Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
October-2022 Volume 26 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2022 Volume 26 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Biological and neurological activities of astaxanthin (Review)

  • Authors:
    • Pan Si
    • Chenkai Zhu
  • View Affiliations / Copyright

    Affiliations: Department of Neurology Intervention, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China, Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
    Copyright: © Si et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 300
    |
    Published online on: August 8, 2022
       https://doi.org/10.3892/mmr.2022.12816
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Astaxanthin is a lipid‑soluble carotenoid produced by various microorganisms and marine animals, including bacteria, yeast, fungi, microalgae, shrimps and lobsters. Astaxanthin has antioxidant, anti‑inflammatory and anti‑apoptotic properties. These characteristics suggest that astaxanthin has health benefits and protects against various diseases. Owing to its ability to cross the blood‑brain barrier, astaxanthin has received attention for its protective effects against neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, cerebral ischemia/reperfusion, subarachnoid hemorrhage, traumatic brain injury, spinal cord injury, cognitive impairment and neuropathic pain. Previous studies on the neurological effects of astaxanthin are mostly based on animal models and cellular experiments. Thus, the biological effects of astaxanthin on humans and its underlying mechanisms are still not fully understood. The present review summarizes the neuroprotective effects of astaxanthin, explores its mechanisms of action and draws attention to its potential clinical implications as a therapeutic agent.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Hu J, Nagarajan D, Zhang Q, Chang JS and Lee DJ: Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol Adv. 36:54–67. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Zheng YF, Bae SH, Kwon MJ, Park JB, Choi HD, Shin WG and Bae SK: Inhibitory effects of astaxanthin, β-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin on cytochrome P450 enzyme activities. Food Chem Toxicol. 59:78–85. 2013. View Article : Google Scholar

3 

Guerin M, Huntley ME and Olaizola M: Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 21:210–216. 2003. View Article : Google Scholar

4 

Boussiba S: Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol Plant. 108:111–117. 2010. View Article : Google Scholar

5 

Higuera-Ciapara I, Félix-Valenzuela L and Goycoolea FM: Astaxanthin: A review of its chemistry and applications. Crit Rev Food Sci Nutr. 46:185–196. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Tume RK, Sikes AL, Tabrett S and Smith DM: Effect of background colour on the distribution of astaxanthin in black tiger prawn (Penaeus monodon): Effective method for improvement of cooked colour. Aquaculture. 296:129–135. 2009. View Article : Google Scholar

7 

Mosaad YO, Gobba NA and Hussein MA: Astaxanthin; a promising protector against gentamicin-induced nephrotoxicity in rats. Curr Pharm Biotechnol. 17:1189–1197. 2016. View Article : Google Scholar

8 

Curek GD, Cort A, Yucel G, Demir N, Ozturk S, Elpek GO, Savas B and Aslan M: Effect of astaxanthin on hepatocellular injury following ischemia/reperfusion. Toxicology. 267:147–153. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Kishimoto Y, Yoshida H and Kondo K: Potential anti-atherosclerotic properties of astaxanthin. Mar Drugs. 14:352016. View Article : Google Scholar

10 

Zajac G, Machalska E, Kaczor A, Kessler J, Bouř P and Baranska M: Structure of supramolecular astaxanthin aggregates revealed by molecular dynamics and electronic circular dichroism spectroscopy. Phys Chem Chem Phys. 20:18038–18046. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Wang C, Armstrong DW and Chang CD: Rapid baseline separation of enantiomers and a mesoform of all-trans-astaxanthin, 13-cis-astaxanthin, adonirubin, and adonixanthin in standards and commercial supplements. J Chromatogr A. 1194:172–177. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Liu X, Luo Q, Cao Y, Goulette T, Liu X and Xiao H: Mechanism of different stereoisomeric astaxanthin in resistance to oxidative stress in caenorhabditis elegans. J Food Sci. 81:H2280–H2287. 2016. View Article : Google Scholar

13 

Yuan JP, Peng J, Yin K and Wang JH: Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol Nutr Food Res. 55:150–165. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Ambati RR, Phang SM, Ravi S and Aswathanarayana RG: Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications-a review. Mar Drugs. 12:128–152. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Fakhri S, Abbaszadeh F, Dargahi L and Jorjani M: Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res. 136:1–20. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Raja R, Hemaiswarya S, Kumar NA, Sridhar S and Rengasamy R: A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol. 34:77–88. 2008. View Article : Google Scholar

