Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
December-2021 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2021 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review)

  • Authors:
    • Dan Wu
    • Yijing Gu
    • Deqiu Zhu
  • View Affiliations / Copyright

    Affiliations: Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
  • Article Number: 875
    |
    Published online on: October 29, 2021
       https://doi.org/10.3892/mmr.2021.12515
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ischemic heart disease is one of the major causes of cardiovascular‑related mortality worldwide. Myocardial ischemia can be attenuated by reperfusion that restores the blood supply. However, injuries occur during blood flow restoration that induce cardiac dysfunction, which is known as myocardial ischemia‑reperfusion injury (MIRI). Hydrogen sulfide (H2S), the third discovered endogenous gasotransmitter in mammals (after NO and CO), participates in various pathophysiological processes. Previous in vitro and in vivo research have revealed the protective role of H2S in the cardiovascular system that render it useful in the protection of the myocardium against MIRI. The cardioprotective effects of H2S in attenuating MIRI are summarized in the present review.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M and Nichols M: Cardiovascular disease in Europe: Epidemiological update 2016. Eur Heart J. 37:3232–3245. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al: Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 76:2982–3021. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY and Li CJ: Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 46:1650–1667. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Ibáñez B, Heusch G, Ovize M and Van de Werf F: Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Gorini F, Bustaffa E, Chatzianagnostou K, Bianchi F and Vassalle C: Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas. Sci Total Environ. 743:1408182020. View Article : Google Scholar : PubMed/NCBI

6 

Wu D, Hu Q, Tan B, Rose P, Zhu D and Zhu YZ: Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca2+/calmodulin-dependent protein kinase II. Redox Biol. 19:250–262. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Wang ZJ, Wu J, Guo W and Zhu YZ: Atherosclerosis and the hydrogen sulfide signaling pathway-therapeutic approaches to disease prevention. Cell Physiol Biochem. 42:859–875. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Donnarumma E, Trivedi RK and Lefer DJ: Protective actions of H2S in acute myocardial infarction and heart failure. Compr Physiol. 7:583–602. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Oxidative stress in cell death and cardiovascular diseases. Oxid Med Cell Longev. 2019:90305632019. View Article : Google Scholar : PubMed/NCBI

10 

Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Bai YD, Yang YR, Mu XP, Lin G, Wang YP, Jin S, Chen Y, Wang MJ and Zhu YC: Hydrogen sulfide alleviates acute myocardial ischemia injury by modulating autophagy and inflammation response under oxidative stress. Oxid Med Cell Longev. 2018:34028092018. View Article : Google Scholar : PubMed/NCBI

12 

Tsutsui H, Kinugawa S and Matsushima S: Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 301:H2181–H2190. 2011. View Article : Google Scholar : PubMed/NCBI

13 

van der Pol A, van Gilst WH, Voors AA and van der Meer P: Treating oxidative stress in heart failure: Past, present and future. Eur J Heart Fail. 21:425–435. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Li X, Fang P, Mai J, Choi ET, Wang H and Yang XF: Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 6:192013. View Article : Google Scholar : PubMed/NCBI

15 

Briston T, Selwood DL, Szabadkai G and Duchen MR: Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci. 40:50–70. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Bauer TM and Murphy E: Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 126:280–293. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Kwong JQ and Molkentin JD: Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab. 21:206–214. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Li HW and Xiao FY: Effect of hydrogen sulfide on cardiomyocyte apoptosis in rats with myocardial ischemia-reperfusion injury via the JNK signaling pathway. Eur Rev Med Pharmacol Sci. 24:2054–2061. 2020.PubMed/NCBI

