Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
February-2019 Volume 17 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2019 Volume 17 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Targeting the BDNF/TrkB pathway for the treatment of tumors (Review)

  • Authors:
    • Lingbin Meng
    • Baoqiong Liu
    • Rui Ji
    • Xin Jiang
    • Xuebo Yan
    • Ying Xin
  • View Affiliations / Copyright

    Affiliations: Department of Internal Medicine, Florida Hospital, Orlando, FL 32803, USA, Department of Biology, Valencia College, Orlando, FL 32825, USA, Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
  • Pages: 2031-2039
    |
    Published online on: December 20, 2018
       https://doi.org/10.3892/ol.2018.9854
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Neurotrophins are a family of growth factors that regulate neural survival, development, function and plasticity in the central and the peripheral nervous system. There are four neurotrophins: nerve growth factor (NGF), brain‑derived neurotrophic factor (BDNF), neurotrophin‑3 (NT‑3) and NT‑4. Among them, BDNF is the most studied due to its high expression in the brain. Over the past two decades, BDNF and its receptor tropomyosin receptor kinase B (TrkB) have been reported to be upregulated in a wide range of tumors. This activated signal stimulates a series of downstream pathways, including phosphoinositide 3‑kinase/protein kinase B, Ras‑Raf‑mitogen activated protein kinase kinase‑extracellular signal‑regulated kinases, the phospholipase‑C‑γ pathway and the transactivation of epidermal growth factor receptor. Activation of these signaling pathways induces oncogenic effects by increasing cancer cell growth, proliferation, survival, migration and epithelial to mesenchymal transition, and decreasing anoikis, relapse and chemotherapeutic sensitivity. The present review summarizes recent findings to discuss the role of BDNF in tumors, the underlying molecular mechanism, targeting Trk receptors for treatment of cancers and its potential risk.
View Figures

Figure 1

Figure 2

View References

1 

Bibel M and Barde YA: Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14:2919–2937. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Huang EJ and Reichardt LF: Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci. 24:677–736. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Meldolesi J: Neurotrophin receptors in the pathogenesis, diagnosis and therapy of neurodegenerative diseases. Pharmacol Res. 121:129–137. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Reichardt LF: Neurotrophin-regulated signalling pathways. Rev Physiol Biochem Pharmacol. 361:1545–1564. 2006.

5 

Meldolesi J: Neurotrophin Trk receptors: New targets for cancer therapy. Rev Physiol Biochem Pharmacol. 174:67–79. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, Nurcombe V, Le Bourhis X and Hondermarck H: Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res. 17:1741–1752. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Ricci A, Graziano P, Mariotta S, Cardillo G, Sposato B, Terzano C and Bronzetti E: Neurotrophin system expression in human pulmonary carcinoid tumors. Growth Factors. 23:303–312. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Moon A, Won KY, Lee JY, Kang I, Lee SK and Lee J: Expression of BDNF, TrkB, and p53 in early-stage squamous cell carcinoma of the uterine cervix. Pathology. 43:453–458. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Brunetto de Farias C, Rosemberg DB, Heinen TE, Koehler-Santos P, Abujamra AL, Kapczinski F, Brunetto AL, Ashton-Prolla P, Meurer L, Reis Bogo M, et al: BDNF/TrkB content and interaction with gastrin-releasing peptide receptor blockade in colorectal cancer. Oncology. 79:430–439. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Gilbertson RJ and Rich JN: Making a tumour's bed: Glioblastoma stem cells and the vascular niche. Nat Rev Cancer. 7:733–736. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Tanaka K, Okugawa Y, Toiyama Y, Inoue Y, Saigusa S, Kawamura M, Araki T, Uchida K, Mohri Y and Kusunoki M: Brain-derived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS One. 9:e964102014. View Article : Google Scholar : PubMed/NCBI

12 

Okamura K, Harada T, Wang S, Ijichi K, Furuyama K, Koga T, Okamoto T, Takayama K, Yano T and Nakanishi Y: Expression of TrkB and BDNF is associated with poor prognosis in non-small cell lung cancer. Lung Cancer. 78:100–106. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Lange AM and Lo HW: Inhibiting TRK proteins in clinical cancer therapy. Cancers (Basel). 10(pii): E1052018. View Article : Google Scholar : PubMed/NCBI

