Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2019 Volume 17 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2019 Volume 17 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Crucial role of the pentose phosphate pathway in malignant tumors (Review)

  • Authors:
    • Lin Jin
    • Yanhong Zhou
  • View Affiliations / Copyright

    Affiliations: The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
  • Pages: 4213-4221
    |
    Published online on: March 5, 2019
       https://doi.org/10.3892/ol.2019.10112
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Interest in cancer metabolism has increased in recent years. The pentose phosphate pathway (PPP) is a major glucose catabolism pathway that directs glucose flux to its oxidative branch and leads to the production of a reduced form of nicotinamide adenine dinucleotide phosphate and nucleic acid. The PPP serves a vital role in regulating cancer cell growth and involves many enzymes. The aim of the present review was to describe the recent discoveries associated with the deregulatory mechanisms of the PPP and glycolysis in malignant tumors, particularly in hepatocellular carcinoma, breast and lung cancer.
View Figures

Figure 1

Figure 2

View References

1 

Vazquez A, Kamphorst JJ, Markert EK, Schug ZT, Tardito S and Gottlieb E: Cancer metabolism at a glance. J Cell Sci. 129:3367–3373. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Weber GF: Metabolism in cancer metastasis. Int J Cancer. 138:2061–2066. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Lu J, Tan M and Cai Q: The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 356:156–164. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Ramos-Martinez JI: The regulation of the pentose phosphate pathway: Remember Krebs. Arch Biochem Biophys. 614:50–52. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Kruger NJ and von Schaewen A: The oxidative pentose phosphate pathway: Structure and organisation. Curr Opin Plant Biol. 6:236–246. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, et al: The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc. 90:927–963. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Zhang C, Zhang Z, Zhu Y and Qin S: Glucose-6-phosphate dehydrogenase: A biomarker and potential therapeutic target for cancer. Anticancer Agents Med Chem. 14:280–289. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Kathagen-Buhmann A, Schulte A, Weller J, Holz M, Herold-Mende C, Glass R and Lamszus K: Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Neuro Oncol. 18:1219–1229. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Ju HQ, Lu YX, Wu QN, Liu J, Zeng ZL, Mo HY, Chen Y, Tian T, Wang Y, Kang TB, et al: Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene. 36:6282–6292. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Au SW, Gover S, Lam VM and Adams MJ: Human glucose-6-phosphate dehydrogenase: The crystal structure reveals a structural NADP(+) molecule and provides insights into enzyme deficiency. Structure. 8:293–303. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Cohen P and Rosemeyer MA: Subunit interactions of glucose-6-phosphate dehydrogenase from human erythrocytes. Eur J Biochem. 8:8–15. 1969. View Article : Google Scholar : PubMed/NCBI

16 

Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M and Yang X: p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol. 13:310–316. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Ma X, Wang L, Huang, Li Y, Yang D, Li T, Li F, Sun L, Wei H, He K, et al: Polo-like kinase 1 coordinates biosynthesis during cell cycle progression by directly activating pentose phosphate pathway. Nat Commun. 8:15062017. View Article : Google Scholar : PubMed/NCBI

18 

Rao X, Duan X, Mao W, Li X, Li Z, Li Q, Zheng Z, Xu H, Chen M, Wang PG, et al: O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun. 6:84682015. View Article : Google Scholar : PubMed/NCBI

19 

Thiepold AL, Lorenz NI, Foltyn M, Engel AL, Divé I, Urban H, Heller S, Bruns I, Hofmann U, Dröse S, et al: Mammalian target of rapamycin complex 1 activation sensitizes human glioma cells to hypoxia-induced cell death. Brain. 140:2623–2638. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Zhang X, Zhang X, Li Y, Shao Y, Xiao J, Zhu G and Li F: PAK4 regulates G6PD activity by p53 degradation involving colon cancer cell growth. Cell Death Dis. 8:e28202017. View Article : Google Scholar : PubMed/NCBI

21 

Yang X, Peng X and Huang J: Inhibiting 6-phosphogluconate dehydrogenase selectively targets breast cancer through AMPK activation. Clin Transl Oncol. 20:1145–1152. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Bhanot H, Weisberg EL, Reddy MM, Nonami A, Neuberg D, Stone RM, Podar K, Salgia R, Griffin JD and Sattler M: Acute myeloid leukemia cells require 6-phosphogluconate dehydrogenase for cell growth and NADPH-dependent metabolic reprogramming. Oncotarget. 8:67639–67650. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Zheng W, Feng Q, Liu J, Guo Y, Gao L, Li R, Xu M, Yan G, Yin Z, Zhang S, et al: Inhibition of 6-phosphogluconate dehydrogenase reverses cisplatin resistance in ovarian and lung cancer. Front Pharmacol. 8:4212017. View Article : Google Scholar : PubMed/NCBI