19 

Ong S, Samangouei P, Kalkhoran SB and Hausenloy DJ: The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol. 78:23–34. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B and Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 100:914–922. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Loos B, Genade S, Ellis B, Lochner A and Engelbrecht AM: At the core of survival: Autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury. Exp Cell Res. 317:1437–1453. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Hausenloy DJ and Yellon DM: New directions for protecting the heart against ischaemia-reperfusion injury: Targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res. 61:448–460. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Hausenloy DJ and Yellon DM: Reperfusion injury salvage kinase signalling: Taking a RISK for cardioprotection. Heart Fail Rev. 12:217–234. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Peake BF, Nicholson CK, Lambert JP, Hood RL, Amin H, Amin S and Calvert JW: Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner. Am J Physiol Heart Circ Physiol. 304:H1215–H1224. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK and Bian JS: A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal. 31:1–38. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Bełtowski J and Jamroz-Wiśniewska A: Hydrogen sulfide and endothelium-dependent vasorelaxation. Molecules. 19:21183–21199. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Panthi S, Chung HJ, Jung J and Jeong NY: Physiological importance of hydrogen sulfide: Emerging potent neuroprotector and neuromodulator. Oxid Med Cell Longev. 2016:90497822016. View Article : Google Scholar : PubMed/NCBI

28 

Wilinski B, Wilinski J, Somogyi E, Goralska M and Piotrowska J: Paracetamol (acetaminophen) decreases hydrogen sulfide tissue concentration in brain but increases it in the heart, liver and kidney in mice. Folia Biol (Krakow). 59:41–44. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Wilinski B, Wilinski J, Somogyi E, Goralska M and Piotrowska J: Ramipril affects hydrogen sulfide generation in mouse liver and kidney. Folia Biol (Krakow). 58:177–180. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Wilinski J, Wilinski B, Somogyi E, Piotrowska J, Kameczura T and Zygmunt M: Nicotine affects hydrogen sulfide concentrations in mouse kidney and heart but not in brain and liver tissues. Folia Med Cracov. 57:55–64. 2017.PubMed/NCBI

31 

Tan B, Jin S, Sun J, Gu Z, Sun X, Zhu Y, Huo K, Cao Z, Yang P, Xin X, et al: New method for quantification of gasotransmitter hydrogen sulfide in biological matrices by LC-MS/MS. Sci Rep. 7:462782017. View Article : Google Scholar : PubMed/NCBI

32 

Wu D, Hu Q and Zhu YZ; Therapeutic application of hydrogen sulfide donors, : The potential and challenges. Front Med. 10:18–27. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Pei J, Wang F, Pei S, Bai R, Cong X, Nie Y and Chen X: Hydrogen sulfide promotes cardiomyocyte proliferation and heart regeneration via ROS scavenging. Oxid Med Cell Longev. 2020:14126962020. View Article : Google Scholar : PubMed/NCBI

34 

Feng A, Ling C, Xin-duo L, Bing W, San-Wu W, Yu Z, Yu-Lan H and You-En Z: Hydrogen sulfide protects human cardiac fibroblasts against H2O2-induced injury through regulating autophagy-related proteins. Cell Transplant. 27:1222–1234. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Huang Z, Dong X, Zhuang X, Hu X, Wang L and Liao X: Exogenous hydrogen sulfide protects against high glucose-induced inflammation and cytotoxicity in H9c2 cardiac cells. Mol Med Rep. 14:4911–4917. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Yuan C, Hou HT, Chen HX, Wang J, Wang ZQ, Chen TN, Novakovic A, Marinko M, Yang Q, Liu ZG, et al: Hydrogen sulfide-mediated endothelial function and the interaction with eNOS and PDE5A activity in human internal mammary arteries. J Int Med Res. 47:3778–3791. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Wang GG and Li W: Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice. Iran J Basic Med Sci. 22:1192–1197. 2019.PubMed/NCBI

