springer TA and Thorbecke GJ: Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets. Am J Pathol. 111:112–124. 1983.

14 

Roff CF, Rosevear PR, Wang JL and Barker R: Identification of carbohydrate-binding proteins from mouse and human fibroblasts. Biochem J. 211:625–629. 1983. View Article : Google Scholar

15 

Cowles EA, Moutsatsos IK, Wang JL and Anderson RL: Expression of carbohydrate binding protein 35 in human fibroblasts: Comparisons between cells with different proliferative capacities. Exp Gerontol. 24:577–585. 1989. View Article : Google Scholar

16 

Wollenberg A, de la Salle H, Hanau D, Liu FT and Bieber T: Human keratinocytes release the endogenous beta-galactoside-binding soluble lectin immunoglobulin E (IgE-binding protein) which binds to Langerhans cells where it modulates their binding capacity for IgE glycoforms. J Exp Med. 178:777–785. 1993. View Article : Google Scholar

17 

Konstantinov KN, Shames B, Izuno G and Liu FT: Expression of epsilon BP, a beta-galactoside-binding soluble lectin, in normal and neoplastic epidermis. Exp Dermatol. 3:9–16. 1994. View Article : Google Scholar

18 

Holiková Z, Smetana K Jr, Bartunková J, Dvoránková B, Kaltner H and Gabius HJ: Human epidermal langerhans cells are selectively recognized by galectin-3 but not by galectin-1. Folia Biol (Praha). 46:195–198. 2000.

19 

Larsen L, Chen HY, Saegusa J and Liu FT: Galectin-3 and the skin. J Dermatol Sci. 64:85–91. 2011. View Article : Google Scholar

20 

Pepe D, Elliott CG, Forbes TL and Hamilton DW: Detection of galectin-3 and localization of advanced glycation end products (AGE) in human chronic skin wounds. Histol Histopathol. 29:251–258. 2014.

21 

Walker JT, Elliott CG, Forbes TL and Hamilton DW: Genetic deletion of galectin-3 does not impair full-thickness excisional skin healing. J Invest Dermatol. 136:1042–1050. 2016. View Article : Google Scholar

22 

McLeod K, Walker JT and Hamilton DW: Galectin-3 regulation of wound healing and fibrotic processes: Insights for chronic skin wound therapeutics. J Cell Commun Signal. 12:281–287. 2018. View Article : Google Scholar

23 

Wu NL and Liu FT: The expression and function of galectins in skin physiology and pathology. Exp Dermatol. 27:217–226. 2018. View Article : Google Scholar

24 

Filer A, Bik M, Parsonage GN, Fitton J, Trebilcock E, Howlett K, Cook M, Raza K, Simmons DL, Thomas AM, et al: Galectin-3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum. 60:1604–1614. 2009. View Article : Google Scholar

25 

Weinmann D, Schlangen K, André S, Schmidt S, Walzer SM, Kubista B, Windhager R, Toegel S and Gabius HJ: Galectin-3 induces a pro-degradative/inflammatory gene signature in human chondrocytes, teaming up with galectin-1 in osteoarthritis pathogenesis. Sci Rep. 6:391122016. View Article : Google Scholar

26 

Weinmann D, Kenn M, Schmidt S, Schmidt K, Walzer SM, Kubista B, Windhager R, Schreiner W, Toegel S and Gabius HJ: Galectin-8 induces functional disease markers in human osteoarthritis and cooperates with galectins-1 and −3. Cell Mol Life Sci. 75:4187–4205. 2018. View Article : Google Scholar

27 

Cada Z, Smetana K Jr, Lacina L, Plzáková Z, Stork J, Kaltner H, Russwurm R, Lensch M, André S and Gabius HJ: Immunohistochemical fingerprinting of the network of seven adhesion/growth-regulatory lectins in human skin and detection of distinct tumor-associated alterations. Folia Biol (Praha). 55:145–152. 2009.

28 

Klíma J, Lacina L, Dvorankova B, Herrmann D, Carnwath JW, Niemann H, Kaltner H, André S, Motlík J, Gabius HJ and Smetana K Jr: Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiol Res. 58:873–884. 2009.

