Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
March-2021 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2021 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells

  • Authors:
    • Yoshiaki Tabuchi
    • Hideyuki Hasegawa
    • Nobuo Suzuki
    • Yukihiro Furusawa
    • Tetsushi  Hirano
    • Ryo Nagaoka
    • Jun Hirayama
    • Nobuhiko Hoshi
    • Takashi Mochizuki
  • View Affiliations / Copyright

    Affiliations: Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan, Graduate School of Science and Engineering, University of Toyama, Toyama 930‑8555, Japan, Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927‑0553, Japan, Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939-0398, Japan, Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu 923‑0961, Japan, Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe 657‑8501, Japan, Medical Ultrasound Laboratory, Co., Ltd., Tokyo 250‑0014, Japan
    Copyright: © Tabuchi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 173
    |
    Published online on: December 23, 2020
       https://doi.org/10.3892/mmr.2020.11812
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Although low‑intensity ultrasound (LIUS) is a clinically established procedure, the early cellular effect of LIUS on a genetic level has not yet been studied. The current study investigated the early response genes elicited by LIUS in bone marrow stromal cells (BMSCs) using global‑scale microarrays and computational gene expression analysis tools. Mouse ST2 BMSCs were treated with LIUS [ISATA, 25 mW/cm2 for 20 min with a frequency of 1.11 MHz in a pulsed‑wave mode (0.2‑s burst sine waves repeated at 1 kHz)], then cultured for 0.5, 1 and 3 h at 37˚C. The time course of changes in gene expression was evaluated using GeneChip® high‑density oligonucleotide microarrays and Ingenuity® Pathway Analysis tools. The results were verified by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). A single exposure of LIUS did not affect cell morphology, cell growth or alkaline phosphatase activity. However, 61 upregulated and 103 downregulated genes were identified from 0.5 to 3 h after LIUS treatment. Two significant gene networks, labeled E and H, were identified from the upregulated genes, while a third network, labeled T, was identified from the downregulated genes. Gene network E or H containing the immediate‑early genes FBJ osteosarcoma oncogene and early growth response 1 or the heat shock proteins heat shock protein 1a/b was associated mainly with the biological functions of bone physiology and protein folding or apoptosis, respectively. Gene network T containing transcription factors fos‑like antigen 1 and serum response factor was also associated with the biological functions of the gene expression. RT‑qPCR indicated that the expression of several genes in the gene networks E and H were elevated in LIUS‑treated cells. LIUS was demonstrated to induce gene expression after short application in mouse ST2 BMSCs. The results of the present study provide a basis for the elucidation of the detailed molecular mechanisms underlying the cellular effects of LIUS.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Padilla F, Puts R, Vico L and Raum K: Stimulation of bone repair with ultrasound: A review of the possible mechanic effects. Ultrasonics. 54:1125–1145. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Harrison A, Lin S, Pounder N and Mikuni-Takagaki Y: Mode & mechanism of low intensity pulsed ultrasound (LIPUS) in fracture repair. Ultrasonics. 70:45–52. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Duarte LR: The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg. 101:153–159. 1983. View Article : Google Scholar : PubMed/NCBI

4 

Azuma Y, Ito M, Harada Y, Takagi H, Ohta T and Jingushi S: Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 16:671–680. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Hidaka K, Mikuni-Takagaki Y, Wada-Takahashi S, Saita M, Kawamata R, Sato T, Kawata A, Miyamoto C, Maehata Y, Watabe H, et al: Low intensity pulsed ultrasound prevents development of bisphosphonate related osteonecrosis of the jaw like pathophysiology in a rat model. Ultrasound Med Biol. 45:1721–1732. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Sun L, Sun S, Zhao X, Zhang J, Guo J, Tang L and Ta D: Inhibition of myostatin signal pathway may be involved in low-intensity pulsed ultrasound promoting bone healing. J Med Ultrason (2001). 46:377–388. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Heckman JD, Ryaby JP, McCabe J, Frey JJ and Kilcoyne RF: Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 76:26–34. 1994. View Article : Google Scholar : PubMed/NCBI

8 

Kristiansen TK, Ryaby JP, McCabe J, Frey JJ and Roe LR: Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am. 79:961–973. 1997. View Article : Google Scholar : PubMed/NCBI