38 

Wang CN, Liu YJ, Duan GL, Zhao W, Li XH, Zhu XY and Ni X: CBS and CSE are critical for maintenance of mitochondrial function and glucocorticoid production in adrenal cortex. Antioxid Redox Signal. 21:2192–2207. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH and Moore PK: Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): New insights into the biology of hydrogen sulfide. Circulation. 117:2351–2360. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Castelblanco M, Lugrin J, Ehirchiou D, Nasi S, Ishii I, So A, Martinon F and Busso N: Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation. J Biol Chem. 293:2546–2557. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Qiu Y, Wu Y, Meng M, Luo M, Zhao H, Sun H and Gao S: GYY4137 protects against myocardial ischemia/reperfusion injury via activation of the PHLPP-1/Akt/Nrf2 signaling pathway in diabetic mice. J Surg Res. 225:29–39. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Yang H, Mao Y, Tan B, Luo S and Zhu Y: The protective effects of endogenous hydrogen sulfide modulator, S-propargyl-cysteine, on high glucose-induced apoptosis in cardiomyocytes: A novel mechanism mediated by the activation of Nrf2. Eur J Pharmacol. 761:135–143. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Qian X, Li X, Ma F, Luo S, Ge R and Zhu Y: Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy. Biochem Biophys Res Commun. 473:931–938. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Kan J, Guo W, Huang C, Bao G, Zhu Y and Zhu YZ: S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal. 20:2303–2316. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Zhao FL, Fang F, Qiao PF, Yan N, Gao D and Yan Y: AP39, a mitochondria-targeted hydrogen sulfide donor, supports cellular bioenergetics and protects against Alzheimer's disease by preserving mitochondrial function in APP/PS1 mice and neurons. Oxid Med Cell Longev. 2016:83607382016. View Article : Google Scholar : PubMed/NCBI

46 

Szczesny B, Módis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M and Szabo C: AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide. 41:120–130. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Chao C, Zatarain JR, Ding Y, Coletta C, Mrazek AA, Druzhyna N, Johnson P, Chen H, Hellmich JL, Asimakopoulou A, et al: Cystathionine-beta-synthase inhibition for colon cancer: Enhancement of the efficacy of aminooxyacetic acid via the prodrug approach. Mol Med. 22:361–379. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Lilyanna S, Peh MT, Liew OW, Wang P, Moore PK, Richards AM and Martinez EC: GYY4137 attenuates remodeling, preserves cardiac function and modulates the natriuretic peptide response to ischemia. J Mol Cell Cardiol. 87:27–37. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Zhou X, Tang S, Hu K, Zhang Z, Liu P, Luo Y, Kang J and Xu L: DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath. 22:853–863. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Szabo C, Ransy C, Modis K, Andriamihaja M, Murghes B, Coletta C, Olah G, Yanagi K and Bouillaud F: Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol. 171:2099–2122. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y, Meng G, Han Y, Wang Y, Liu G, et al: Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes. 65:3171–3184. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Meng G, Liu J, Liu S, Song Q, Liu L, Xie L, Han Y and Ji Y: Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol. 175:1126–1145. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Sun Y, Lu F, Yu X, Wang B, Chen J, Lu F, Peng S, Sun X, Yu M, Chen H, et al: Exogenous H2S promoted USP8 sulfhydration to regulate mitophagy in the hearts of db/db mice. Aging Dis. 11:269–285. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Yu M, Du H, Wang B, Chen J, Lu F, Peng S, Sun Y, Liu N, Sun X, Shiyun D, et al: Exogenous H2S induces Hrd1 S-sulfhydration and prevents CD36 translocation via VAMP3 ubiquitylation in diabetic hearts. Aging Dis. 11:286–300. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Kar S, Shahshahan HR, Hackfort BT, Yadav SK, Yadav R, Kambis TN, Lefer DJ and Mishra PK: Exercise training promotes cardiac hydrogen sulfide biosynthesis and mitigates pyroptosis to prevent high-fat diet-induced diabetic cardiomyopathy. Antioxidants. 8:6382019. View Article : Google Scholar : PubMed/NCBI

