|
1
|
Whiteside TL, Demaria S, Rodriguez-Ruiz
ME, Zarour HM and Melero I: Emerging opportunities and challenges
in cancer immunotherapy. Clin Cancer Res. 22:1845–1855. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hodi FS, O'Day SJ, McDermott DF, Weber RW,
Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel
JC, et al: Improved survival with ipilimumab in patients with
metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Topalian SL, Sznol M, McDermott DF, Kluger
HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB,
Powderly JD, et al: Survival, durable tumor remission, and
long-term safety in patients with advanced melanoma receiving
nivolumab. J Clin Oncol. 32:1020–1030. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tang H, Qiao J and Fu YX: Immunotherapy
and tumor microenvironment. Cancer Lett. 370:85–90. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Beatty GL and Gladney WL: Immune escape
mechanisms as a guide for cancer immunotherapy. Clin Cancer Res.
21:687–692. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Klemm F and Joyce JA: Microenvironmental
regulation of therapeutic response in cancer. Trends Cell Biol.
25:198–213. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Swartz MA, Iida N, Roberts EW, Sangaletti
S, Wong MH, Yull FE, Coussens LM and DeClerck YA: Tumor
microenvironment complexity: Emerging roles in cancer therapy.
Cancer Res. 72:2473–2480. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Junttila MR and de Sauvage FJ: Influence
of tumour micro-environment heterogeneity on therapeutic response.
Nature. 501:346–354. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Becker JC, Andersen MH, Schrama D and
Straten Thor P: Immune-suppressive properties of the tumor
microenvironment. Cancer Immunol Immunother. 62:1137–1148. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen L and Flies DB: Molecular mechanisms
of T cell co-stimulation and co-inhibition. Nat Rev Immunol.
13:227–242. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wherry EJ: T cell exhaustion. Nat Immunol.
12:492–499. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
12
|
Warburg O, Wind F and Negelein E: The
metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Walls J, Sinclair L and Finlay D: Nutrient
sensing, signal transduction and immune responses. Semin Immunol.
28:396–407. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fallarino F, Grohmann U, Vacca C, Bianchi
R, Orabona C, Spreca A, Fioretti MC and Puccetti P: T cell
apoptosis by tryptophan catabolism. Cell Death Differ. 9:1069–1077.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Munn DH and Mellor AL: Indoleamine 2,3
dioxygenase and metabolic control of immune responses. Trends
Immunol. 34:137–143. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jiang Y, Li Y and Zhu B: T-cell exhaustion
in the tumor microenvironment. Cell Death Dis. 6:e17922015.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kalluri R and Zeisberg M: Fibroblasts in
cancer. Nat Rev Cancer. 6:392–401. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kalluri R: The biology and function of
fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fearon DT: The carcinoma-associated
fibroblast expressing fibroblast activation protein and escape from
immune surveillance. Cancer Immunol Res. 2:187–193. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lee HO, Mullins SR, Franco-Barraza J,
Valianou M, Cukierman E and Cheng JD: FAP-overexpressing
fibroblasts produce an extracellular matrix that enhances invasive
velocity and directionality of pancreatic cancer cells. BMC Cancer.
11:2452011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shimoda M, Mellody KT and Orimo A:
Carcinoma-associated fibroblasts are a rate-limiting determinant
for tumour progression. Semin Cell Dev Biol. 21:19–25. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rucki AA and Zheng L: Pancreatic cancer
stroma: Understanding biology leads to new therapeutic strategies.
World J Gastroenterol. 20:2237–2246. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kraman M, Bambrough PJ, Arnold JN, Roberts
EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA and Fearon DT:
Suppression of antitumor immunity by stromal cells expressing
fibroblast activation protein-alpha. Science. 330:827–830. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Motz GT and Coukos G: The parallel lives
of angiogenesis and immunosuppression: Cancer and other tales. Nat
Rev Immunol. 11:702–711. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rofstad EK, Galappathi K and Mathiesen BS:
Tumor interstitial fluid pressure-a link between tumor hypoxia,
microvascular density, and lymph node metastasis. Neoplasia.