9 

Naruse K, Mikuni-Takagaki Y, Azuma Y, Ito M, Oota T, Kameyama K and Itoman M: Anabolic response of mouse bone-marrow-derived stromal cell clone ST2 cells to low-intensity pulsed ultrasound. Biochem Biophys Res Commun. 268:216–220. 2000. View Article : Google Scholar : PubMed/NCBI

10 

Naruse K, Miyauchi A, Itoman M and Mikuni-Takagaki Y: Distinct anabolic response of osteoblast to low-intensity pulsed ultrasound. J Bone Miner Res. 18:360–369. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Sena K, Leven RM, Mazhar K, Sumner DR and Virdi AS: Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol. 31:703–708. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Louw TM, Budhiraja G, Viljoen HJ and Subramanian A: Mechanotransduction of ultrasound is frequency dependent below the cavitation threshold. Ultrasound Med Biol. 39:1303–1319. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Takeuchi SI, Shiiba M and Mochizuki T: Low-intensity pulsed ultrasound promotes the expression of immediate-early genes in mouse ST2 bone marrow stromal cells. J Med Ultrason (2001). 47:193–201. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Tang CH, Yang RS, Huang TH, Lu DY, Chuang WJ, Huang TF and Fu WM: Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts. Mol Pharmacol. 69:2047–2057. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Costa V, Carina V, Fontana S, De Luca A, Monteleone F, Pagani S, Sartori M, Setti S, Faldini C, Alessandro R, et al: Osteogenic commitment and differentiation of human mesenchymal stem cells by low-intensity pulsed ultrasound stimulation. J Cell Physiol. 233:1558–1573. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Zhang Z, Ma Y, Guo S, He Y, Bai G and Zhang W: Low-intensity pulsed ultrasound stimulation facilitates in vitro osteogenic differentiation of human adipose-derived stem cells via up-regulation of heat shock protein (HSP)70, HSP90, and bone morphogenetic protein (BMP) signaling pathway. Biosci Rep. 38:BSR201800872018. View Article : Google Scholar : PubMed/NCBI

17 

Su Z, Xu T, Wang Y, Guo X, Tu J, Zhang D, Kong X, Sheng Y and Sun W: Low intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling mediated endoplasmic reticulum stress in human endothelial cells. Mol Med Rep. 19:4645–4654. 2019.PubMed/NCBI

18 

Leskinen JJ, Karjalainen HM, Olkku A, Hynynen K, Mahonen A and Lammi MJ: Genome-wide microarray analysis of MG-63 osteoblastic cells exposed to ultrasound. Biorheology. 45:345–354. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Kobayashi Y, Sakai D, Iwashina T, Iwabuchi S and Mochida J: Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line. Eur Cell Mater. 17:15–22. 2009.PubMed/NCBI

20 

Lu H, Qin L, Lee K, Cheung W, Chan K and Leung K: Identification of genes responsive to low-intensity pulsed ultrasound stimulations. Biochem Biophys Res Commun. 378:569–573. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Tabuchi Y, Sugahara Y, Ikegame M, Suzuki N, Kitamura K and Kondo T: Genes responsive to low-intensity pulsed ultrasound in MC3T3-E1 preosteoblast cells. Int J Mol Sci. 14:22721–22740. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Tabuchi Y, Ando H, Takasaki I, Feril LB Jr, Zhao QL, Ogawa R, Kudo N, Tachibana K and Kondo T: Identification of genes responsive to low intensity pulsed ultrasound in a human leukemia cell line Molt-4. Cancer Lett. 246:149–156. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Tabuchi Y, Takasaki I, Zhao QL, Wada S, Hori T, Feril LB Jr, Tachibana K, Nomura T and Kondo T: Genetic networks responsive to low-intensity pulsed ultrasound in human lymphoma U937 cells. Cancer Lett. 270:286–294. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Bahrami S and Drabløs F: Gene regulation in the immediate-early response process. Adv Biol Regul. 62:37–49. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Wagner EF and Eferl R: Fos/AP-1 proteins in bone and the immune system. Immunol Rev. 208:126–140. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Tabuchi Y, Maekawa K, Torigoe M, Furusawa Y, Hirano T, Minagawa S, Yunoki T and Hayashi A: HIKESHI silencing can enhance mild hyperthermia sensitivity in human oral squamous cell carcinoma HSC-3 cells. Int J Mol Med. 46:58–66. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Furusawa Y, Yamamoto T, Hattori A, Suzuki N, Hirayama J, Sekiguchi T and Tabuchi Y: De novo transcriptome analysis and gene expression profiling of fish scales isolated from Carassius auratus during space flight: Impact of melatonin on gene expression in response to space radiation. Mol Med Rep. 22:2627–2636. 2020.PubMed/NCBI