14 

Tanaka J, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC and Kasai H: Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science. 319:1683–1687. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Horch HW and Katz LC: BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci. 5:1177–1184. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Figurov A, Pozzo-Miller LD, Olafsson P, Wang T and Lu B: Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature. 381:706–709. 1996. View Article : Google Scholar : PubMed/NCBI

17 

Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, Tecott LH and Reichardt LF: Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 6:736–742. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Cao L, Lin EJ, Cahill MC, Wang C, Liu X and During MJ: Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nat Med. 15:447–454. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Meng L, Huang T, Sun C, Hill DL and Krimm R: BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section. Exp Neurol. 293:27–42. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Meng L, Ohman-Gault L, Ma L and Krimm RF: Taste bud-derived BDNF is required to maintain normal amounts of innervation to adult taste buds. eNeuro. 2(pii): ENEURO.0097-15.2015. 2015.PubMed/NCBI

21 

Meng L, Jiang X and Ji R: Role of neurotrophin in the taste system following gustatory nerve injury. Metab Brain Dis. 30:605–613. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Ji R, Meng L, Li Q and Lu Q: TAM receptor deficiency affects adult hippocampal neurogenesis. Metab Brain Dis. 30:633–644. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Ji R, Meng L, Jiang X, Cvm NK, Ding J, Li Q and Lu Q: TAM receptors support neural stem cell survival, proliferation and neuronal differentiation. PLoS One. 9:e1151402014. View Article : Google Scholar : PubMed/NCBI

24 

Li Q, Ford MC, Lavik EB and Madri JA: Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. J Neurosci Res. 84:1656–1668. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN and LaFerla FM: Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA. 106:13594–13599. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Pearse RN, Swendeman SL, Li Y, Rafii D and Hempstead BL: A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood. 105:4429–4436. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Nakagawara A: Trk receptor tyrosine kinases: A bridge between cancer and neural development. Cancer Lett. 169:107–114. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V and Evans AE: Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res. 15:3244–3250. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Porter AC and Vaillancourt RR: Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene. 17:(11 Reviews). 1343–1352. 1998. View Article : Google Scholar : PubMed/NCBI

30 

Nakagawara A, Azar CG, Scavarda NJ and Brodeur GM: Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol. 14:759–767. 1994. View Article : Google Scholar : PubMed/NCBI

31 

Yin B, Ma ZY, Zhou ZW, Gao WC, Du ZG, Zhao ZH and Li QQ: The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model. Oncogene. 34:761–770. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Zhang SY, Hui LP, Li CY, Gao J, Cui ZS and Qiu XS: More expression of BDNF associates with lung squamous cell carcinoma and is critical to the proliferation and invasion of lung cancer cells. BMC Cancer. 16:1712016. View Article : Google Scholar : PubMed/NCBI

33 

Radin DP and Patel P: BDNF: An oncogene or tumor suppressor? Anticancer Res. 37:3983–3990. 2017.PubMed/NCBI

34 

Hwang JJ, Park MH, Choi SY and Koh JY: Activation of the Trk signaling pathway by extracellular zinc. Role of metalloproteinases. J Biol Chem. 280:11995–12001. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Hempstead BL: Dissecting the diverse actions of pro-and mature neurotrophins. Curr Alzheimer Res. 3:19–24. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Johnston AL, Lun X, Rahn JJ, Liacini A, Wang L, Hamilton MG, Parney IF, Hempstead BL, Robbins SM, Forsyth PA, et al: The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol. 5:e2122007. View Article : Google Scholar : PubMed/NCBI

37 

Herrmann JL, Menter DG, Hamada J, Marchetti D, Nakajima M and Nicolson GL: Mediation of NGF-stimulated extracellular matrix invasion by the human melanoma low-affinity p75 neurotrophin receptor: melanoma p75 functions independently of trkA. Mol Biol Cell. 4:1205–1216. 1993. View Article : Google Scholar : PubMed/NCBI

