|
1
|
Dickson KB and Zhou J: Role of reactive
oxygen species and iron in host defence against infection. Front
Biosci (Landmark Ed). 25:1600–1616. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kagan VE, Mao G, Qu F, Angeli JP, Doll S,
Croix CS, Dar HH, Liu B, Tyurin VA, Ritov VB, et al: Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem
Biol. 13:81–90. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Valko M, Jomova K, Rhodes CJ, Kuča K and
Musílek K: Redox- and non-redox-metal-induced formation of free
radicals and their role in human disease. Arch Toxicol. 90:1–37.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cao JY and Dixon SJ: Mechanisms of
ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun
X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death
Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Macías-Rodríguez RU, Inzaugarat ME,
Ruiz-Margáin A, Nelson LJ, Trautwein C and Cubero FJ: Reclassifying
hepatic cell death during liver damage: Ferroptosis-A novel form of
non-apoptotic cell death? Int J Mol Sci. 21:16512020. View Article : Google Scholar
|
|
8
|
Yamada N, Karasawa T, Wakiya T, Sadatomo
A, Ito H, Kamata R, Watanabe S, Komada T, Kimura H, Sanada Y, et
al: Iron overload as a risk factor for hepatic ischemia-reperfusion
injury in liver transplantation: Potential role of ferroptosis. Am
J Transplant. 20:1606–1618. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ploeg RJ, D'Alessandro AM, Knechtle SJ,
Stegall MD, Pirsch JD, Hoffmann RM, Sasaki T, Sollinger HW, Belzer
FO and Kalayoglu M: Risk factors for primary dysfunction after
liver transplantation-a multivariate analysis. Transplantation.
55:807–813. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhai Y, Petrowsky H, Hong JC, Busuttil RW
and Kupiec-Weglinski JW: Ischaemia-reperfusion injury in liver
transplantation-from bench to bedside. Nat Rev Gastroenterol
Hepatol. 10:79–89. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ikeda T, Yanaga K, Kishikawa K, Kakizoe S,
Shimada M and Sugimachi K: Ischemic injury in liver
transplantation: Difference in injury sites between warm and cold
ischemia in rats. Hepatology. 16:454–461. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cannistra M, Ruggiero M, Zullo A, Gallelli
G, Serafini S, Maria M, Naso A, Grande R, Serra R and Nardo B:
Hepatic ischemia reperfusion injury: A systematic review of
literature and the role of current drugs and biomarkers. Int J
Surg. 33 (Suppl 1):S57–S70. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhai Y, Busuttil RW and Kupiec-Weglinski
JW: Liver ischemia and reperfusion injury: New insights into
mechanisms of innate-adaptive immune-mediated tissue inflammation.
Am J Transplant. 11:1563–1569. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Duarte S, Shen XD, Fondevila C, Busuttil
RW and Coito AJ: Fibronectin-α4β1 interactions in hepatic cold
ischemia and reperfusion injury: Regulation of MMP-9 and MT1-MMP
via the p38 MAPK pathway. Am J Transplant. 12:2689–2699. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Decuypere JP, Ceulemans LJ, Agostinis P,
Monbaliu D, Naesens M, Pirenne J and Jochmans I: Autophagy and the
Kidney: Implications for ischemia-reperfusion injury and therapy.
Am J Kidney Dis. 66:699–709. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Pu T, Liao XH, Sun H, Guo H, Jiang X, Peng
JB, Zhang L and Liu Q: Augmenter of liver regeneration regulates
autophagy in renal ischemia-reperfusion injury via the AMPK/mTOR
pathway. Apoptosis. 22:955–969. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhong X, Xiao Q, Liu Z, Wang W, Lai CH,
Yang W, Yue P, Ye Q and Xiao J: TAK242 suppresses the TLR4
signaling pathway and ameliorates DCD liver IRI in rats. Mol Med
Rep. 20:2101–2110. 2019.PubMed/NCBI
|
|
18
|
Oliveira THC, Marques PE, Proost P and
Teixeira MMM: Neutrophils: A cornerstone of liver ischemia and
reperfusion injury. Lab Invest. 98:51–62. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang L, Zhang Z, Li M, Wang F, Jia Y,
Zhang F, Shao J, Chen A and Zheng S: P53-dependent induction of
ferroptosis is required for artemether to alleviate carbon
tetrachloride-induced liver fibrosis and hepatic stellate cell
activation. Iubmb Life. 71:45–56. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li L, Tan J, Miao Y, Lei P and Zhang Q:
ROS and autophagy: Interactions and molecular regulatory
mechanisms. Cell Mol Neurobiol. 35:615–621. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Datta G, Fuller BJ and Davidson BR:
Molecular mechanisms of liver ischemia reperfusion injury: Insights
from transgenic knockout models. World J Gastroenterol.