17 

Capelli B, Bagchi D and Cysewski GR: Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods. 12:145–152. 2013. View Article : Google Scholar

18 

Baccouche B, Benlarbi M, Barber AJ and Ben Chaouacha-Chekir R: Short-term administration of astaxanthin attenuates retinal changes in diet-induced diabetic psammomys obesus. Curr Eye Res. 43:1177–1189. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Yoshihisa Y, Rehman MU and Shimizu T: Astaxanthin, a xanthophyll carotenoid, inhibits ultraviolet-induced apoptosis in keratinocytes. Exp Dermatol. 23:178–183. 2014. View Article : Google Scholar

20 

Ito N, Seki S and Ueda F: The protective role of astaxanthin for UV-induced skin deterioration in healthy people-a randomized, double-blind, placebo-controlled trial. Nutrients. 10:8172018. View Article : Google Scholar

21 

Bhuvaneswari S, Arunkumar E, Viswanathan P and Anuradha CV: Astaxanthin restricts weight gain, promotes insulin sensitivity and curtails fatty liver disease in mice fed a obesity-promoting diet. Process Biochem. 45:1406–1414. 2010. View Article : Google Scholar

22 

Fan CD, Sun JY, Fu XT, Hou YJ, Li Y, Yang MF, Fu XY and Sun BL: Astaxanthin attenuates homocysteine-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Front Physiol. 8:10412017. View Article : Google Scholar

23 

Kim JH, Park JJ, Lee BJ, Joo MK, Chun HJ, Lee SW and Bak YT: Astaxanthin inhibits proliferation of human gastric cancer cell lines by Interrupting cell cycle progression. Gut Liver. 10:369–374. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Wu H, Niu H, Shao A, Wu C, Dixon BJ, Zhang J, Yang S and Wang Y: Astaxanthin as a potential neuroprotective agent for neurological diseases. Mar Drugs. 13:5750–5766. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Grimmig B, Kim SH, Nash K, Bickford PC and Douglas Shytle R: Neuroprotective mechanisms of astaxanthin: A potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience. 39:19–32. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Khademian M and Imlay JA: How microbes evolved to tolerate oxygen. Trends Microbiol. 29:428–440. 2021. View Article : Google Scholar

27 

Hammarlund EU, Flashman E, Mohlin S and Licausi F: Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science. 370:eaba35122020. View Article : Google Scholar : PubMed/NCBI

28 

Kamath BS, Srikanta BM, Dharmesh SM, Sarada R and Ravishankar GA: Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. Eur J Pharmacol. 590:387–395. 2008. View Article : Google Scholar

29 

Rao AR, Sindhuja HN, Dharmesh SM, Sankar KU, Sarada R and Ravishankar GA: Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J Agric Food Chem. 61:3842–3851. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Naguib YM: Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem. 48:1150–1154. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Nakajima Y, Inokuchi Y, Shimazawa M, Otsubo K, Ishibashi T and Hara H: Astaxanthin, a dietary carotenoid, protects retinal cells against oxidative stress in-vitro and in mice in-vivo. J Pharm Pharmacol. 60:1365–1374. 2008. View Article : Google Scholar

32 

Ye Q, Zhang X, Huang B, Zhu Y and Chen X: Astaxanthin suppresses MPP(+)-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway. Mar Drugs. 11:1019–1034. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Zarneshan SN, Fakhri S, Farzaei MH, Khan H and Saso L: Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem Toxicol. 145:1117142020. View Article : Google Scholar

34 

Wu Q, Zhang XS, Wang HD, Zhang X, Yu Q, Li W, Zhou ML and Wang XL: Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar Drugs. 12:6125–6141. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Li Z, Dong X, Liu H, Chen X, Shi H, Fan Y, Hou D and Zhang X: Astaxanthin protects ARPE-19 cells from oxidative stress via upregulation of Nrf2-regulated phase II enzymes through activation of PI3K/Akt. Mol Vis. 19:1656–1666. 2013.PubMed/NCBI