38 

Marchetti D, Aucoin R, Blust J, Murry B and Greiter-Wilke A: p75 neurotrophin receptor functions as a survival receptor in brain-metastatic melanoma cells. J Cell Biochem. 91:206–215. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Khwaja F and Djakiew D: Inhibition of cell-cycle effectors of proliferation in bladder tumor epithelial cells by the p75NTR tumor suppressor. Mol Carcinog. 36:153–160. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Yuanlong H, Haifeng J, Xiaoyin Z, Jialin S, Jie L, Li Y, Huahong X, Jiugang S, Yanglin P, Kaichun W, et al: The inhibitory effect of p75 neurotrophin receptor on growth of human hepatocellular carcinoma cells. Cancer Lett. 268:110–119. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Jin H, Pan Y, He L, Zhai H, Li X, Zhao L, Sun L, Liu J, Hong L, Song J, et al: p75 neurotrophin receptor inhibits invasion and metastasis of gastric cancer. Mol Cancer Res. 5:423–433. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Ji R, Tian S, Lu HJ and Lu Q, Zheng Y, Wang X, Ding J, Li Q and Lu Q: TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J Immunol. 191:6165–6177. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Puehringer D, Orel N, Lüningschrör P, Subramanian N, Herrmann T, Chao MV and Sendtner M: EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nat Neurosci. 16:407–415. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Park JR, Eggert A and Caron H: Neuroblastoma: Biology, prognosis, and treatment. Hematol Oncol Clin North Am. 24:65–86. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Kermani P and Hempstead B: Brain-derived neurotrophic factor: A newly described mediator of angiogenesis. Trends Cardiovasc Med. 17:140–143. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Kermani P, Rafii D, Jin DK, Whitlock P, Schaffer W, Chiang A, Vincent L, Friedrich M, Shido K, Hackett NR, et al: Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J Clin Invest. 115:653–663. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, Camoratto AM, Evans AE and Brodeur GM: Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 62:6462–6466. 2002.PubMed/NCBI

48 

Brierley GV, Priebe IK, Purins L, Fung KY, Tabor B, Lockett T, Nice E, Gibbs P, Tie J, McMurrick P, et al: Serum concentrations of brain-derived neurotrophic factor (BDNF) are decreased in colorectal cancer patients. Cancer Biomark. 13:67–73. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Xiong L, Deng X, Wen Y, Yang Z and Miao X: Association of BDNF and BMPR1A with clinicopathologic parameters in benign and malignant gallbladder lesions. World J Surg Oncol. 11:802013. View Article : Google Scholar : PubMed/NCBI

50 

Choi B, Lee EJ, Shin MK, Park YS, Ryu MH, Kim SM, Kim EY, Lee HK and Chang EJ: Upregulation of brain-derived neurotrophic factor in advanced gastric cancer contributes to bone metastatic osteolysis by inducing long pentraxin 3. Oncotarget. 7:55506–55517. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Götz R and Sendtner M: Cooperation of tyrosine kinase receptor TrkB and epidermal growth factor receptor signaling enhances migration and dispersal of lung tumor cells. PLoS One. 9:e1009442014. View Article : Google Scholar : PubMed/NCBI

52 

Qiu L, Zhou C, Sun Y, Di W, Scheffler E, Healey S, Kouttab N, Chu W and Wan Y: Crosstalk between EGFR and TrkB enhances ovarian cancer cell migration and proliferation. Int J Oncol. 29:1003–1011. 2006.PubMed/NCBI

53 

de Farias CB, Heinen TE, dos Santos RP, Abujamra AL, Schwartsmann G and Roesler R: BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition. Biochem Biophys Res Commun. 425:328–332. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Heinen TE, dos Santos RP, da Rocha A, Dos Santos MP, Lopez PL, Silva Filho MA, Souza BK, Rivero LF, Becker RG, Gregianin LJ, et al: Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma. Oncotarget. 7:348602016. View Article : Google Scholar : PubMed/NCBI

55 

Yee CL, Jones KR and Finger TE: Brain-derived neurotrophic factor is present in adult mouse taste cells with synapses. J Comp Neurol. 459:15–24. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Makino K, Kawamura K, Sato W, Kawamura N, Fujimoto T and Terada Y: Inhibition of uterine sarcoma cell growth through suppression of endogenous tyrosine kinase B signaling. PLoS One. 7:e410492012. View Article : Google Scholar : PubMed/NCBI