29 

Gál P, Vasilenko T, Kostelniková M, Jakubco J, Kovác I, Sabol F, André S, Kaltner H, Gabius HJ and Smetana K Jr: Open wound healing in vivo: Monitoring binding and presence of adhesion/growth-regulatory galectins in rat skin during the course of complete re-epithelialization. Acta Histochem Cytochem. 44:191–199. 2011. View Article : Google Scholar

30 

Dvoránková B, Szabo P, Lacina L, Gal P, Uhrova J, Zima T, Kaltner H, André S, Gabius HJ, Sykova E and Smetana K Jr: Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 194:469–480. 2011. View Article : Google Scholar

31 

Gabius HJ: Influence of type of linkage and spacer on the interaction of beta-galactoside-binding proteins with immobilized affinity ligands. Anal Biochem. 189:91–94. 1990. View Article : Google Scholar

32 

Sarter K, André S, Kaltner H, Lensch M, Schulze C, Urbonaviciute V, Schett G, Herrmann M and Gabius HJ: Detection and chromatographic removal of lipopolysaccharide in preparations of multifunctional galectins. Biochem Biophys Res Commun. 379:155–159. 2009. View Article : Google Scholar

33 

Kopitz J, Vértesy S, André S, Fiedler S, Schnölzer M and Gabius HJ: Human chimera-type galectin-3: Defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation. Biochimie. 104:90–99. 2014. View Article : Google Scholar

34 

García Caballero G, Kaltner H, Michalak M, Shilova N, Yegres M, André S, Ludwig AK, Manning JC, Schmidt S, Schnölzer M, et al: Chicken GRIFIN: A homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie. 128-129:34–47. 2016. View Article : Google Scholar

35 

Rheinwald JG and Green H: Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell. 6:331–343. 1975. View Article : Google Scholar

36 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

37 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar

38 

Perzelova V, Sabol F, Vasilenko T, Novotný M, Kováč I, Slezák M, Ďurkáč J, Hollý M, Pilátová M, Szabo P, et al: Pharmacological activation of estrogen receptors-α and -β differentially modulates keratinocyte differentiation with functional impact on wound healing. Int J Mol Med. 37:21–28. 2016. View Article : Google Scholar

39 

Kovac I, Melegova N, Coma M, Takáč P, Kováčová K, Hollý M, Ďurkáč J, Urban L, Gurbáľová M, Švajdlenka E, et al: Aesculus hippocastanum L. extract does not induce fibroblast to myofibroblast conversion but increases extracellular matrix production in vitro leading to increased wound tensile strength in rats. Molecules. 25:19172020. View Article : Google Scholar

40 

Kovac I, Durkac J, Holly M, Jakubčová K, Peržeľová V, Mučaji P, Švajdlenka E, Sabol F, Legáth J, Belák J, et al: Plantago lanceolata L. water extract induces transition of fibroblasts into myofibroblasts and increases tensile strength of healing skin wounds. J Pharm Pharmacol. 67:117–125. 2015. View Article : Google Scholar

41 

Sabol F, Vasilenko T, Novotny M, Tomori Z, Bobrov N, Zivčák J, Hudák R and Gál P: Intradermal running suture versus 3M™ Vetbond™ tissue adhesive for wound closure in rodents: A biomechanical and histological study. Eur Surg Res. 45:321–326. 2010. View Article : Google Scholar

42 

Gál P, Toporcer T, Vidinsky B, Hudak R, Zivcak J and Sabo J: Simple interrupted percutaneous suture versus intradermal running suture for wound tensile strength measurement in rats: A technical note. Eur Surg Res. 43:61–65. 2009. View Article : Google Scholar

43 

Koshizuka S, Kanazawa K, Kobayashi N, Takazawa I, Waki Y, Shibusawa H and Shumiya S: The beneficial effects of recombinant human insulin-like growth factor-I (IGF-I) on wound healing in severely wounded senescent mice. Surg Today. 27:946–952. 1997. View Article : Google Scholar

44 

Cho CH, Sung HK, Kim KT, Cheon HG, Oh GT, Hong HJ, Yoo OJ and Koh GY: COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci USA. 103:4946–4951. 2006. View Article : Google Scholar

45 

Quirinia A and Viidik A: The effect of recombinant basic fibroblast growth factor (bFGF) in fibrin adhesive vehicle on the healing of ischaemic and normal incisional skin wounds. Scand J Plast Reconstr Surg Hand Surg. 32:9–18. 1998. View Article : Google Scholar