19:1683–1698. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Papadopoulos D, Siempis T, Theodorakou E
and Tsoulfas G: Hepatic ischemia and reperfusion injury and trauma:
Current concepts. Arch Trauma Res. 2:63–70. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Dhanasekaran DN and Reddy EP: JNK
signaling in apoptosis. Oncogene. 27:6245–6251. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wanner GA, Ertel W, Muller P, Hofer Y,
Leiderer R, Menger MD and Messmer K: Liver ischemia and reperfusion
induces a systemic inflammatory response through Kupffer cell
activation. Shock. 5:34–40. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lentsch AB, Yoshidome H, Kato A, Warner
RL, Cheadle WG, Ward PA and Edwards MJ: Requirement for
interleukin-12 in the pathogenesis of warm hepatic
ischemia/reperfusion injury in mice. Hepatology. 30:1448–1453.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Jaeschke H: Reactive oxygen and mechanisms
of inflammatory liver injury. J Gastroenterol Hepatol. 15:718–724.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fan C, Zwacka RM and Engelhardt JF:
Therapeutic approaches for ischemia/reperfusion injury in the
liver. J Mol Med (Berl). 77:577–592. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bauer M and Bauer I: Heme oxygenase-1:
Redox regulation and role in the hepatic response to oxidative
stress. Antioxid Redox Signal. 4:749–758. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Rensing H, Jaeschke H, Bauer I, Patau C,
Datene V, Pannen BH and Bauer M: Differential activation pattern of
redox-sensitive transcription factors and stress-inducible dilator
systems heme oxygenase-1 and inducible nitric oxide synthase in
hemorrhagic and endotoxic shock. Crit Care Med. 29:1962–1971. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jaeschke H, Ho YS, Fisher MA, Lawson JA
and Farhood A: Glutathione peroxidase-deficient mice are more
susceptible to neutrophil-mediated hepatic parenchymal cell injury
during endotoxemia: Importance of an intracellular oxidant stress.
Hepatology. 29:443–450. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Essani NA, Fisher MA and Jaeschke H:
Inhibition of NF-kappa B activation by dimethyl sulfoxide
correlates with suppression of TNF-alpha formation, reduced ICAM-1
gene transcription, and protection against endotoxin-induced liver
injury. Shock. 7:90–96. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li JM and Shah AM: Differential
NADPH-versus NADH-dependent superoxide production by phagocyte-type
endothelial cell NADPH oxidase. Cardiovasc Res. 52:477–486. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ozaki M, Deshpande SS, Angkeow P, Bellan
J, Lowenstein CJ, Dinauer MC, Goldschmidt-Clermont PJ and Irani K:
Inhibition of the Rac1 GTPase protects against nonlethal
ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB
J. 14:418–429. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li Y, Qian L and Yuan J: Small molecule
probes for cellular death machines. Curr Opin Chem Biol. 39:74–82.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Degterev A and Linkermann A: Generation of
small molecules to interfere with regulated necrosis. Cell Mol Life
Sci. 73:2251–2267. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Dixon SJ and Stockwell BR: The role of
iron and reactive oxygen species in cell death. Nat Chem Biol.