16:586–594. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Goel S, Duda DG, Xu L, Munn LL, Boucher Y,
Fukumura D and Jain RK: Normalization of the vasculature for
treatment of cancer and other diseases. Physiol Rev. 91:1071–1121.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Carmeliet P and Jain RK: Molecular
mechanisms and clinical applications of angiogenesis. Nature.
473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Shweiki D, Itin A, Soffer D and Keshet E:
Vascular endothelial growth factor induced by hypoxia may mediate
hypoxia-initiated angiogenesis. Nature. 359:843–845. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Calcinotto A, Filipazzi P, Grioni M, Iero
M, De Milito A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti
M, et al: Modulation of microenvironment acidity reverses anergy in
human and murine tumor-infiltrating T lymphocytes. Cancer Res.
72:2746–2756. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Balamurugan K: HIF-1 at the crossroads of
hypoxia, inflammation, and cancer. Int J Cancer. 138:1058–1066.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wu MZ, Tsai YP, Yang MH, Huang CH, Chang
SY, Chang CC, Teng SC and Wu KJ: Interplay between HDAC3 and WDR5
is essential for hypoxia-induced epithelial-mesenchymal transition.
Mol Cell. 43:811–822. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Pottier C, Wheatherspoon A, Roncarati P,
Longuespée R, Herfs M, Duray A, Delvenne P and Quatresooz P: The
importance of the tumor microenvironment in the therapeutic
management of cancer. Expert Rev Anticancer Ther. 15:943–954. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jain RK: Normalizing tumor
microenvironment to treat cancer: Bench to bedside to biomarkers. J
Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Apte M, Pirola RC and Wilson JS:
Pancreatic stellate cell: Physiologic role, role in fibrosis and
cancer. Curr Opin Gastroenterol. 31:416–423. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Feig C, Gopinathan A, Neesse A, Chan DS,
Cook N and Tuveson DA: The pancreas cancer microenvironment. Clin
Cancer Res. 18:4266–4276. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kashiwagi S, Izumi Y, Gohongi T, Demou ZN,
Xu L, Huang PL, Buerk DG, Munn LL, Jain RK and Fukumura D: NO
mediates mural cell recruitment and vessel morphogenesis in murine
melanomas and tissue-engineered blood vessels. J Clin Invest.
115:1816–1827. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Baldewijns MM, Thijssen VL, Van den Eynden
GG, Van Laere SJ, Bluekens AM, Roskams T, van Poppel H, De Bruine
AP, Griffioen AW and Vermeulen PB: High-grade clear cell renal cell
carcinoma has a higher angiogenic activity than low-grade renal
cell carcinoma based on histomorphological quantification and
qRT-PCR mRNA expression profile. Br J Cancer. 96:1888–1895. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Padera TP, Stoll BR, Tooredman JB, Capen
D, di Tomaso E and Jain RK: Pathology: Cancer cells compress
intratumour vessels. Nature. 427:6952004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chevrier S, Levine JH, Zanotelli VRT,
Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H,
et al: An immune atlas of clear cell renal cell carcinoma. Cell.
169(736–749): e182017.
|
|
41
|
Lavin Y, Kobayashi S, Leader A, Amir ED,
Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH,
et al: Innate immune landscape in early lung adenocarcinoma by
paired single-cell analyses. Cell. 169(750–765): e172017.
|
|
42
|
Mielgo A and Schmid MC: Impact of tumour
associated macrophages in pancreatic cancer. BMB Rep. 46:131–138.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Beatty GL, Chiorean EG, Fishman MP,
Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL,
et al: CD40 agonists alter tumor stroma and show efficacy against
pancreatic carcinoma in mice and humans. Science. 331:1612–1616.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tosolini M, Kirilovsky A, Mlecnik B,
Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH,
Pages F, et al: Clinical impact of different classes of
infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in
patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Quail DF and Joyce JA: Microenvironmental
regulation of tumor progression and metastasis. Nat Med.