56 

Shimizu Y, Polavarapu R, Eskla KL, Nicholson CK, Koczor CA, Wang R, Lewis W, Shiva S, Lefer DJ and Calvert JW: Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol. 116:29–40. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Wu T, Li H, Wu B, Zhang L, Wu SW, Wang JN and Zhang YE: Hydrogen sulfide reduces recruitment of CD11b+Gr-1+ cells in mice with myocardial infarction. Cell Transplant. 26:753–764. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Ye P, Gu Y, Zhu YR, Chao YL, Kong XQ, Luo J, Ren XM, Zuo GF, Zhang DM and Chen SL: Exogenous hydrogen sulfide attenuates the development of diabetic cardiomyopathy via the FoxO1 pathway. J Cell Physiol. 233:9786–9798. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Ellmers LJ, Templeton EM, Pilbrow AP, Frampton C, Ishii I, Moore PK, Bhatia M, Richards AM and Cameron VA: Hydrogen sulfide treatment improves post-infarct remodeling and long-term cardiac function in CSE knockout and wild-type mice. Int J Mol Sci. 21:42842020. View Article : Google Scholar : PubMed/NCBI

60 

Sun X, Zhao D, Lu F, Peng S, Yu M, Liu N, Sun Y, Du H, Wang B, Chen J, et al: Hydrogen sulfide regulates muscle RING finger-1 protein S-sulfhydration at Cys44 to prevent cardiac structural damage in diabetic cardiomyopathy. Br J Pharmacol. 177:836–856. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Meng G, Xiao Y, Ma Y, Tang X, Xie L, Liu J, Gu Y, Yu Y, Park CM, Xian M, et al: Hydrogen sulfide regulates krüppel-like factor 5 transcription activity via specificity protein 1 s-sulfhydration at Cys664 to prevent myocardial hypertrophy. J Am Heart Assoc. 5:e0041602016. View Article : Google Scholar : PubMed/NCBI

62 

Yu W, Liao Y, Huang Y, Chen SY, Sun Y, Sun C, Wu Y, Tang C, Du J and Jin H: Endogenous hydrogen sulfide enhances carotid sinus baroreceptor sensitivity by activating the transient receptor potential cation channel subfamily V Member 1 (TRPV1) Channel. J Am Heart Assoc. 6:e0049712017. View Article : Google Scholar : PubMed/NCBI

63 

Jin S, Teng X, Xiao L, Xue H, Guo Q, Duan X, Chen Y and Wu Y: Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway. Exp Biol Med (Maywood). 242:1831–1841. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Meng G, Zhu J, Xiao Y, Huang Z, Zhang Y, Tang X, Xie L, Chen Y, Shao Y, Ferro A, et al: Hydrogen sulfide donor GYY4137 protects against myocardial fibrosis. Oxid Med Cell Longev. 2015:6910702015. View Article : Google Scholar : PubMed/NCBI

65 

Huang C, Kan J, Liu X, Ma F, Tran BH, Zou Y, Wang S and Zhu YZ: Cardioprotective effects of a novel hydrogen sulfide agent-controlled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms. PLoS One. 8:e692052013. View Article : Google Scholar : PubMed/NCBI

66 

Zhong X, Wang L, Wang Y, Dong S, Leng X, Jia J, Zhao Y, Li H, Zhang X, Xu C, et al: Exogenous hydrogen sulfide attenuates diabetic myocardial injury through cardiac mitochondrial protection. Mol Cell Biochem. 371:187–198. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C, Stahl GL and Sellke FW: Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg. 138:977–984. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Meng G, Wang J, Xiao Y, Bai W, Xie L, Shan L, Moore PK and Ji Y: GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats. J Biomed Res. 29:203–213. 2015.PubMed/NCBI

69 

King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao YX, et al: Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci USA. 111:3182–3187. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Karwi QG, Bice JS and Baxter GF: Pre- and postconditioning the heart with hydrogen sulfide (H2S) against ischemia/reperfusion injury in vivo: A systematic review and meta-analysis. Basic Res Cardiol. 113:62018. View Article : Google Scholar : PubMed/NCBI