10:9–17. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pignatello JJ, Oliveros E and MacKay A:
Advanced oxidation processes for organic contaminant destruction
based on the Fenton reaction and related chemistry. J Crit Rev
Environmental Sci Technol. 36:1–84. 2006. View Article : Google Scholar
|
|
38
|
Wang H, An P, Xie E, Wu Q, Fang X, Gao H,
Zhang Z, Li Y, Wang X, Zhang J, et al: Characterization of
ferroptosis in murine models of hemochromatosis. Hepatology.
66:449–465. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X,
Wang H, Cao L and Tang D: HSPB1 as a novel regulator of ferroptotic
cancer cell death. Oncogene. 34:5617–5625. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen H, Zheng C, Zhang Y, Chang YZ, Qian
ZM and Shen X: Heat shock protein 27 downregulates the transferrin
receptor 1-mediated iron uptake. Int J Biochem Cell Biol.
38:1402–1416. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Arrigo AP, Virot S, Chaufour S, Firdaus W,
Kretz-Remy C and Diaz-Latoud C: Hsp27 consolidates intracellular
redox homeostasis by upholding glutathione in its reduced form and
by decreasing iron intracellular levels. Antioxid Redox Signal.
7:414–422. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lei P, Bai T and Sun Y: Mechanisms of
ferroptosis and relations with regulated cell death: A review.
Front Physiol. 10:1392019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Krieg P and Furstenberger G: The role of
lipoxygenases in epidermis. Biochim Biophys Acta. 1841:390–400.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Haeggstrom JZ and Funk CD: Lipoxygenase
and leukotriene pathways: Biochemistry, biology, and roles in
disease. Chem Rev. 111:5866–5898. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Choi J, Chon JK, Kim S and Shin W:
Conformational flexibility in mammalian 15S-lipoxygenase:
Reinterpretation of the crystallographic data. Proteins.
70:1023–1032. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shintoku R, Takigawa Y, Yamada K, Kubota
C, Yoshimoto Y, Takeuchi T, Koshiishi I and Torii S:
Lipoxygenase-mediated generation of lipid peroxides enhances
ferroptosis induced by erastin and RSL3. Cancer Sci. 108:2187–2194.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yang WS, Kim KJ, Gaschler MM, Patel M,
Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated
fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci
USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Reddy PH and Beal MF: Are mitochondria
critical in the pathogenesis of Alzheimer's disease? Brain Res
Brain Res Rev. 49:618–632. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ademowo OS, Dias HKI, Burton DGA and
Griffiths HR: Lipid (per) oxidation in mitochondria: An emerging
target in the ageing process? Biogerontology. 18:859–879. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wong-Ekkabut J, Xu Z, Triampo W, Tang IM,
Tieleman DP and Monticelli L: Effect of lipid peroxidation on the
properties of lipid bilayers: A molecular dynamics study. Biophys
J. 93:4225–4236. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Simoncini C, Orsucci D, Caldarazzo Ienco
E, Siciliano G, Bonuccelli U and Mancuso M: Alzheimer's
pathogenesis and its link to the mitochondrion. Oxid Med Cell
Longev. 2015:8039422015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Eckl PM, Ortner A and Esterbauer H:
Genotoxic properties of 4-hydroxyalkenals and analogous aldehydes.
Mutat Res. 290:183–192. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Siems W and Grune T: Intracellular
metabolism of 4-hydroxynonenal. Mol Aspects Med. 24:167–175. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Stockwell BR, Friedmann AJ, Bayir H, Bush
AI, Conrad M, Dixon SJ, Fulda S, Gascon S, Hatzios SK, Kagan VE, et
al: Ferroptosis: A regulated cell death nexus linking metabolism,
redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H,
Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al:
Tau-mediated iron export prevents ferroptotic damage after ischemic
stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Skouta R, Dixon SJ, Wang J, Dunn DE, Orman
M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A and
Stockwell BR: Ferrostatins inhibit oxidative lipid damage and cell
death in diverse disease models. J Am Chem Soc. 136:4551–4556.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Friedmann AJ, Schneider M, Proneth B,
Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A,
Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4
triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Netea MG, van de Veerdonk FL, van der Meer
JW, Dinarello CA and Joosten LA: Inflammasome-independent
regulation of IL-1-family cytokines. Annu Rev Immunol. 33:49–77.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kiziltas S: Toll-like receptors in
pathophysiology of liver diseases. World J Hepatol. 8:1354–1369.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Usui F, Shirasuna K, Kimura H, Tatsumi K,
Kawashima A, Karasawa T, Yoshimura K, Aoki H, Tsutsui H, Noda T, et
al: Inflammasome activation by mitochondrial oxidative stress in
macrophages leads to the development of angiotensin II-induced
aortic aneurysm. Arterioscler Thromb Vasc Biol. 35:127–136. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Usui F, Shirasuna K, Kimura H, Tatsumi K,
Kawashima A, Karasawa T, Hida S, Sagara J, Taniguchi S and
Takahashi M: Critical role of caspase-1 in vascular inflammation
and development of atherosclerosis in Western diet-fed
apolipoprotein E-deficient mice. Biochem Biophys Res Commun.