19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li Y, Li F, Jiang F, Lv X, Zhang R, Lu A
and Zhang G: A Mini-review for cancer immunotherapy: Molecular
understanding of PD-1/PD-L1 pathway & translational blockade of
immune checkpoints. Int J Mol Sci. 17:pii: E1151. 2016.
|
|
48
|
Ledford H: Cocktails for cancer with a
measure of immunotherapy. Nature. 532:162–164. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sharma P and Allison JP: The future of
immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Page DB, Bourla AB, Daniyan A, Naidoo J,
Smith E, Smith M, Friedman C, Khalil DN, Funt S, Shoushtari AN, et
al: Tumor immunology and cancer immunotherapy: Summary of the 2014
SITC primer. J Immunother Cancer. 3:252015. View Article : Google Scholar
|
|
51
|
Gunturi A and McDermott DF: Nivolumab for
the treatment of cancer. Expert Opin Investig Drugs. 24:253–260.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ferris RL, Blumenschein G Jr, Fayette J,
Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE,
Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of
the head and neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Teng MW, Ngiow SF, Ribas A and Smyth MJ:
Classifying cancers based on t-cell infiltration and pd-l1. Cancer
Res. 75:2139–2145. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Smyth MJ, Ngiow SF, Ribas A and Teng MW:
Combination cancer immunotherapies tailored to the tumour
microenvironment. Nat Rev Clin Oncol. 13:143–158. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kottke T, Evgin L, Shim KG, Rommelfanger
D, Boisgerault N, Zaidi S, Diaz RM, Thompson J, Ilett E, Coffey M,
et al: Subversion of NK-cell and TNFα immune surveillance drives
tumor recurrence. Cancer Immunol Res. 5:1029–1045. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
U.S. Food and drug administration:
Treatment approved for Any Solid tumor with biomarker. Onco Times.
39:52–53. 2017. View Article : Google Scholar
|
|
57
|
Baumeister SH, Freeman GJ, Dranoff G and
Sharpe AH: Coinhibitory pathways in immunotherapy for cancer. Annu
Rev Immunol. 34:539–573. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Boutros C, Tarhini A, Routier E, Lambotte
O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S,
Berdelou A, et al: Safety profiles of anti-CTLA-4 and anti-PD-1
antibodies alone and in combination. Nat Rev Clin Oncol.
13:473–486. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hodi FS, Chesney J, Pavlick AC, Robert C,
Grossmann KF, McDermott DF, Linette GP, Meyer N, Giguere JK,
Agarwala SS, et al: Combined nivolumab and ipilimumab versus
ipilimumab alone in patients with advanced melanoma: 2-year overall
survival outcomes in a multicentre, randomised, controlled, phase 2
trial. Lancet Oncol. 17:1558–1568. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wei SC, Levine JH, Cogdill AP, Zhao Y,
Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D and
Allison JP: Distinct cellular mechanisms underlie anti-CTLA-4 and
anti-PD-1 checkpoint blockade. Cell. 170(1120–1133): e172017.
|
|
61
|
Shayan G, Srivastava R, Li J, Schmitt N,
Kane LP and Ferris RL: Adaptive resistance to anti-PD1 therapy by
Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and
neck cancer. Oncoimmunology. 6:e12617792016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Koyama S, Akbay EA, Li YY, Herter-Sprie
GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ,
Asahina H, et al: Adaptive resistance to therapeutic PD-1 blockade
is associated with upregulation of alternative immune checkpoints.
Nat Commun. 7:105012016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Foy SP, Sennino B, dela Cruz T, Cote JJ,
Gordon EJ, Kemp F, Xavier V, Franzusoff A, Rountree RB and Mandl
SJ: Poxvirus-based active immunotherapy with PD-1 and LAG-3 dual
immune checkpoint inhibition overcomes compensatory immune
regulation, Yielding complete tumor regression in mice. PLoS One.
11:e01500842016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Taylor NA, Vick SC, Iglesia MD, Brickey
WJ, Midkiff BR, McKinnon KP, Reisdorf S, Anders CK, Carey LA,
Parker JS, et al: Treg depletion potentiates checkpoint inhibition
in claudin-low breast cancer. J Clin Invest. 127:3472–3483. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Messenheimer DJ, Jensen SM, Afentoulis ME,
Wegmann KW, Feng Z, Friedman DJ, Gough MJ, Urba WJ and Fox BA:
Timing of PD-1 blockade is critical to effective combination
immunotherapy with anti-OX40. Clin Cancer Res. 23:6165–6177. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Shrimali RK, Ahmad S, Verma V, Zeng P,
Ananth S, Gaur P, Gittelman RM, Yusko E, Sanders C, Robins H, et
al: Concurrent PD-1 blockade negates the effects of OX40 agonist
antibody in combination immunotherapy through inducing T-cell
apoptosis. Cancer Immunol Res. 5:755–766. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yue EW, Sparks R, Polam P, Modi D, Douty
B, Wayland B, Glass B, Takvorian A, Glenn J, Zhu W, et al:
INCB24360 (Epacadostat), a highly potent and selective
indoleamine-2,3-dioxygenase 1 (IDO1) inhibitor for immuno-oncology.