71 

Xiong Q, Wang Z, Yu Y, Wen Y, Suguro R, Mao Y and Zhu YZ: Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res. 144:90–98. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Sun X, Wang W, Dai J, Jin S, Huang J, Guo C, Wang C, Pang L and Wang Y: A Long-term and slow-releasing hydrogen sulfide donor protects against myocardial ischemia/reperfusion injury. Sci Rep. 7:35412017. View Article : Google Scholar : PubMed/NCBI

73 

Hu MZ, Zhou B, Mao HY, Sheng Q, Du B, Chen JL, Pang QF and Ji Y: Exogenous hydrogen sulfide postconditioning protects isolated rat hearts from ischemia/reperfusion injury through Sirt1/PGC-1α signaling pathway. Int Heart J. 57:477–482. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Karwi QG, Bornbaum J, Boengler K, Torregrossa R, Whiteman M, Wood ME, Schulz R and Baxter GF: AP39, a mitochondria-targeting hydrogen sulfide (H2 S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. Br J Pharmacol. 174:287–301. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Nandi S, Ravindran S and Kurian GA: Role of endogenous hydrogen sulfide in cardiac mitochondrial preservation during ischemia reperfusion injury. Biomed Pharmacother. 97:271–279. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, et al: Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA. 104:15560–15565. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Ji Y, Pang Q, Xu G, Wang L, Wang J and Zeng Y: Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur J Pharmacol. 587:1–7. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Testai L, Marino A, Piano I, et al: The novel H2S-donor 4-carboxyphenyl isothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress. Pharmacol Res. 113:290–299. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Yao LL, Huang XW, Wang YG, Cao YX, Zhang CC and Zhu YC: Hydrogen sulfide protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by preventing GSK-3beta-dependent opening of mPTP. Am J Physiol Heart Circ Physiol. 298:H1310–H1319. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Lambert JP, Nicholson CK, Amin H, Amin S and Calvert JW: Hydrogen sulfide provides cardioprotection against myocardial/ischemia reperfusion injury in the diabetic state through the activation of the RISK pathway. Med Gas Res. 4:202014. View Article : Google Scholar : PubMed/NCBI

81 

Meng W, Pei Z, Feng Y, Zhao J, Chen Y, Shi W, Xu Q, Lin F, Sun M and Xiao K: Neglected role of hydrogen sulfide in sulfur mustard poisoning: Keap1 S-sulfhydration and subsequent Nrf2 pathway activation. Sci Rep. 7:94332017. View Article : Google Scholar : PubMed/NCBI

82 

Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG and Lefer DJ: hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res. 105:365–374. 2009. View Article : Google Scholar : PubMed/NCBI

83 

Tu W, Wang H, Li S, Liu Q and Sha H: The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 10:637–651. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Gao T, Furnari F and Newton AC: PHLPP: A phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 18:13–24. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Miyamoto S, Purcell NH, Smith JM, Gao T, Whittaker R, Huang K, Castillo R, Glembotski CC, Sussman MA, Newton AC and Brown JH: PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ Res. 107:476–484. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Ji K, Xue L, Cheng J and Bai Y: Preconditioning of H2S inhalation protects against cerebral ischemia/reperfusion injury by induction of HSP70 through PI3K/Akt/Nrf2 pathway. Brain Res Bull. 121:68–74. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Kang B, Li W, Xi W, Yi Y, Ciren Y, Shen H, Zhang Y, Jiang H, Xiao J and Wang Z: Hydrogen sulfide protects cardiomyocytes against apoptosis in ischemia/reperfusion through MiR-1-regulated histone deacetylase 4 pathway. Cell Physiol Biochem. 41:10–21. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Muñoz-Planillo R, Nuñez G, Franchi L and Eigenbrod T: The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 10:241–247. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Toldo S, Das A, Mezzaroma E, Chau VQ, Marchetti C, Durrant D, Samidurai A, Van Tassell BW, Yin C, Ockaili RA, et al: Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet. 7:311–320. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Zhu WD, Xu J, Zhang M, Zhu TM, Zhang YH and Sun K: MicroRNA-21 inhibits lipopolysaccharide-induced acute lung injury by targeting nuclear factor-κB. Exp Ther Med. 16:4616–4622. 2018.PubMed/NCBI