425:162–168. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kawaguchi M, Takahashi M, Hata T, Kashima
Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J,
et al: Inflammasome activation of cardiac fibroblasts is essential
for myocardial ischemia/reperfusion injury. Circulation.
123:594–604. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sadatomo A, Inoue Y, Ito H, Karasawa T,
Kimura H, Watanabe S, Mizushina Y, Nakamura J, Kamata R, Kasahara
T, et al: Interaction of neutrophils with macrophages promotes
IL-1β maturation and contributes to hepatic ischemia-reperfusion
injury. J Immunol. 199:3306–3315. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Skaar EP: The battle for iron between
bacterial pathogens and their vertebrate hosts. PLoS Pathog.
6:e10009492010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang L, Harrington L, Trebicka E, Shi HN,
Kagan JC, Hong CC, Lin HY, Babitt JL and Cherayil BJ: Selective
modulation of TLR4-activated inflammatory responses by altered iron
homeostasis in mice. J Clin Invest. 119:3322–3328. 2009.PubMed/NCBI
|
|
66
|
Weiss G, Werner-Felmayer G, Werner ER,
Grunewald K, Wachter H and Hentze MW: Iron regulates nitric oxide
synthase activity by controlling nuclear transcription. J Exp Med.
180:969–976. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bubici C, Papa S, Dean K and Franzoso G:
Mutual cross-talk between reactive oxygen species and nuclear
factor-kappa B: Molecular basis and biological significance.
Oncogene. 25:6731–6748. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ganz T and Nemeth E: Hepcidin and iron
homeostasis. Biochim Biophys Acta. 1823:1434–1443. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wunderer F, Traeger L, Sigurslid HH,
Meybohm P, Bloch DB and Malhotra R: The role of hepcidin and iron
homeostasis in atherosclerosis. Pharmacol Res. 153:1046642020.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yang WS, SriRamaratnam R, Welsch ME,
Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji
AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by
GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jornot L, Petersen H and Junod AF:
Hydrogen peroxide-induced DNA damage is independent of nuclear
calcium but dependent on redox-active ions. Biochem J. 335:85–94.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Mills EM, Takeda K, Yu ZX, Ferrans V,
Katagiri Y, Jiang H, Lavigne MC, Leto TL and Guroff G: Nerve growth
factor treatment prevents the increase in superoxide produced by
epidermal growth factor in PC12 cells. J Biol Chem.
273:22165–22168. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hurst R, Bao Y, Jemth P, Mannervik B and
Williamson G: Phospholipid hydroperoxide glutathione peroxidase
activity of rat class theta glutathione transferase T2-2. Biochem
Soc Trans. 25:S5591997. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yin GY, Yin YF and He XF: Effect of
Zhuchun pill on immunity and endocrine function of elderly with
kidney-yang deficiency. Zhongguo Zhong Xi Yi Jie He Za Zhi.