36 

Wang HQ, Sun XB, Xu YX, Zhao H, Zhu QY and Zhu CQ: Astaxanthin upregulates heme oxygenase-1 expression through ERK1/2 pathway and its protective effect against beta-amyloid-induced cytotoxicity in SH-SY5Y cells. Brain Res. 1360:159–167. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Al-Amin MM, Mahmud W, Pervin MS, Ridwanul Islam SM, Ashikur Rahman M and Zinchenko A: Astaxanthin ameliorates scopolamine-induced spatial memory deficit via reduced cortical-striato-hippocampal oxidative stress. Brain Res. 1710:74–81. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Kim SH, Lim JW and Kim H: Astaxanthin inhibits mitochondrial dysfunction and interleukin-8 expression in helicobacter pylori-infected gastric epithelial cells. Nutrients. 10:13202018. View Article : Google Scholar

39 

Ranga Rao A, Raghunath Reddy RL, Baskaran V, Sarada R and Ravishankar GA: Characterization of microalgal carotenoids by mass spectrometry and their bioavailability and antioxidant properties elucidated in rat model. J Agric Food Chem. 58:8553–8559. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, Golenbock D, Gresnigt MS, Heneka MT, Hoffman HM, et al: A guiding map for inflammation. Nat Immunol. 18:826–831. 2017. View Article : Google Scholar

41 

Taniguchi K and Karin M: NF-κB, inflammation, immunity and cancer: Coming of age. Nat Rev Immunol. 18:309–324. 2018. View Article : Google Scholar

42 

Ghosh S, May MJ and Kopp EB: NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 16:225–260. 1998. View Article : Google Scholar

43 

Liu T, Zhang L, Joo D and Sun SC: NF-κB signaling in inflammation. Signal Transduct Target Ther. 2:170232017. View Article : Google Scholar : PubMed/NCBI

44 

Yang C, Hassan YI, Liu R, Zhang H, Chen Y, Zhang L and Tsao R: Anti-inflammatory effects of different astaxanthin isomers and the roles of lipid transporters in the cellular transport of astaxanthin isomers in Caco-2 cell monolayers. J Agric Food Chem. 67:6222–6231. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Grilo AL and Mantalaris A: Apoptosis: A mammalian cell bioprocessing perspective. Biotechnol Adv. 37:459–475. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Warren CFA, Wong-Brown MW and Bowden NA: BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 10:1772019. View Article : Google Scholar : PubMed/NCBI

47 

Adams JM and Cory S: The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 25:27–36. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014. View Article : Google Scholar

49 

Zhang L and Wang H: Multiple mechanisms of anti-cancer effects exerted by astaxanthin. Mar Drugs. 13:4310–4330. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Dong LY, Jin J, Lu G and Kang XL: Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress. Mar Drugs. 11:960–974. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Guo SX, Zhou HL, Huang CL, You CG, Fang Q, Wu P, Wang XG and Han CM: Astaxanthin attenuates early acute kidney injury following severe burns in rats by ameliorating oxidative stress and mitochondrial-related apoptosis. Mar Drugs. 13:2105–2123. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Zhang XS, Zhang X, Wu Q, Li W, Zhang QR, Wang CX, Zhou XM, Li H, Shi JX and Zhou ML: Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: Possible involvement of Akt/bad signaling. Mar Drugs. 12:4291–4310. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Li S, Takahara T, Fujino M, Fukuhara Y, Sugiyama T, Li XK and Takahara S: Astaxanthin prevents ischemia-reperfusion injury of the steatotic liver in mice. PLoS One. 12:e01878102017. View Article : Google Scholar : PubMed/NCBI

54 

Klein RS and Hunter CA: Protective and pathological immunity during central nervous system infections. Immunity. 46:891–909. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Manabe Y, Komatsu T, Seki S and Sugawara T: Dietary astaxanthin can accumulate in the brain of rats. Biosci Biotechnol Biochem. 82:1433–1436. 2018. View Article : Google Scholar : PubMed/NCBI

56 

El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A and Azab SS: Astaxanthin ameliorates doxorubicin-induced cognitive impairment (Chemobrain) in experimental rat model: Impact on oxidative, inflammatory, and apoptotic machineries. Mol Neurobiol. 55:5727–5740. 2018. View Article : Google Scholar

57 

Lee H, Lim JW and Kim H: Effect of astaxanthin on activation of autophagy and inhibition of apoptosis in helicobacter pylori-infected gastric epithelial cell line AGS. Nutrients. 12:17502020. View Article : Google Scholar

58 

Damodara Gowda KM, Suchetha Kumari N and Ullal H: Role of astaxanthin in the modulation of brain-derived neurotrophic factor and spatial learning behavior in perinatally undernourished Wistar rats. Nutr Neurosci. 23:422–431. 2020. View Article : Google Scholar

59 

Wang YL, Zhu XL, Sun MH and Dang YK: Effects of astaxanthin onaxonal regeneration via cAMP/PKA signaling pathway in mice with focal cerebral infarction. Eur Rev Med Pharmacol Sci. 23 (3 Suppl):S135–S143. 2019.