57 

Iyer R, Evans AE, Qi X, Ho R, Minturn JE, Zhao H, Balamuth N, Maris JM and Brodeur GM: Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res. 16:1478–1485. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Iyer R, Wehrmann L, Golden RL, Naraparaju K, Croucher JL, MacFarland SP, Guan P, Kolla V, Wei G, Cam N, et al: Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett. 372:179–186. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Jaboin J, Kim CJ, Kaplan DR and Thiele CJ: Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res. 62:6756–6763. 2002.PubMed/NCBI

60 

Bao W, Qiu H, Yang T, Luo X, Zhang H and Wan X: Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma. PLoS One. 8:e706162013. View Article : Google Scholar : PubMed/NCBI

61 

Kupferman M, Jiffar T, El-Naggar A, Yilmaz T, Zhou G, Xie T, Feng L, Wang J, Holsinger FC, Yu D and Myers JN: TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene. 29:2047–2059. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Ricci A, De Vitis C, Noto A, Fattore L, Mariotta S, Cherubini E, Roscilli G, Liguori G, Scognamiglio G, Rocco G, et al: TrkB is responsible for EMT transition in malignant pleural effusions derived cultures from adenocarcinoma of the lung. Cell Cycle. 12:1696–1703. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Smit MA, Geiger TR, Song JY, Gitelman I and Peeper DS: A Twist-Snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis. Mol Cell Biol. 29:3722–3737. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Lee J, Jiffar T and Kupferman ME: A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma. PLoS One. 7:e302462012. View Article : Google Scholar : PubMed/NCBI

65 

Xia H, Li Y and Lv X: MicroRNA-107 inhibits tumor growth and metastasis by targeting the BDNF-mediated PI3K/AKT pathway in human non-small lung cancer. Int J Oncol. 49:1325–1333. 2016. View Article : Google Scholar : PubMed/NCBI

66 

DeWitt J, Ochoa V, Urschitz J, Elston M, Moisyadi S and Nishi R: Constitutively active TrkB confers an aggressive transformed phenotype to a neural crest-derived cell line. Oncogene. 33:977–985. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Chen B, Liang Y, He Z, An Y, Zhao W and Wu J: Autocrine activity of BDNF induced by the STAT3 signaling pathway causes prolonged TrkB activation and promotes human non-small-cell lung cancer proliferation. Sci Rep. 6:304042016. View Article : Google Scholar : PubMed/NCBI

68 

Navé BT, Ouwens M, Withers DJ, Alessi DR and Shepherd PR: Mammalian target of rapamycin is a direct target for protein kinase B: Identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 344:427–431. 1999. View Article : Google Scholar : PubMed/NCBI

69 

Aoki M, Blazek E and Vogt PK: A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc Natl Acad Sci USA. 98:136–141. 2001. View Article : Google Scholar : PubMed/NCBI

70 

Martens LK, Kirschner KM, Warnecke C and Scholz H: Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. J Biol Chem. 282:14379–14388. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Li Z, Zhang J, Liu Z, Woo CW and Thiele CJ: Downregulation of Bim by brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from paclitaxel but not etoposide or cisplatin-induced cell death. Cell Death Differ. 14:318–326. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Radin D, Lippa A, Patel P and Leonardi D: Lifeguard inhibition of Fas-mediated apoptosis: A possible mechanism for explaining the cisplatin resistance of triple-negative breast cancer cells. Biomed Pharmacother. 77:161–166. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Voldborg BR, Damstrup L, Spang-Thomsen M and Poulsen HS: Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol. 8:1197–1206. 1997. View Article : Google Scholar : PubMed/NCBI

74 

Hunter T and Pines J: Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 79:573–582. 1994. View Article : Google Scholar : PubMed/NCBI

75 

Bos JL: Ras oncogenes in human cancer: A review. Cancer Res. 49:4682–4689. 1989.PubMed/NCBI

76 

Davis RJ: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 268:14553–14556. 1993.PubMed/NCBI