28 

Sarge KD, Murphy SP and Morimoto RI: Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol. 13:1392–1407. 1993. View Article : Google Scholar : PubMed/NCBI

29 

Cenci S, Weitzmann MN, Gentile MA, Aisa MC and Pacifici R: M-CSF neutralization and egr-1 deficiency prevent ovariectomy-induced bone loss. J Clin Invest. 105:1279–1287. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Demiralp B, Chen HL, Koh AJ, Keller ET and McCauley LK: Anabolic actions of parathyroid hormone during bone growth are dependent on c-fos. Endocrinology. 143:4038–4047. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Choudhary S, Halbout P, Alander C, Raisz L and Pilbeam C: Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: Involvement of prostaglandins. J Bone Miner Res. 22:1002–1010. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Paredes R, Arriagada G, Cruzat F, Villagra A, Olate J, Zaidi K, van Wijnen A, Lian JB, Stein GS, Stein JL, et al: Bone-specific transcription factor Runx2 interacts with the 1alpha,25-dihydroxyvitamin D3 receptor to up-regulate rat osteocalcin gene expression in osteoblastic cells. Mol Cell Biol. 24:8847–8861. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Salama M, Andrukhova O, Jaksch P, Taghavi S, Kelpetko W, Dekan G and Aharinejad S: Endothelin-1 governs proliferation and migration of bronchoalveolar lavage-derived lung mesenchymal stem cells in bronchiolitis obliterans syndrome. Transplantation. 92:155–162. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Hashida Y, Nakahama K, Shimizu K, Akiyama M, Harada K and Morita I: Communication-dependent mineralization of osteoblasts via gap junctions. Bone. 61:19–26. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Owen TA, Bortell R, Yocum SA, Smock SL, Zhang M, Abate C, Shalhoub V, Aronin N, Wright KL and van Wijnen AJ: Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: Model for phenotype suppression of transcription. Proc Natl Acad Sci USA. 87:9990–9994. 1990. View Article : Google Scholar : PubMed/NCBI

36 

Rodríguez-Pascual F, Redondo-Horcajo M and Lamas S: Functional cooperation between Smad proteins and activator protein-1 regulates transforming growth factor-beta-mediated induction of endothelin-1 expression. Circ Res. 92:1288–1295. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Johnston IM, Spence HJ, Winnie JN, McGarry L, Vass JK, Meagher L, Stapleton G and Ozanne BW: Regulation of a multigenic invasion programme by the transcription factor, AP-1: Re-expression of a down-regulated gene, TSC-36, inhibits invasion. Oncogene. 19:5348–5358. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Subbaramaiah K and Dannenberg AJ: Cyclooxygenase-2 transcription is regulated by human papillomavirus 16 E6 and E7 oncoproteins: Evidence of a corepressor/coactivator exchange. Cancer Res. 67:3976–3985. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Barna J, Csermely P and Vellai T: Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci. 75:2897–2916. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Richter K, Haslbeck M and Buchner J: The heat shock response: Life on the verge of death. Mol Cell. 40:253–266. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Hayashida N, Fujimoto M, Tan K, Prakasam R, Shinkawa T, Li L, Ichikawa H, Takii R and Nakai A: Heat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT. EMBO J. 29:3459–3469. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Le Masson F, Razak Z, Kaigo M, Audouard C, Charry C, Cooke H, Westwood JT and Christians ES: Identification of heat shock factor 1 molecular and cellular targets during embryonic and adult female meiosis. Mol Cell Biol. 31:3410–3423. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Tanabe M, Nakai A, Kawazoe Y and Nagata K: Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J Biol Chem. 272:15389–15395. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Tabuchi Y, Takasaki I, Wada S, Zhao QL, Hori T, Nomura T, Ohtsuka K and Kondo T: Genes and genetic networks responsive to mild hyperthermia in human lymphoma U937 cells. Int J Hyperthermia. 24:613–622. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Spriggs KA, Bushell M and Willis AE: Translational regulation of gene expression during conditions of cell stress. Mol Cell. 40:228–237. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Degerny C, Monte D, Beaudoin C, Jaffray E, Portois L, Hay RT, de Launoit Y and Baert JL: SUMO modification of the Ets-related transcription factor ERM inhibits its transcriptional activity. J Biol Chem. 280:24330–24338. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Finzer P, Soto U, Delius H, Patzelt A, Coy JF, Poustka A, zur Hausen H and Rösl F: Differential transcriptional regulation of the monocyte-chemoattractant protein-1 (MCP-1) gene in tumorigenic and non-tumorigenic HPV 18 positive cells: The role of the chromatin structure and AP-1 composition. Oncogene. 19:3235–3244. 2000. View Article : Google Scholar : PubMed/NCBI