46 

Toegel S, Weinmann D, André S, Walzer SM, Bilban M, Schmidt S, Chiari C, Windhager R, Krall C, Bennani-Baiti IM and Gabius HJ: Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network. J Immunol. 196:1910–1921. 2016. View Article : Google Scholar

47 

Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA, Stetler-Stevenson WG and Raz A: Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and −9. Biochemistry. 33:14109–14114. 1994. View Article : Google Scholar

48 

Sundqvist M, Welin A, Elmwall J, Osla V, Nilsson UJ, Leffler H, Bylund J and Karlsson A: Galectin-3 type-C self-association on neutrophil surfaces: The carbohydrate recognition domain regulates cell function. J Leukoc Biol. 103:341–353. 2018. View Article : Google Scholar

49 

Advedissian T, Proux-Gillardeaux V, Nkosi R, Peyret G, Nguyen T, Poirier F, Viguier M and Deshayes F: E-cadherin dynamics is regulated by galectin-7 at epithelial cell surface. Sci Rep. 7:170862017. View Article : Google Scholar

50 

Kyriakides TR, Wulsin D, Skokos EA, Fleckman P, Pirrone A, Shipley JM, Senior RM and Bornstein P: Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis. Matrix Biol. 28:65–73. 2009. View Article : Google Scholar

51 

Kim MH, Wu WH, Choi JH, Kim J, Jun JH, Ko Y and Lee JH: Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts. Wound Repair Regen. 26 (Suppl 1):S9–S18. 2018. View Article : Google Scholar

52 

Liu W, Hsu DK, Chen HY, Yang RY, Carraway KL III, Isseroff RR and Liu FT: Galectin-3 regulates intracellular trafficking of EGFR through Alix and promotes keratinocyte migration. J Invest Dermatol. 132:2828–2837. 2012. View Article : Google Scholar

53 

Kershenobich Stalnikowitz D and Weissbrod AB: Liver fibrosis and inflammation. A review. Ann Hepatol. 2:159–163. 2003. View Article : Google Scholar

54 

Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, Doessing S, Kongsgaard M, Krogsgaard MR and Magnusson SP: From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 19:500–510. 2009. View Article : Google Scholar

55 

Kjaer M, Magnusson P, Krogsgaard M, Boysen Møller J, Olesen J, Heinemeier K, Hansen M, Haraldsson B, Koskinen S, Esmarck B and Langberg H: Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J Anat. 208:445–450. 2006. View Article : Google Scholar

56 

Pena E, de la Torre R, Arderiu G, Slevin M and Badimon L: mCRP triggers angiogenesis by inducing F3 transcription and TF signalling in microvascular endothelial cells. Thromb Haemost. 117:357–370. 2017. View Article : Google Scholar

57 

Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M and Gabius HJ: Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem. 276:35917–35923. 2001. View Article : Google Scholar

58 

Manning JC, García Caballero G, Knospe C, Kaltner H and Gabius HJ: Network analysis of adhesion/growth-regulatory galectins and their binding sites in adult chicken retina and choroid. J Anat. 231:23–37. 2017. View Article : Google Scholar

59 

García Caballero G, Schmidt S, Schnölzer M, Schlötzer-Schrehardt U, Knospe C, Ludwig AK, Manning JC, Muschler P, Kaltner H, Kopitz J and Gabius HJ: Chicken GRIFIN: Binding partners, developmental course of localization and activation of its lens-specific gene expression by L-Maf/Pax6. Cell Tissue Res. 375:665–683. 2019. View Article : Google Scholar

60 

García Caballero G, Schmidt S, Manning JC, Michalak M, Schlötzer-Schrehardt U, Ludwig AK, Kaltner H, Sinowatz F, Schnölzer M, Kopitz J and Gabius HJ: Chicken lens development: Complete signature of expression of galectins during embryogenesis and evidence for their complex formation with α-, β-, δ- and τ-crystallins, N-CAM, and N-cadherin obtained by affinity chromatography. Cell Tissue Res. 379:13–35. 2020. View Article : Google Scholar

61 

Gabius HJ: How to crack the sugar code. Folia Biol (Praha). 63:121–131. 2017.