77 

Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, Leeman KT, Zhou P, Beede AM, Fillmore CM, Caswell D, et al: Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci USA. 111:10299–10304. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Davis NM, Sokolosky M, Stadelman K, Abrams SL, Libra M, Candido S, Nicoletti F, Polesel J, Maestro R, D'Assoro A, et al: Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: Possibilities for therapeutic intervention. Oncotarget. 5:4603–4650. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Morris LG, Taylor BS, Bivona TG, Gong Y, Eng S, Brennan CW, Kaufman A, Kastenhuber ER, Banuchi VE, Singh B, et al: Genomic dissection of the epidermal growth factor receptor (EGFR)/PI3K pathway reveals frequent deletion of the EGFR phosphatase PTPRS in head and neck cancers. Proc Natl Acad Sci USA. 108:19024–19029. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Lee DH, Szczepanski MJ and Lee YJ: Magnolol induces apoptosis via inhibiting the EGFR/PI3K/Akt signaling pathway in human prostate cancer cells. J Cell Biochem. 106:1113–1122. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Cowley S, Paterson H, Kemp P and Marshall CJ: Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell. 77:841–852. 1994. View Article : Google Scholar : PubMed/NCBI

82 

Huang EJ and Reichardt LF: Trk receptors: Roles in neuronal signal transduction. Annu Rev Biochem. 72:609–642. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Siu MK, Wong OG and Cheung AN: TrkB as a therapeutic target for ovarian cancer. Expert Opin Ther Targets. 13:1169–1178. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Yuan Y, Ye HQ and Ren QC: Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int J Oncol. 52:461–472. 2018.PubMed/NCBI

85 

Cazorla M, Jouvenceau A, Rose C, Guilloux JP, Pilon C, Dranovsky A and Prémont J: Cyclotraxin-B, the first highly potent and selective TrkB inhibitor, has anxiolytic properties in mice. PLoS One. 5:e97772010. View Article : Google Scholar : PubMed/NCBI

86 

Cazorla M, Prémont J, Mann A, Girard N, Kellendonk C and Rognan D: Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest. 121:1846–1857. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Light JE, Koyama H, Minturn JE, Ho R, Simpson AM, Iyer R, Mangino JL, Kolla V, London WB and Brodeur GM: Clinical significance of NTRK family gene expression in neuroblastomas. Pediatr Blood Cancer. 59:226–232. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Bertrand T, Kothe M, Liu J, Dupuy A, Rak A, Berne PF, Davis S, Gladysheva T, Valtre C, Crenne JY and Mathieu M: The crystal structures of TrkA and TrkB suggest key regions for achieving selective inhibition. J Mol Biol. 423:439–453. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, Bauer TM, Farago AF, Wheler JJ, Liu SV, et al: Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov. 7:400–409. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, Ballinari D, Ciomei M, Texido G, Degrassi A, et al: Entrectinib, a pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol Cancer Ther. 15:628–639. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Burris HA, Shaw AT, Bauer TM, Farago AF, Doebele RC, Smith S, Nanda N, Cruickshank S, Low JA and Brose MS: Pharmacokinetics (PK) of LOXO-101 during the first-in-human phase I study in patients with advanced solid tumors: Interim update. Cancer Res. 75:45292015. View Article : Google Scholar

92 

Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, et al: Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med. 378:731–739. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Al-Salama ZT and Keating GM: Cabozantinib: A review in advanced renal cell carcinoma. Drugs. 76:1771–1778. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Abdelaziz A and Vaishampayan U: Cabozantinib for renal cell carcinoma: Current and future paradigms. Curr Treat Options Oncol. 18:182017. View Article : Google Scholar : PubMed/NCBI

95 

Schiff D, Desjardins A, Cloughesy T, Mikkelsen T, Glantz M, Chamberlain MC, Reardon DA and Wen PY: Phase 1 dose escalation trial of the safety and pharmacokinetics of cabozantinib concurrent with temozolomide and radiotherapy or temozolomide after radiotherapy in newly diagnosed patients with high-grade gliomas. Cancer. 122:582–587. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Radin DP, Zhong S, Purcell R and Lippa A: Acute ampakine treatment ameliorates age-related deficits in long-term potentiation. Biomed Pharmacother. 84:806–809. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, Gerber DE, Goldberg SB, Hammerman PS, Heist RS, Hensing T, et al: Molecularly targeted therapies in non-small-cell lung cancer annual update 2014. J Thorac Oncol. 10:(1 Suppl 1). S1–S63. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Cao L, Liu X, Lin EJ, Wang C, Choi EY, Riban V, Lin B and During MJ: Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell. 142:52–64. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Liu X, McMurphy T, Xiao R, Slater A, Huang W and Cao L: Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice. Mol Ther. 22:1275–1284. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Xiao R, Bergin SM, Huang W, Slater AM, Liu X, Judd RT, Lin ED, Widstrom KJ, Scoville SD, Yu J, et al: Environmental and genetic activation of hypothalamic BDNF modulates T-cell immunity to exert an anticancer phenotype. Cancer Immunol Res. 4:488–497. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Garofalo S, D'Alessandro G, Chece G, Brau F, Maggi L, Rosa A, Porzia A, Mainiero F, Esposito V, Lauro C, et al: Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice. Nat Commun. 6:66232015. View Article : Google Scholar : PubMed/NCBI