15:601–603. 1995.(In Chinese). PubMed/NCBI
|
|
75
|
Lee YJ, Galoforo SS, Berns CM, Chen JC,
Davis BH, Sim JE, Corry PM and Spitz DR: Glucose
deprivation-induced cytotoxicity and alterations in
mitogen-activated protein kinase activation are mediated by
oxidative stress in multidrug-resistant human breast carcinoma
cells. J Biol Chem. 273:5294–5299. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bae YS, Kang SW, Seo MS, Baines IC, Tekle
E, Chock PB and Rhee SG: Epidermal growth factor (EGF)-induced
generation of hydrogen peroxide. Role in EGF receptor-mediated
tyrosine phosphorylation. J Biol Chem. 272:217–221. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jaeschke H and Farhood A: Neutrophil and
Kupffer cell-induced oxidant stress and ischemia-reperfusion injury
in rat liver. Am J Physiol. 260:G355–G362. 1991.PubMed/NCBI
|
|
78
|
Straatsburg IH, Boermeester MA, Wolbink
GJ, van Gulik TM, Gouma DJ, Frederiks WM and Hack CE: Complement
activation induced by ischemia-reperfusion in humans: A study in
patients undergoing partial hepatectomy. J Hepatol. 32:783–791.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bajt ML, Farhood A and Jaeschke H: Effects
of CXC chemokines on neutrophil activation and sequestration in
hepatic vasculature. Am J Physiol Gastrointest Liver Physiol.
281:G1188–G1195. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Witthaut R, Farhood A, Smith CW and
Jaeschke H: Complement and tumor necrosis factor-alpha contribute
to Mac-1 (CD11b/CD18) up-regulation and systemic neutrophil
activation during endotoxemia in vivo. J Leukoc Biol. 55:105–111.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jaeschke H, Farhood A, Bautista AP,
Spolarics Z and Spitzer JJ: Complement activates Kupffer cells and
neutrophils during reperfusion after hepatic ischemia. Am J
Physiol. 264:G801–G809. 1993.PubMed/NCBI
|
|
82
|
Yeh CG, Marsh HJ Jr, Carson GR, Berman L,
Concino MF, Scesney SM, Kuestner RE, Skibbens R, Donahue KA and Ip
SH: Recombinant soluble human complement receptor type 1 inhibits
inflammation in the reversed passive arthus reaction in rats. J
Immunol. 146:250–256. 1991.PubMed/NCBI
|
|
83
|
Weisman HF, Bartow T, Leppo MK, Marsh HJ,
Carson GR, Concino MF, Boyle MP, Roux KH, Weisfeldt ML and Fearon
DT: Soluble human complement receptor type 1: In vivo inhibitor of
complement suppressing post-ischemic myocardial inflammation and
necrosis. Science. 249:146–151. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rymsa B, Wang JF and de Groot H:
O2−. Release by activated Kupffer cells upon
hypoxia-reoxygenation. Am J Physiol. 261:G602–G607. 1991.PubMed/NCBI
|
|
85
|
Marnett LJ: Lipid peroxidation-DNA damage
by malondialdehyde. Mutat Res. 424:83–95. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Arslan M, Metin CF, Kucuk A, Ozturk L and
Yaylak F: Dexmedetomidine protects against lipid peroxidation and
erythrocyte deformability alterations in experimental hepatic
ischemia reperfusion injury. Libyan J Med. 7:2012.doi:
10.3402/ljm.v7i0.18185. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kuypers FA: Red cell membrane damage. J
Heart Valve Dis. 7:387–395. 1998.PubMed/NCBI
|
|
88
|
Sivilotti ML: Oxidant stress and
haemolysis of the human erythrocyte. Toxicol Rev. 23:169–188. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Therond P, Bonnefont-Rousselot D,
Davit-Spraul A, Conti M and Legrand A: Biomarkers of oxidative
stress: An analytical approach. Curr Opin Clin Nutr Metab Care.
3:373–384. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Stahl W, Junghans A, de Boer B, Driomina
ES, Briviba K and Sies H: Carotenoid mixtures protect multilamellar
liposomes against oxidative damage: Synergistic effects of lycopene
and lutein. FEBS Lett. 427:305–308. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Beaudeux JL, Gardes-Albert M, Delattre J,
Legrand A, Rousselet F and Peynet J: Resistance of lipoprotein(a)
to lipid peroxidation induced by oxygenated free radicals produced
by gamma radiolysis: A comparison with low-density lipoprotein.