62 

Kopitz J, Xiao Q, Ludwig AK, Romero A, Michalak M, Sherman SE, Zhou X, Dazen C, Vértesy S, Kaltner H, et al: Reaction of a programmable glycan presentation of glycodendrimersomes and cells with engineered human lectins to show the sugar functionality of the cell surface. Angew Chem Int Ed Engl. 56:14677–14681. 2017. View Article : Google Scholar

63 

Ludwig AK, Michalak M, Xiao Q, Gilles U, Medrano FJ, Ma H, FitzGerald FG, Hasley WD, Melendez-Davila A, Liu M, et al: Design-functionality relationships for adhesion/growth-regulatory galectins. Proc Natl Acad Sci USA. 116:2837–2842. 2019. View Article : Google Scholar

64 

Ludwig AK, Kaltner H, Kopitz J and Gabius HJ: Lectinology 4.0: Altering modular (ga)lectin display for functional analysis and biomedical applications. Biochim Biophys Acta Gen Subj. 1863:935–940. 2019. View Article : Google Scholar

65 

Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI and Tomic-Canic M: Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 365:495–506. 2016. View Article : Google Scholar

66 

Haensel D and Dai X: Epithelial-to-mesenchymal transition in cutaneous wound healing: Where we are and where we are heading. Dev Dyn. 247:473–480. 2018. View Article : Google Scholar

67 

Smetana K Jr, André S, Kaltner H, Kopitz J and Gabius HJ: Context-dependent multifunctionality of galectin-1: A challenge for defining the lectin as therapeutic target. Expert Opin Ther Targets. 17:379–392. 2013. View Article : Google Scholar

68 

Romero A and Gabius HJ: Galectin-3: Is this member of a large family of multifunctional lectins (already) a therapeutic target? Expert Opin Ther Targets. 23:819–828. 2019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gál P, Vasilenko T, Kováč I, Čoma M, Jakubčo J, Jakubčová M, Peržeľová V, Urban L, Kolář M, Sabol F, Sabol F, et al: Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions <em>in vivo</em>. Mol Med Rep 23: 99, 2021.
APA
Gál, P., Vasilenko, T., Kováč, I., Čoma, M., Jakubčo, J., Jakubčová, M. ... Smetana, K. (2021). Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions <em>in vivo</em>. Molecular Medicine Reports, 23, 99. https://doi.org/10.3892/mmr.2020.11738
MLA
Gál, P., Vasilenko, T., Kováč, I., Čoma, M., Jakubčo, J., Jakubčová, M., Peržeľová, V., Urban, L., Kolář, M., Sabol, F., Luczy, J., Novotný, M., Majerník, J., Gabius, H., Smetana, K."Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions <em>in vivo</em>". Molecular Medicine Reports 23.2 (2021): 99.
Chicago
Gál, P., Vasilenko, T., Kováč, I., Čoma, M., Jakubčo, J., Jakubčová, M., Peržeľová, V., Urban, L., Kolář, M., Sabol, F., Luczy, J., Novotný, M., Majerník, J., Gabius, H., Smetana, K."Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions <em>in vivo</em>". Molecular Medicine Reports 23, no. 2 (2021): 99. https://doi.org/10.3892/mmr.2020.11738
Copy and paste a formatted citation
x
Spandidos Publications style
Gál P, Vasilenko T, Kováč I, Čoma M, Jakubčo J, Jakubčová M, Peržeľová V, Urban L, Kolář M, Sabol F, Sabol F, et al: Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions <em>in vivo</em>. Mol Med Rep 23: 99, 2021.
APA
Gál, P., Vasilenko, T., Kováč, I., Čoma, M., Jakubčo, J., Jakubčová, M. ... Smetana, K. (2021). Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions <em>in vivo</em>. Molecular Medicine Reports, 23, 99. https://doi.org/10.3892/mmr.2020.11738
MLA
Gál, P., Vasilenko, T., Kováč, I., Čoma, M., Jakubčo, J., Jakubčová, M., Peržeľová, V., Urban, L., Kolář, M., Sabol, F., Luczy, J., Novotný, M., Majerník, J., Gabius, H., Smetana, K."Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions <em>in vivo</em>". Molecular Medicine Reports 23.2 (2021): 99.
Chicago
Gál, P., Vasilenko, T., Kováč, I., Čoma, M., Jakubčo, J., Jakubčová, M., Peržeľová, V., Urban, L., Kolář, M., Sabol, F., Luczy, J., Novotný, M., Majerník, J., Gabius, H., Smetana, K."Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions <em>in vivo</em>". Molecular Medicine Reports 23, no. 2 (2021): 99. https://doi.org/10.3892/mmr.2020.11738
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team