ACS Med Chem Lett. 8:486–491. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhai L, Spranger S, Binder DC, Gritsina G,
Lauing KL, Giles FJ and Wainwright DA: Molecular pathways:
Targeting IDO1 and other tryptophan dioxygenases for cancer
immunotherapy. Clin Cancer Res. 21:5427–5433. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Beatty GL, O'Dwyer PJ, Clark J, Shi JG,
Bowman KJ, Scherle PA, Newton RC, Schaub R, Maleski J, Leopold L,
et al: First-in-human phase I study of the oral inhibitor of
indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients
with advanced solid malignancies. Clin Cancer Res. 23:3269–3276.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Soliman HH, Minton SE, Han HS, Ismail-Khan
R, Neuger A, Khambati F, Noyes D, Lush R, Chiappori AA, Roberts JD,
et al: A phase I study of indoximod in patients with advanced
malignancies. Oncotarget. 7:22928–22938. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gangadhar TC, Hamid O, Smith DC, Bauer TM,
Wasser JS, Luke JJ, Balmanoukian AS, Kaufman DR, Zhao Y, Maleski J,
et al: Preliminary results from a Phase I/II study of epacadostat
(incb024360) in combination with pembrolizumab in patients with
selected advanced cancers. J Immunother Cancer. 3 Suppl 2:O72015.
View Article : Google Scholar
|
|
72
|
Zhu Y, Zang Y, Zhao F, Li Z, Zhang J, Fang
L, Li M, Xing L, Xu Z and Yu J: Inhibition of HIF-1α by PX-478
suppresses tumor growth of esophageal squamous cell cancer in vitro
and in vivo. Am J Cancer Res. 7:1198–1212. 2017.PubMed/NCBI
|
|
73
|
Jeong W, Rapisarda A, Park SR, Kinders RJ,
Chen A, Melillo G, Turkbey B, Steinberg SM, Choyke P, Doroshow JH,
et al: Pilot trial of EZN-2968, an antisense oligonucleotide
inhibitor of hypoxia-inducible factor-1 alpha (HIF-1α), in patients
with refractory solid tumors. Cancer Chemother Pharmacol.
73:343–348. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Huang C, Sheng S, Li R, Sun X, Liu J and
Huang G: Lactate promotes resistance to glucose starvation via
upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep.
33:875–884. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Schelman WR, Mohammed TA, Traynor AM,
Kolesar JM, Marnocha RM, Eickhoff J, Keppen M, Alberti DB, Wilding
G, Takebe N and Liu G: A phase I study of AT-101 with cisplatin and
etoposide in patients with advanced solid tumors with an expanded
cohort in extensive-stage small cell lung cancer. Invest New Drugs.
32:295–302. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kershaw S, Cummings J, Morris K, Tugwood J
and Dive C: Optimisation of immunofluorescence methods to determine
MCT1 and MCT4 expression in circulating tumour cells. BMC Cancer.
15:3872015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Tarallo V and De Falco S: The vascular
endothelial growth factors and receptors family: Up to now the only
target for anti-angiogenesis therapy. Int J Biochem Cell Bio.