60 

Cullen DK, Simon CM and LaPlaca MC: Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Res. 1158:103–115. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Ahmed S, Reynolds BA and Weiss S: BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci. 15:5765–5778. 1995. View Article : Google Scholar

62 

Tublin JM, Adelstein JM, Del Monte F, Combs CK and Wold LE: Getting to the heart of Alzheimer disease. Circ Res. 124:142–149. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Alzheimer's Association: 2016 Alzheimer's disease facts and figures. Alzheimers Dement. 12:459–509. 2016. View Article : Google Scholar

64 

Jia J, Wang F, Wei C, Zhou A, Jia X, Li F, Tang M, Chu L, Zhou Y, Zhou C, et al: The prevalence of dementia in urban and rural areas of China. Alzheimers Dement. 10:1–9. 2014. View Article : Google Scholar

65 

Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, Fowler C, Li QX, Martins R, Rowe C, et al: High performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature. 554:249–254. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Butterfield DA, Castegna A, Lauderback CM and Drake J: Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol Aging. 23:655–664. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Pradeepkiran JA and Reddy PH: Defective mitophagy in Alzheimer's disease. Ageing Res Rev. 64:1011912020. View Article : Google Scholar : PubMed/NCBI

68 

Squitti R, Mendez A, Ricordi C, Siotto M and Goldberg R: Copper in glucose intolerance, cognitive decline, and Alzheimer disease. Alzheimer Dis Assoc Disord. 33:77–85. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Bjørklund G, Dadar M, Peana M, Rahaman MS and Aaseth J: Interactions between iron and manganese in neurotoxicity. Arch Toxicol. 94:725–734. 2020. View Article : Google Scholar

70 

Khan MM, Xiao J, Patel D and LeDoux MS: DNA damage and neurodegenerative phenotypes in aged Ciz1 null mice. Neurobiol Aging. 62:180–190. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Ito N, Saito H, Seki S, Ueda F and Asada T: Effects of composite supplement containing astaxanthin and sesamin on cognitive functions in people with mild cognitive impairment: A randomized, double-blind, placebo-controlled trial: Erratum. J Alzheimers Dis. 68:8392019. View Article : Google Scholar : PubMed/NCBI

72 

Sekikawa T, Kizawa Y, Li Y and Takara T: Cognitive function improvement with astaxanthin and tocotrienol intake: A randomized, double-blind, placebo-controlled study. J Clin Biochem Nutr. 67:307–316. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Taksima T, Chonpathompikunlert P, Sroyraya M, Hutamekalin P, Limpawattana M and Klaypradit W: Effects of astaxanthin from shrimp shell on oxidative stress and behavior in animal model of Alzheimer's disease. Mar Drugs. 17:6282019. View Article : Google Scholar

74 

Kellar D and Craft S: Brain insulin resistance in Alzheimer's disease and related disorders: Mechanisms and therapeutic approaches. Lancet Neurol. 19:758–766. 2020. View Article : Google Scholar

75 

Rahman SO, Panda BP, Parvez S, Kaundal M, Hussain S, Akhtar M and Najmi AK: Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer's disease. Biomed Pharmacother. 110:47–58. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Craft S and Watson GS: Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurol. 3:169–178. 2004. View Article : Google Scholar

77 

Kim RE, Shin CY, Han SH and Kwon KJ: Astaxanthin suppresses PM2.5-induced neuroinflammation by regulating Akt phosphorylation in BV-2 microglial cells. Int J Mol Sci. 21:72272020. View Article : Google Scholar

78 

Kim YH, Koh HK and Kim DS: Down-regulation of IL-6 production by astaxanthin via ERK-, MSK-, and NF-κB-mediated signals in activated microglia. Int Immunopharmacol. 10:1560–1572. 2010. View Article : Google Scholar