24 

Shan C, Elf S, Ji Q, Kang HB, Zhou L, Hitosugi T, Jin L, Lin R, Zhang L, Seo JH, et al: Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell. 55:552–565. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou L, Hitosugi T, Zhang L, Zhang S, Seo JH, et al: 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Nat Cell Biol. 17:1484–1496. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Hitosugi T, Zhou L, Elf S, Fan J, Kang HB, Seo JH, Shan C, Dai Q, Zhang L, Xie J, et al: Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell. 22:585–600. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Yao P, Sun H, Xu C, Chen T, Zou B, Jiang P and Du W: Evidence for a direct cross-talk between malic enzyme and the pentose phosphate pathway via structural interactions. J Biol Chem. 292:17113–17120. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Qiu Z, Guo W, Wang Q, Chen Z, Huang S, Zhao F, Yao M, Zhao Y and He X: MicroRNA-124 reduces the pentose phosphate pathway and proliferation by targeting PRPS1 and RPIA mRNAs in human colorectal cancer cells. Gastroenterology. 149:1587–1598.e11. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Chou YT, Jiang JK, Yang MH, Lu JW, Lin HK, Wang HD and Yuh CH: Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain. PLoS Biol. 16:e20037142018. View Article : Google Scholar : PubMed/NCBI

30 

Ciou SC, Chou YT, Liu YL, Nieh YC, Lu JW, Huang SF, Chou YT, Cheng LH, Lo JF, Chen MJ, et al: Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. Int J Cancer. 137:104–115. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Benito A, Polat IH, Noé V, Ciudad CJ, Marin S and Cascante M: Glucose-6-phosphate dehydrogenase and transketolase modulate breast cancer cell metabolic reprogramming and correlate with poor patient outcome. Oncotarget. 8:106693–106706. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Xu IM, Lai RK, Lin SH, Tse AP, Chiu DK, Koh HY, Law CT, Wong CM, Cai Z, Wong CC and Ng IO: Transketolase counteracts oxidative stress to drive cancer development. Proc Natl Acad Sci USA. 113:E725–E734. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Kamenisch Y, Baban TSA, Schuller W, von Thaler AK, Sinnberg T, Metzler G, Bauer J, Schittek B, Garbe C, Rocken M and Berneburg M: UVA-irradiation induces melanoma invasion via the enhanced Warburg effect. J Invest Dermatol. 136:1866–1875. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Liu H, Huang D, McArthur D, Boros L, Nissen N and Heaney A: Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 70:6368–6376. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Coy JF, Dressler D, Wilde J and Schubert P: Mutations in the transketolase-like gene TKTL1: Clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab. 51:257–273. 2005.PubMed/NCBI

36 

Coy JF, Dübel S, Kioschis P, Thomas K, Micklem G, Delius H and Poustka A: Molecular cloning of tissue-specific transcripts of a transketolase-related gene: Implications for the evolution of new vertebrate genes. Genomics. 32:309–316. 1996. View Article : Google Scholar : PubMed/NCBI

37 

Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, et al: Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer. 94:578–585. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Lange CA, Tisch-Rottensteiner J, Böhringer D, Martin G, Schwartzkopff J and Auw-Haedrich C: Enhanced TKTL1 expression in malignant tumors of the ocular adnexa predicts clinical outcome. Ophthalmology. 119:1924–1929. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Lin CC, Chen LC, Tseng VS, Yan JJ, Lai WW, Su WP, Lin CH, Huang CY and Su WC: Malignant pleural effusion cells show aberrant glucose metabolism gene expression. Eur Respir J. 37:1453–1465. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Xu X, Zur Hausen A, Coy JF and Löchelt M: Transketolase-like protein 1 (TKTL1) is required for rapid cell growth and full viability of human tumor cells. Int J Cancer. 124:1330–1337. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Kočevar N, Odreman F, Vindigni A, Grazio SF and Komel R: Proteomic analysis of gastric cancer and immunoblot validation of potential biomarkers. World J Gastroenterol. 18:1216–1228. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Wang C, Guo K, Gao D, Kang X, Jiang K, Li Y, Sun L, Zhang S, Sun C, Liu X, et al: Identification of transaldolase as a novel serum biomarker for hepatocellular carcinoma metastasis using xenografted mouse model and clinic samples. Cancer Lett. 313:154–166. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Hsieh BS, Huang LW, Su SJ, Cheng HL, Hu YC, Hung TC and Chang KL: Combined arginine and ascorbic acid treatment induces apoptosis in the hepatoma cell line HA22T/VGH and changes in redox status involving the pentose phosphate pathway and reactive oxygen and nitrogen species. J Nutr Biochem. 22:234–241. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Li Z, Zhang B, Yao W, Zhang C, Wan L and Zhang Y: APC-Cdh1 regulates neuronal apoptosis through modulating glycolysis and pentose-phosphate pathway after oxygen-glucose deprivation and reperfusion. Cell Mol Neurobiol. 39:123–135. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Senyilmaz D and Teleman A: Chicken or the egg: Warburg effect and mitochondrial dysfunction. F1000Prime Rep. 7:412015. View Article : Google Scholar : PubMed/NCBI