48 

Vasanth S, ZeRuth G, Kang HS and Jetten AM: Identification of nuclear localization, DNA binding, and transactivating mechanisms of Kruppel-like zinc finger protein Gli-similar 2 (Glis2). J Biol Chem. 286:4749–4759. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN and Srivastava D: miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 460:705–710. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Sirsi SR and Borden MA: Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics. 2:1208–1222. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Maloney E and Hwang JH: Emerging HIFU applications in cancer therapy. Int J Hyperthermia. 31:302–309. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Boissenot T, Bordat A, Fattal E and Tsapis N: Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J Control Release. 241:144–163. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Lafond M, Yoshizawa S and Umemura SI: Sonodynamic therapy: Advances and challenges in clinical translation. J Ultrasound Med. 38:567–580. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Mikolajczyk A, Khosrawipour T, Kulas J, Migdal P, Arafkas M, Nicpon J and Khosrawipour V: The structural effect of high intensity ultrasound on peritoneal tissue: A potential vehicle for targeting peritoneal metastases. BMC Cancer. 20:4812020. View Article : Google Scholar : PubMed/NCBI

55 

Xia C, Zeng H and Zheng Y: Low-intensity ultrasound enhances the antitumor effects of doxorubicin on hepatocellular carcinoma cells through the ROS-miR-21-PTEN axis. Mol Med Rep. 21:989–998. 2020.PubMed/NCBI

56 

de Lucas B, Pérez LM, Bernal A and Gálvez BG: Ultrasound therapy: Experiences and perspectives for regenerative medicine. Genes (Basel). 11:E10862020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Hirayama J, Hoshi N and Mochizuki T: Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells. Mol Med Rep 23: 173, 2021.
APA
Tabuchi, Y., Hasegawa, H., Suzuki, N., Furusawa, Y., Hirano, T., Nagaoka, R. ... Mochizuki, T. (2021). Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells. Molecular Medicine Reports, 23, 173. https://doi.org/10.3892/mmr.2020.11812
MLA
Tabuchi, Y., Hasegawa, H., Suzuki, N., Furusawa, Y., Hirano, T., Nagaoka, R., Hirayama, J., Hoshi, N., Mochizuki, T."Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells". Molecular Medicine Reports 23.3 (2021): 173.
Chicago
Tabuchi, Y., Hasegawa, H., Suzuki, N., Furusawa, Y., Hirano, T., Nagaoka, R., Hirayama, J., Hoshi, N., Mochizuki, T."Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells". Molecular Medicine Reports 23, no. 3 (2021): 173. https://doi.org/10.3892/mmr.2020.11812
Copy and paste a formatted citation
x
Spandidos Publications style
Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Hirayama J, Hoshi N and Mochizuki T: Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells. Mol Med Rep 23: 173, 2021.
APA
Tabuchi, Y., Hasegawa, H., Suzuki, N., Furusawa, Y., Hirano, T., Nagaoka, R. ... Mochizuki, T. (2021). Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells. Molecular Medicine Reports, 23, 173. https://doi.org/10.3892/mmr.2020.11812
MLA
Tabuchi, Y., Hasegawa, H., Suzuki, N., Furusawa, Y., Hirano, T., Nagaoka, R., Hirayama, J., Hoshi, N., Mochizuki, T."Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells". Molecular Medicine Reports 23.3 (2021): 173.
Chicago
Tabuchi, Y., Hasegawa, H., Suzuki, N., Furusawa, Y., Hirano, T., Nagaoka, R., Hirayama, J., Hoshi, N., Mochizuki, T."Genetic response to low‑intensity ultrasound on mouse ST2 bone marrow stromal cells". Molecular Medicine Reports 23, no. 3 (2021): 173. https://doi.org/10.3892/mmr.2020.11812
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team