102 

Linker RA, Lee DH, Flach AC, Litke T, van den Brandt J, Reichardt HM, Lingner T, Bommhardt U, Sendtner M, Gold R, et al: Thymocyte-derived BDNF influences T-cell maturation at the DN3/DN4 transition stage. Eur J Immunol. 45:1326–1338. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Jaboin J, Hong A, Kim CJ and Thiele CJ: Cisplatin-induced cytotoxicity is blocked by brain-derived neurotrophic factor activation of TrkB signal transduction path in neuroblastoma. Cancer Lett. 193:109–114. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Ochs G, Penn RD, York M, Giess R, Beck M, Tonn J, Haigh J, Malta E, Traub M, Sendtner M and Toyka KV: A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 1:201–206. 2000. View Article : Google Scholar : PubMed/NCBI

105 

Apfel SC, Kessler JA, Adornato BT, Litchy WJ, Sanders C and Rask CA: Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology. 51:695–702. 1998. View Article : Google Scholar : PubMed/NCBI

106 

Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ, Cochran EJ, Mufson EJ, Penn R, Goetz CG and Comella CD: Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson's disease. Ann Neurol. 46:419–424. 1999. View Article : Google Scholar : PubMed/NCBI

107 

Radin DP, Purcell R and Lippa AS: Oncolytic properties of ampakines in vitro. Anticancer Res. 38:265–269. 2018.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Meng L, Liu B, Ji R, Jiang X, Yan X and Xin Y: Targeting the BDNF/TrkB pathway for the treatment of tumors (Review). Oncol Lett 17: 2031-2039, 2019.
APA
Meng, L., Liu, B., Ji, R., Jiang, X., Yan, X., & Xin, Y. (2019). Targeting the BDNF/TrkB pathway for the treatment of tumors (Review). Oncology Letters, 17, 2031-2039. https://doi.org/10.3892/ol.2018.9854
MLA
Meng, L., Liu, B., Ji, R., Jiang, X., Yan, X., Xin, Y."Targeting the BDNF/TrkB pathway for the treatment of tumors (Review)". Oncology Letters 17.2 (2019): 2031-2039.
Chicago
Meng, L., Liu, B., Ji, R., Jiang, X., Yan, X., Xin, Y."Targeting the BDNF/TrkB pathway for the treatment of tumors (Review)". Oncology Letters 17, no. 2 (2019): 2031-2039. https://doi.org/10.3892/ol.2018.9854
Copy and paste a formatted citation
x
Spandidos Publications style
Meng L, Liu B, Ji R, Jiang X, Yan X and Xin Y: Targeting the BDNF/TrkB pathway for the treatment of tumors (Review). Oncol Lett 17: 2031-2039, 2019.
APA
Meng, L., Liu, B., Ji, R., Jiang, X., Yan, X., & Xin, Y. (2019). Targeting the BDNF/TrkB pathway for the treatment of tumors (Review). Oncology Letters, 17, 2031-2039. https://doi.org/10.3892/ol.2018.9854
MLA
Meng, L., Liu, B., Ji, R., Jiang, X., Yan, X., Xin, Y."Targeting the BDNF/TrkB pathway for the treatment of tumors (Review)". Oncology Letters 17.2 (2019): 2031-2039.
Chicago
Meng, L., Liu, B., Ji, R., Jiang, X., Yan, X., Xin, Y."Targeting the BDNF/TrkB pathway for the treatment of tumors (Review)". Oncology Letters 17, no. 2 (2019): 2031-2039. https://doi.org/10.3892/ol.2018.9854
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team