46 

Wilson JE: Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J Exp Biol. 206:2049–2057. 2003. View Article : Google Scholar : PubMed/NCBI

47 

Gu J, Singh A, Xue K, Mavis C, Barth M, Yanamadala V, Lenz P, Grau M, Lenz G, Czuczman MS and Hernandez-Ilizaliturri FJ: Up-regulation of hexokinase II contributes to rituximab-chemotherapy resistance and is a clinically relevant target for therapeutic development. Oncotarget. 9:4020–4033. 2017.PubMed/NCBI

48 

Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, et al: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 24:213–228. 2013. View Article : Google Scholar : PubMed/NCBI

49 

An MX, Li S, Yao HB, Li C, Wang JM, Sun J, Li XY, Meng XN and Wang HQ: BAG3 directly stabilizes Hexokinase 2 mRNA and promotes aerobic glycolysis in pancreatic cancer cells. J Cell Biol. 216:4091–4105. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Hoppe-Seyler K, Honegger A, Bossler F, Sponagel J, Bulkescher J, Lohrey C and Hoppe-Seyler F: Viral E6/E7 oncogene and cellular hexokinase 2 expression in HPV-positive cancer cell lines. Oncotarget. 8:106342–106351. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Ju HQ, Zhan G, Huang A, Sun Y, Wen S, Yang J, Lu WH, Xu RH, Li J, Li Y, et al: ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition. Leukemia. 31:2143–2150. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Wang J, Duan Z, Nugent Z, Zou JX, Borowsky AD, Zhang Y, Tepper CG, Li JJ, Fiehn O, Xu J, et al: Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes. Cancer Lett. 378:69–79. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Ha JH, Radhakrishnan R, Jayaraman M, Yan M, Ward JD, Fung KM, Moxley K, Sood AK, Isidoro C, Mukherjee P, et al: LPA induces metabolic reprogramming in ovarian cancer via a pseudohypoxic response. Cancer Res. 78:1923–1934. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Moon JS, Kim HE, Koh E, Park SH, Jin WJ, Park BW, Park SW and Kim KS: Krüppel-like factor 4 (KLF4) activates the transcription of the gene for the platelet isoform of phosphofructokinase (PFKP) in breast cancer. J Biol Chem. 286:23808–23816. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Park YY, Kim SB, Han HD, Sohn BH, Kim JH, Liang J, Lu Y, Rodriguez-Aguayo C, Lopez-Berestein G, Mills GB, et al: Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology. 58:182–191. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Cabrera R, Baez M, Pereira HM, Caniuguir A, Garratt RC and Babul J: The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: Kinetic and structural analysis of the allosteric ATP inhibition. J Biol Chem. 286:5774–5783. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA III, Peters EC, Driggers EM and Hsieh-Wilson LC: Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 337:975–980. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Wang S, Peng Z, Wang S, Yang L, Chen Y, Kong X, Song S, Pei P, Tian C, Yan H, et al: KRAB-type zinc-finger proteins PITA and PISA specifically regulate p53-dependent glycolysis and mitochondrial respiration. Cell Res. 28:572–592. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q, Qian X, Xia Y, Zheng Y, Piao Y, et al: Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun. 8:9492017. View Article : Google Scholar : PubMed/NCBI

60 

Wang H, Nicolay BN, Chick JM, Gao X, Geng Y, Ren H, Gao H, Yang G, Williams JA, Suski JM, et al: The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature. 546:426–430. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Kim NH, Cha YH, Lee J, Lee SH, Yang JH, Yun JS, Cho ES, Zhang X, Nam M, Kim N, et al: Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nat Commun. 8:143742017. View Article : Google Scholar : PubMed/NCBI

62 

Yamamoto T, Takano N, Ishiwata K, Ohmura M, Nagahata Y, Matsuura T, Kamata A, Sakamoto K, Nakanishi T, Kubo A, et al: Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun. 5:34802014. View Article : Google Scholar : PubMed/NCBI

63 

Gui DY, Lewis CA and Vander Heiden MG: Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Sci Signal. 263:pe72013.