79 

Wen X, Huang A, Hu J, Zhong Z, Liu Y, Li Z, Pan X and Liu Z: Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: Involvement of the Akt/GSK-3β pathway. Neuroscience. 303:558–568. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Ascherio A and Schwarzschild MA: The epidemiology of Parkinson's disease: Risk factors and prevention. Lancet Neurol. 15:1257–1272. 2016. View Article : Google Scholar

81 

Samii A, Nutt JG and Ransom BR: Parkinson's disease. Lancet. 363:1783–1793. 2004. View Article : Google Scholar

82 

Sayre LM, Smith MA and Perry G: Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem. 8:721–738. 2001. View Article : Google Scholar : PubMed/NCBI

83 

Issa AR, Sun J, Petitgas C, Mesquita A, Dulac A, Robin M, Mollereau B, Jenny A, Chérif-Zahar B and Birman S: The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain. Autophagy. 14:1898–1910. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Ye Q, Huang B, Zhang X, Zhu Y and Chen X: Astaxanthin protects against MPP(+)-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis. BMC Neurosci. 13:1562012. View Article : Google Scholar

85 

Brasil FB, Bertolini Gobbo RC, Souza de Almeida FJ, Luckachaki MD, Dall'Oglio EL and de Oliveira MR: The signaling pathway PI3K/Akt/Nrf2/HO-1 plays a role in the mitochondrial protection promoted by astaxanthin in the SH-SY5Y cells exposed to hydrogen peroxide. Neurochem Int. 146:1050242021. View Article : Google Scholar

86 

Lee DH, Kim CS and Lee YJ: Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol. 49:271–280. 2011. View Article : Google Scholar

87 

Kim JH, Hwang J, Shim E, Chung EJ, Jang SH and Koh SB: Association of serum carotenoid, retinol, and tocopherol concentrations with the progression of Parkinson's disease. Nutr Res Pract. 11:114–120. 2017. View Article : Google Scholar

88 

Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM and Donnan GA: Ischaemic stroke. Nat Rev Dis Primers. 5:702019. View Article : Google Scholar : PubMed/NCBI

89 

George PM and Steinberg GK: Novel stroke therapeutics: Unraveling stroke pathophysiology and its impact on clinical treatments. Neuron. 87:297–309. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Lazou A, Bogoyevitch MA, Clerk A, Fuller SJ, Marshall CJ and Sugden PH: Regulation of mitogen-activated protein kinase cascade in adult rat heart preparations in vitro. Circ Res. 75:932–941. 1994. View Article : Google Scholar : PubMed/NCBI

91 

Zhang R, Liu C, Liu X and Guo Y: Protective effect of spatholobus suberectus on brain tissues in cerebral ischemia. Am J Transl Res. 8:3963–3969. 2016.PubMed/NCBI

92 

Vani JR, Mohammadi MT, Foroshani MS and Jafari M: Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. EXCLI J. 15:378–390. 2016.PubMed/NCBI

93 

Xue Y, Qu Z, Fu J, Zhen J and Wang W, Cai Y and Wang W: The protective effect of astaxanthin on learning and memory deficits and oxidative stress in a mouse model of repeated cerebral ischemia/reperfusion. Brain Res Bull. 131:221–228. 2017. View Article : Google Scholar

94 

Pan L, Zhou Y, Li XF, Wan QJ and Yu LH: Preventive treatment of astaxanthin provides neuroprotection through suppression of reactive oxygen species and activation of antioxidant defense pathway after stroke in rats. Brain Res Bull. 130:211–220. 2017. View Article : Google Scholar

95 

Lee DH, Lee YJ and Kwon KH: Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J Clin Biochem Nutr. 47:121–129. 2010. View Article : Google Scholar : PubMed/NCBI

96 

Lu YP, Liu SY, Sun H, Wu XM, Li JJ and Zhu L: Neuroprotective effect of astaxanthin on H(2)O(2)-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Res. 1360:40–48. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Yang BB, Zou M, Zhao L and Zhang YK: Astaxanthin attenuates acute cerebral infarction via Nrf-2/HO-1 pathway in rats. Curr Res Transl Med. 69:1032712021. View Article : Google Scholar : PubMed/NCBI

98 

Budohoski KP, Guilfoyle M, Helmy A, Huuskonen T, Czosnyka M, Kirollos R, Menon DK, Pickard JD and Kirkpatrick PJ: The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 85:1343–1353. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Vergouwen MD, Ilodigwe D and Macdonald RL: Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm-dependent and -independent effects. Stroke. 42:924–929. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J and Zhang JH: Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 115:64–91. 2014. View Article : Google Scholar