91 

Yan X, Liu Y, Kong X, Ji J, Zhu H, Zhang Z, Fu T, Yang J, Zhang Z, Liu F and Gu Z: MicroRNA-21-5p are involved in apoptosis and invasion of fibroblast-like synoviocytes through PTEN/PI3K/AKT signal. Cytotechnology. 71:317–328. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Huang W, Tian SS, Hang PZ, Sun C, Guo J and Du ZM: Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol Ther Nucleic Acids. 5:e2962016. View Article : Google Scholar : PubMed/NCBI

93 

Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M and Volchuk A: Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-Cell apoptosis. Endocrinology. 147:3398–3407. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Ren L, Wang Q, Chen Y, Ma Y and Wang D: Involvement of MicroRNA-133a in the protective effect of hydrogen sulfide against ischemia/reperfusion-induced endoplasmic reticulum stress and cardiomyocyte apoptosis. Pharmacology. 103:1–9. 2019. View Article : Google Scholar : PubMed/NCBI

95 

He B, Xiao J, Ren AJ, Zhang YF, Zhang H, Chen M, Xie B, Gao XG and Wang YW: Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci. 18:222011. View Article : Google Scholar : PubMed/NCBI

96 

Dakhlallah D, Zhang J, Yu L, Marsh CB, Angelos MG and Khan M: MicroRNA-133a engineered mesenchymal stem cells augment cardiac function and cell survival in the infarct heart. J Cardiovasc Pharmacol. 65:241–251. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Predmore BL, Kondo K, Bhushan S, Zlatopolsky MA, King AL, Aragon JP, Grinsfelder DB, Condit ME and Lefer DJ: The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability. Am J Physiol Heart Circ Physiol. 302:H2410–H2418. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD and Ichinose F: Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation. 120:888–896. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Bibli SI, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, et al: Mapping the endothelial Cell S-sulfhydrome highlights the crucial role of integrin sulfhydration in vascular function. Circulation. 143:935–948. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Sun J, Aponte AM, Menazza S, Gucek M, Steenbergen C and Murphy E: Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation. Cardiovasc Res. 110:96–106. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu D, Gu Y and Zhu D: Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 24: 875, 2021.
APA
Wu, D., Gu, Y., & Zhu, D. (2021). Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Molecular Medicine Reports, 24, 875. https://doi.org/10.3892/mmr.2021.12515
MLA
Wu, D., Gu, Y., Zhu, D."Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review)". Molecular Medicine Reports 24.6 (2021): 875.
Chicago
Wu, D., Gu, Y., Zhu, D."Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review)". Molecular Medicine Reports 24, no. 6 (2021): 875. https://doi.org/10.3892/mmr.2021.12515
Copy and paste a formatted citation
x
Spandidos Publications style
Wu D, Gu Y and Zhu D: Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 24: 875, 2021.
APA
Wu, D., Gu, Y., & Zhu, D. (2021). Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Molecular Medicine Reports, 24, 875. https://doi.org/10.3892/mmr.2021.12515
MLA
Wu, D., Gu, Y., Zhu, D."Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review)". Molecular Medicine Reports 24.6 (2021): 875.
Chicago
Wu, D., Gu, Y., Zhu, D."Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review)". Molecular Medicine Reports 24, no. 6 (2021): 875. https://doi.org/10.3892/mmr.2021.12515
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team