64 

Fukuda S, Miyata H, Miyazaki Y, Makino T, Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Mori M and Doki Y: Pyruvate kinase M2 modulates esophageal squamous cell carcinoma chemotherapy response by regulating the pentose phosphate pathway. Ann Surg Oncol. 22 (Suppl 3):S1461–S1468. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW, et al: PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell. 155:397–409. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Keller KE, Tan IS and Lee YS: SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science. 338:1069–1072. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK and Lu Z: PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 150:685–696. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, et al: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Chaneton B, Hillmann P, Zheng L, Martin ACL, Maddocks ODK, Chokkathukalam A, Coyle JE, Jankevics A, Holding FP, Vousden KH, et al: Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature. 491:458–462. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Goh GB, Li JW, Chang PE, Chow KY and Tan CK: Deciphering the epidemiology of hepatocellular carcinoma through the passage of time: A study of 1,401 patients across 3 decades. Hepatol Commun. 1:564–571. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Busby J, Mills K, Zhang S, Liberante F and Cardwell C: Postdiagnostic Calcium channel blocker use and breast cancer mortality: A population-based cohort study. Epidemiology. 29:407–413. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Nanavaty P, Alvarez MS and Alberts WM: Lung cancer screening: Advantages, controversies, and applications. Cancer Control. 21:9–14. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Lu M, Lu L, Dong Q, Yu G, Chen J, Qin L, Wang L, Zhu W and Jia H: Elevated G6PD expression contributes to migration and invasion of hepatocellular carcinoma cells by inducing epithelial-mesenchymal transition. Acta Biochim Biophys Sin (Shanghai). 50:370–380. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Kowalik M, Guzzo G, Morandi A, Perra A, Menegon S, Masgras I, Trevisan E, Angioni MM, Fornari F, Quagliata L, et al: Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget. 7:32375–32393. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Kong DH, Li S, Du ZX, Liu C, Liu BQ, Li C, Zong ZH and Wang HQ: BAG3 elevation inhibits cell proliferation via direct interaction with G6PD in hepatocellular carcinomas. Oncotarget. 7:700–711. 2016.PubMed/NCBI

77 

Hong X, Song R, Song H, Zheng T, Wang J, Liang Y, Qi S, Lu Z, Song X, Jiang H, et al: PTEN antagonises Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to hepatocarcinogenesis. Gut. 63:1635–1647. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Maruyama H, Kleeff J, Wildi S, Friess H, Büchler MW, Israel MA and Korc M: Id-1 and Id-2 are overexpressed in pancreatic cancer and in dysplastic lesions in chronic pancreatitis. Am J Pathol. 155:815–822. 1999. View Article : Google Scholar : PubMed/NCBI

79 

Yin X, Tang B, Li JH, Wang Y, Zhang L, Xie XY, Zhang BH, Qiu SJ, Wu WZ and Ren ZG: ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway. J Exp Clin Cancer Res. 36:1662017. View Article : Google Scholar : PubMed/NCBI

80 

DeWaal D, Nogueira V, Terry AR, Patra KC, Jeon SM, Guzman G, Au J, Long CP, Antoniewicz MR and Hay N: Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun. 9:4462018. View Article : Google Scholar : PubMed/NCBI

81 

Lin YH, Wu MH, Huang YH, Yeh CT, Cheng ML, Chi HC, Tsai CY, Chung IH, Chen CY and Lin KH: Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma. Hepatology. 67:188–203. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Jin F, Wang Y, Zhu Y, Li S, Liu Y, Chen C, Wang X, Zen K and Li L: The miR-125a/HK2 axis regulates cancer cell energy metabolism reprogramming in hepatocellular carcinoma. Sci Rep. 7:30892017. View Article : Google Scholar : PubMed/NCBI

83 

Li M, Jin R, Wang W, Zhang T, Sang J, Li N, Han Q, Zhao W, Li C and Liu Z: STAT3 regulates glycolysis via targeting hexokinase 2 in hepatocellular carcinoma cells. Oncotarget. 8:24777–24784. 2017.PubMed/NCBI

84 

Lee H, Kim H, Son T, Jeong Y, Kim SU, Dong SM, Park YN, Lee JD, Lee JM and Park JH: Regulation of HK2 expression through alterations in CpG methylation of the HK2 promoter during progression of hepatocellular carcinoma. Oncotarget. 7:41798–41810. 2016.PubMed/NCBI