101 

Serrone JC, Maekawa H, Tjahjadi M and Hernesniemi J: Aneurysmal subarachnoid hemorrhage: Pathobiology, current treatment and future directions. Expert Rev Neurother. 15:367–380. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Zhang X, Lu Y, Wu Q, Dai H, Li W, Lv S, Zhou X, Zhang X, Hang C and Wang J: Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll-like receptor 4 signaling pathway. FASEB J. 33:722–737. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Zhang XS, Zhang X, Zhou ML, Zhou XM, Li N, Li W, Cong ZX, Sun Q, Zhuang Z, Wang CX and Shi JX: Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage. J Neurosurg. 121:42–54. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Wang Y, Liu Y, Li Y, Liu B, Wu P, Xu S and Shi H: Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: Reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function. Acta Histochem. 121:56–63. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z and van den Berg LH: Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 3:170712017. View Article : Google Scholar : PubMed/NCBI

106 

Arthur KC, Calvo A, Price TR, Geiger JT, Chiò A and Traynor BJ: Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun. 7:124082016. View Article : Google Scholar : PubMed/NCBI

107 

Nuevo Ordoñez Y, Montes-Bayón M, Blanco-González E and Sanz-Medel A: Quantitative analysis and simultaneous activity measurements of Cu, Zn-superoxide dismutase in red blood cells by HPLC-ICPMS. Anal Chem. 82:2387–2394. 2010. View Article : Google Scholar

108 

Bond L, Bernhardt K, Madria P, Sorrentino K, Scelsi H and Mitchell CS: A metadata analysis of oxidative stress etiology in preclinical amyotrophic lateral sclerosis: Benefits of antioxidant therapy. Front Neurosci. 12:102018. View Article : Google Scholar

109 

Isonaka R, Hiruma H, Katakura T and Kawakami T: Inhibition of superoxide dismutase selectively suppresses growth of rat spinal motor neurons: Comparison with phosphorylated neurofilament-containing spinal neurons. Brain Res. 1425:13–19. 2011. View Article : Google Scholar : PubMed/NCBI

110 

Fitzgerald KC, O'Reilly ÉJ, Fondell E, Falcone GJ, McCullough ML, Park Y, Kolonel LN and Ascherio A: Intakes of vitamin C and carotenoids and risk of amyotrophic lateral sclerosis: Pooled results from 5 cohort studies. Ann Neurol. 73:236–245. 2013. View Article : Google Scholar

111 

Nieves JW, Gennings C, Factor-Litvak P, Hupf J, Singleton J, Sharf V, Oskarsson B, Fernandes Filho JA, Sorenson EJ, D'Amico E, et al: Association between dietary intake and function in amyotrophic lateral sclerosis. JAMA Neurol. 73:1425–1432. 2016. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Si P and Zhu C: Biological and neurological activities of astaxanthin (Review). Mol Med Rep 26: 300, 2022.
APA
Si, P., & Zhu, C. (2022). Biological and neurological activities of astaxanthin (Review). Molecular Medicine Reports, 26, 300. https://doi.org/10.3892/mmr.2022.12816
MLA
Si, P., Zhu, C."Biological and neurological activities of astaxanthin (Review)". Molecular Medicine Reports 26.4 (2022): 300.
Chicago
Si, P., Zhu, C."Biological and neurological activities of astaxanthin (Review)". Molecular Medicine Reports 26, no. 4 (2022): 300. https://doi.org/10.3892/mmr.2022.12816
Copy and paste a formatted citation
x
Spandidos Publications style
Si P and Zhu C: Biological and neurological activities of astaxanthin (Review). Mol Med Rep 26: 300, 2022.
APA
Si, P., & Zhu, C. (2022). Biological and neurological activities of astaxanthin (Review). Molecular Medicine Reports, 26, 300. https://doi.org/10.3892/mmr.2022.12816
MLA
Si, P., Zhu, C."Biological and neurological activities of astaxanthin (Review)". Molecular Medicine Reports 26.4 (2022): 300.
Chicago
Si, P., Zhu, C."Biological and neurological activities of astaxanthin (Review)". Molecular Medicine Reports 26, no. 4 (2022): 300. https://doi.org/10.3892/mmr.2022.12816
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team