Biochem J. 314:277–284. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Jankowska R, Passowicz-Muszynska E, Banas
T, Marcinkowska A and Medrala W: The influence of vitamin A on
production of oxygen free radicals and activity of granulocyte
catalase in patients with chronic bronchitis. Pneumonol Alergol
Pol. 62:628–633. 1994.(In Polish). PubMed/NCBI
|
|
93
|
Malhi H, Guicciardi ME and Gores GJ:
Hepatocyte death: A clear and present danger. Physiol Rev.
90:1165–1194. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kischkel FC, Hellbardt S, Behrmann I,
Germer M, Pawlita M, Krammer PH and Peter ME:
Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a
death-inducing signaling complex (DISC) with the receptor. EMBO.
14:5579–5588. 1995. View Article : Google Scholar
|
|
95
|
Stefan JR and Guy SS: The apoptosome:
Signalling platform of cell death. Nat Rev Mol Cell Bio. 8:405–413.
2007. View Article : Google Scholar
|
|
96
|
Yong-Ling PO, Douglas RG, Zhenyue H and
Tak WM: Cytochrome c: Functions beyond respiration. Nat Rev Mol
Cell Bio. 9:532–542. 2008. View Article : Google Scholar
|
|
97
|
Nicholas SW, Vishva D and Avi A: Death
receptor signal transducers: Nodes of coordination in immune
signaling networks. Nat Immunol. 10:348–355. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Susan E: Apoptosis: A review of programmed
cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Krysko DV, Vanden BT, D'Herde K and
Vandenabeele P: Apoptosis and necrosis: Detection, discrimination
and phagocytosis. Methods. 44:205–221. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ricardo W, Andrew O, Helen MB and Douglas
RG: Necroptosis in development, inflammation and disease. Nat Rev
Mol Cell Biol. 18:127–136. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ueno T and Komatsu M: Autophagy in the
liver: Functions in health and disease. Nat Rev Gastroenterol
Hepatol. 14:170–184. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Pierre ER, Dominique CH, Richard M, Claire
F, Gérard F, Didier L, Éric OD, Pierre B, Dominique V and Fran OD:
Acute liver cell damage in patients with anorexia nervosa: A
possible role of starvation-induced hepatocyte autophagy.
Gastroenterology. 135:840–848.e1-e3. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Donna D and Sharad K: Autophagy-dependent
cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Santana-Codina N and Mancias JD: The role
of NCOA4-mediated ferritinophagy in health and disease.
Pharmaceuticals (Basel). 11:1142018. View Article : Google Scholar
|
|
105
|
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh
HJ, Kang R and Tang D: Autophagy promotes ferroptosis by
degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Veitch K, Maisin L and Hue L:
Trimetazidine effects on the damage to mitochondrial functions
caused by ischemia and reperfusion. Am J Cardiol. 76:B25–B30. 1995.
View Article : Google Scholar
|
|
107
|
Guarnieri C and Muscari C: Effect of
trimetazidine on mitochondrial function and oxidative damage during
reperfusion of ischemic hypertrophied rat myocardium. Pharmacology.