64:185–189. 2015. View Article : Google Scholar
|
|
78
|
Bueno MJ, Mouron S and Quintela-Fandino M:
Personalising and targeting antiangiogenic resistance: A complex
and multifactorial approach. Br J Cancer. 116:1119–1125. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Tian L, Goldstein A, Wang H, Lo Ching H,
Kim Sun I, Welte T, Sheng K, Dobrolecki LE, Zhang X, Putluri N, et
al: Mutual regulation of tumour vessel normalization and
immunostimulatory reprogramming. Nature. 544:250–254. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Melichar B, Bracarda S, Matveev V,
Alekseev B, Ivanov S, Zyryanov A, Janciauskiene R, Fernebro E,
Mulders P, Osborne S, et al: A multinational phase II trial of
bevacizumab with low-dose interferon-α2a as first-line treatment of
metastatic renal cell carcinoma: BEVLiN. Ann Oncol. 24:2396–2402.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Rini BI, Bellmunt J, Clancy J, Wang K,
Niethammer AG, Hariharan S and Escudier B: Randomized phase III
trial of temsirolimus and bevacizumab versus interferon alfa and
bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J
Clin Oncol. 32:752–759. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Scott AM, Wiseman G, Welt S, Adjei A, Lee
FT, Hopkins W, Divgi CR, Hanson LH, Mitchell P, Gansen DN, et al: A
phase I dose-escalation study of sibrotuzumab in patients with
advanced or metastatic fibroblast activation protein-positive
cancer. Clin Cancer Res. 9:1639–1647. 2003.PubMed/NCBI
|
|
83
|
Hofheinz RD, al-Batran SE, Hartmann F,
Hartung G, Jäger D, Renner C, Tanswell P, Kunz U, Amelsberg A,
Kuthan H and Stehle G: Stromal antigen targeting by a humanised
monoclonal antibody: An early phase II trial of sibrotuzumab in
patients with metastatic colorectal cancer. Onkologie. 26:44–48.
2003.PubMed/NCBI
|
|
84
|
Arenas-Ramirez N, Woytschak J and Boyman
O: Interleukin-2: Biology, design and application. Trends Immunol.
36:763–777. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kakarla S, Chow KK, Mata M, Shaffer DR,
Song XT, Wu MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K, et al:
Antitumor effects of chimeric receptor engineered human T cells
directed to tumor stroma. Mol Ther. 21:1611–1620. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee
CC, Restifo NP and Rosenberg SA: Immune targeting of fibroblast
activation protein triggers recognition of multipotent bone marrow
stromal cells and cachexia. J Exp Med. 210:1125–1135. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang LC, Lo A, Scholler J, Sun J, Majumdar
RS, Kapoor V, Antzis M, Cotner CE, Johnson LA, Durham AC, et al:
Targeting fibroblast activation protein in tumor stroma with
chimeric antigen receptor T cells can inhibit tumor growth and
augment host immunity without severe toxicity. Cancer Immunol Res.
2:154–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Galluzzi L, Zitvogel L and Kroemer G:
Immunological mechanisms underneath the efficacy of cancer therapy.
Cancer Immunol Res. 4:895–902. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Teng F, Kong L, Meng X, Yang J and Yu J:
Radiotherapy combined with immune checkpoint blockade
immunotherapy: Achievements and challenges. Cancer Lett. 365:23–29.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kalbasi A, June CH, Haas N and Vapiwala N:
Radiation and immunotherapy: A synergistic combination. J Clin
Invest. 123:2756–2763. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Park B, Yee C and Lee KM: The effect of
radiation on the immune response to cancers. Int J Mol Sci.
15:927–943. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Dalgleish AG: Rationale for combining
immunotherapy with chemotherapy. Immunotherapy. 7:309–316. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wargo JA, Reuben A, Cooper ZA, Oh KS and
Sullivan RJ: Immune effects of chemotherapy, radiation, and
targeted therapy and opportunities for combination with
immunotherapy. Semin Oncol. 42:601–616. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Sharabi AB, Lim M, DeWeese TL and Drake
CG: Radiation and checkpoint blockade immunotherapy:
Radiosensitisation and potential mechanisms of synergy. Lancet
Oncol. 16:e498–e509. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Shahabi V, Postow MA, Tuck D and Wolchok
JD: Immune-priming of the tumor microenvironment by radiotherapy:
Rationale for combination with immunotherapy to improve anticancer
efficacy. Am J Clin Oncol. 38:90–97. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hughes PE, Caenepeel S and Wu LC: Targeted
therapy and checkpoint immunotherapy combinations for the treatment
of cancer. Trends Immunol. 37:462–476. 2016. View Article : Google Scholar : PubMed/NCBI
|