46:324–331. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Miotto G, Rossetto M, Di Paolo ML, Orian
L, Venerando R, Roveri A, Vuckovic AM, Bosello TV, Zaccarin M,
Zennaro L, et al: Insight into the mechanism of ferroptosis
inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Feng Y, Madungwe NB, Imam AA, Tombo N and
Bopassa JC: Liproxstatin-1 protects the mouse myocardium against
ischemia/reperfusion injury by decreasing VDAC1 levels and
restoring GPX4 levels. Biochem Biophys Res Commun. 520:606–611.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Giakoustidis D, Papageorgiou G, Iliadis S,
Giakoustidis A, Kostopoulou E, Kontos N, Botsoglou E, Tsantilas D,
Papanikolaou V and Takoudas D: The protective effect of
alpha-tocopherol and GdCl3 against hepatic ischemia/reperfusion
injury. Surg Today. 36:450–456. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Masaki H, Okano Y, Ochiai Y, Obayashi K,
Akamatsu H and Sakurai H: Alpha-tocopherol increases the
intracellular glutathione level in HaCaT keratinocytes. Free Radic
Res. 36:705–709. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lee WY and Lee SM: Protective effects of
alpha-tocopherol and ischemic preconditioning on hepatic
reperfusion injury. Arch Pharm Res. 28:1392–1399. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Giakoustidis D, Papageorgiou G, Iliadis S,
Kontos N, Kostopoulou E, Papachrestou A, Tsantilas D, Spyridis C,
Takoudas D, Botsoglou N, et al: Intramuscular administration of
very high dose of alpha-tocopherol protects liver from severe
ischemia/reperfusion injury. World J Surg. 26:872–877. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Gondolesi GE, Lausada N, Schinella G,
Semplici AM, Vidal MS, Luna GC, Toledo J, de Buschiazzo PM and
Raimondi JC: Reduction of ischemia-reperfusion injury in
parenchymal and nonparenchymal liver cells by donor treatment with
DL-alpha-tocopherol prior to organ harvest. Transplant Proc.
34:1086–1091. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ruttinger D, Vollmar B, Wanner GA and
Messmer K: In vivo assessment of hepatic alterations following
gadolinium chloride-induced Kupffer cell blockade. J Hepatol.
25:960–967. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Cerwenka H, Khoschsorur G, Bacher H,
Werkgartner G, El-Shabrawi A, Quehenberger F, Rabl H and Mischinger
HJ: Normothermic liver ischemia and antioxidant treatment during
hepatic resections. Free Radic Res. 30:463–469. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kohen R and Nyska A: Oxidation of
biological systems: Oxidative stress phenomena, antioxidants, redox
reactions, and methods for their quantification. Toxicol Pathol.
30:620–650. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Packer JE, Slater TF and Willson RL:
Direct observation of a free radical interaction between vitamin E
and vitamin C. Nature. 278:737–738. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lee WY, Lee JS and Lee SM: Protective
effects of combined ischemic preconditioning and ascorbic acid on
mitochondrial injury in hepatic ischemia/reperfusion. J Surg Res.
142:45–52. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Seo MY and Lee SM: Protective effect of
low dose of ascorbic acid on hepatobiliary function in hepatic
ischemia/reperfusion in rats. J Hepatol. 36:72–77. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Rabl H, Khoschsorur G and Petek W:
Antioxidative vitamin treatment: Effect on lipid peroxidation and
limb swelling after revascularization operations. World J Surg.
19:738–744. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Bilzer M and Lauterburg BH: Effects of
hypochlorous acid and chloramines on vascular resistance, cell
integrity, and biliary glutathione disulfide in the perfused rat
liver: Modulation by glutathione. J Hepatol. 13:84–89. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Winterbourn CC and Metodiewa D: The
reaction of superoxide with reduced glutathione. Arch Biochem
Biophys. 314:284–290. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Schauer RJ, Gerbes AL, Vonier D, Meissner
H, Michl P, Leiderer R, Schildberg FW, Messmer K and Bilzer M:
Glutathione protects the rat liver against reperfusion injury after
prolonged warm ischemia. Ann Surg. 239:220–231. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Cotgreave IA: N-acetylcysteine:
Pharmacological considerations and experimental and clinical
applications. Adv Pharmacol. 38:205–227. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Dulundu E, Ozel Y, Topaloglu U, Sehirli O,
Ercan F, Gedik N and Sener G: Alpha-lipoic acid protects against
hepatic ischemia-reperfusion injury in rats. Pharmacology.
79:163–170. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Müller C, Dunschede F, Koch E, Vollmar AM
and Kiemer AK: Alpha-lipoic acid preconditioning reduces
ischemia-reperfusion injury of the rat liver via the PI3-kinase/Akt
pathway. Am J Physiol Gastrointest Liver Physiol. 285:G769–G778.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Dunschede F, Erbes K, Kircher A,
Westermann S, Seifert J, Schad A, Oliver K, Kiemer AK and Theodor
J: Reduction of ischemia reperfusion injury after liver resection
and hepatic inflow occlusion by alpha-lipoic acid in humans. World
J Gastroenterol. 12:6812–6817. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Kagan VE, Shvedova A, Serbinova E, Khan S,
Swanson C, Powell R and Packer L: Dihydrolipoic acid-a universal
antioxidant both in the membrane and in the aqueous phase.
Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochem
Pharmacol. 44:1637–1649. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Wang B, Xu H, Li J, Gao HM, Xing YH, Lin
Z, Li HJ, Wang YQ and Cao SH: Complement depletion with cobra venom
factor alleviates acute hepatic injury induced by
ischemiareperfusion. Mol Med Rep. 18:4523–4529. 2018.PubMed/NCBI
|
|
131
|
Mao YF, Yu QH, Zheng XF, Liu K, Liang WQ,
Wang YW, Deng XM and Jiang L: Pre-treatment with Cobra venom factor
alleviates acute lung injury induced by intestinal
ischemia-reperfusion in rats. Eur Rev Med Pharmacol Sci.
17:2207–2217. 2013.PubMed/NCBI
|
|
132
|
Vogel CW, Finnegan PW and Fritzinger DC:
Humanized cobra venom factor: Structure, activity, and therapeutic
efficacy in preclinical disease models. Mol Immunol. 61:191–203.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Vogel CW and Fritzinger DC: Cobra venom
factor: Structure, function, and humanization for therapeutic
complement depletion. Toxicon. 56:1198–1222. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Liu Y, Wang W, Li Y, Xiao Y, Cheng J and
Jia J: The 5-lipoxygenase inhibitor zileuton confers
neuroprotection against glutamate oxidative damage by inhibiting
ferroptosis. Biol Pharm Bull. 38:1234–1239. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Kukan M, Vajdova K, Horecky J, Nagyova A,
Mehendale HM and Trnovec T: Effects of blockade of Kupffer cells by
gadolinium chloride on hepatobiliary function in cold
ischemia-reperfusion injury of rat liver. Hepatology. 26:1250–1257.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Cutrin JC, Boveris A, Zingaro B, Corvetti
G and Poli G: In situ determination by surface chemiluminescence of
temporal relationships between evolving warm ischemia-reperfusion
injury in rat liver and phagocyte activation and recruitment.
Hepatology. 31:622–632. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Sindram D, Porte RJ, Hoffman MR, Bentley
RC and Clavien PA: Synergism between platelets and leukocytes in
inducing endothelial cell apoptosis in the cold ischemic rat liver:
A Kupffer cell-mediated injury. FASEB J. 15:1230–1232. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Vajdova K, Smrekova R, Kukan M, Jakubovsky
J, van Rooijen N, Horecky J, Lutterova M and Wsolova L:
Endotoxin-induced aggravation of preservation-reperfusion injury of
rat liver and its modulation. J Hepatol. 32:112–120. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Giakoustidis DE, Iliadis S, Tsantilas D,
Papageorgiou G, Kontos N, Kostopoulou E, Botsoglou NA, Gerasimidis
T and Dimitriadou A: Blockade of Kupffer cells by gadolinium
chloride reduces lipid peroxidation and protects liver from
ischemia/reperfusion injury. Hepatogastroenterology. 50:1587–1592.
2003.PubMed/NCBIPubMed/NCBI
|
|
140
|
Bremer C, Bradford BU, Hunt KJ, Knecht KT,
Connor HD, Mason RP and Thurman RG: Role of Kupffer cells in the
pathogenesis of hepatic reperfusion injury. Am J Physiol.
267:G630–G636. 1994.PubMed/NCBI
|
|
141
|
Dixon LJ, Barnes M, Tang H, Pritchard MT
and Nagy LE: Kupffer cells in the liver. Compr Physiol. 3:785–797.
2013.PubMed/NCBI
|
|
142
|
Callery MP, Kamei T and Flye MW: Kupffer
cell blockade increases mortality during intra-abdominal sepsis
despite improving systemic immunity. Arch Surg. 125:36–41. 1990.
View Article : Google Scholar : PubMed/NCBI
|