85 

Dong T, Kang X, Liu Z, Zhao S, Ma W, Xuan Q, Liu H, Wang Z and Zhang Q: Altered glycometabolism affects both clinical features and prognosis of triple-negative and neoadjuvant chemotherapy-treated breast cancer. Tumour Biol. 37:8159–8168. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Pu H, Zhang Q, Zhao C, Shi L, Wang Y, Wang J and Zhang M: Overexpression of G6PD is associated with high risks of recurrent metastasis and poor progression-free survival in primary breast carcinoma. World J Surg Oncol. 13:3232015. View Article : Google Scholar : PubMed/NCBI

87 

Tseng CW, Kuo WH, Chan SH, Chan HL, Chang KJ and Wang LH: Transketolase regulates the metabolic switch to control breast cancer cell metastasis via the α-ketoglutarate signaling pathway. Cancer Res. 78:2799–2812. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Gao Y, Yang Y, Yuan F, Huang J, Xu W, Mao B, Yuan Z and Bi W: TNFα-YAP/p65-HK2 axis mediates breast cancer cell migration. Oncogenesis. 6:e3832017. View Article : Google Scholar : PubMed/NCBI

89 

Gallagher LE, Radhi OA, Abdullah MO, McCluskey AG, Boyd M and Chan EYW: Lysosomotropism depends on glucose: A chloroquine resistance mechanism. Cell Death Dis. 8:e30142017. View Article : Google Scholar : PubMed/NCBI

90 

Marini C, Bianchi G, Buschiazzo A, Ravera S, Martella R, Bottoni G, Petretto A, Emionite L, Monteverde E, Capitanio S, et al: Divergent targets of glycolysis and oxidative phosphorylation result in additive effects of metformin and starvation in colon and breast cancer. Sci Rep. 6:195692016. View Article : Google Scholar : PubMed/NCBI

91 

Doménech E, Maestre C, Esteban-Martínez L, Partida D, Pascual R, Fernández-Miranda G, Seco E, Campos-Olivas R, Pérez M, Megias D, et al: AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol. 17:1304–1316. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Ge X, Lyu P, Gu Y, Li L, Li J, Wang Y, Zhang L, Fu C and Cao Z: Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation. Biochem Biophys Res Commun. 464:862–868. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Dasgupta S, Rajapakshe K, Zhu B, Nikolai BC, Yi P, Putluri N, Choi JM, Jung SY, Coarfa C, Westbrook TF, et al: Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer. Nature. 556:249–254. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Zhou Z, Li M, Zhang L, Zhao H, Şahin Ö, Chen J, Zhao JJ, Songyang Z and Yu D: Oncogenic kinase-induced PKM2 tyrosine 105 phosphorylation converts non-oncogenic PKM2 to a tumor promoter and induces cancer stem-like cells. Cancer Res. 78:2248–2261. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Singh S, Narayanan S, Biswas K, Gupta A, Ahuja N, Yadav S, Panday RK, Samaiya A, Sharan SK and Shukla S: Intragenic DNA methylation and BORIS-mediated cancer-specific splicing contribute to the Warburg effect. Proc Natl Acad Sci USA. 114:11440–11445. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Giatromanolaki A, Sivridis E, Arelaki S and Koukourakis M: Expression of enzymes related to glucose metabolism in non-small cell lung cancer and prognosis. Exp Lung Res. 43:167–174. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Nagashio R, Oikawa S, Yanagita K, Hagiuda D, Kuchitsu Y, Igawa S, Naoki K, Satoh Y, Ichinoe M, Murakumo Y, et al: Prognostic significance of G6PD expression and localization in lung adenocarcinoma. Biochim Biophys Acta Proteins Proteom. 1867:38–46. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Hong W, Cai P, Xu C, Cao D, Yu W, Zhao Z, Huang M and Jin J: Inhibition of Glucose-6-phosphate dehydrogenase reverses cisplatin resistance in lung cancer cells via the redox system. Front Pharmacol. 9:432018. View Article : Google Scholar : PubMed/NCBI

99 

Chan B, VanderLaan P and Sukhatme VP: 6-Phosphogluconate dehydrogenase regulates tumor cell migration in vitro by regulating receptor tyrosine kinase c-Met. Biochem Biophys Res Commun. 439:247–251. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Kayser G, Sienel W, Kubitz B, Mattern D, Stickeler E, Passlick B, Werner M and Zur Hausen A: Poor outcome in primary non-small cell lung cancers is predicted by transketolase TKTL1 expression. Pathology. 43:719–724. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Lu H and Zhu H: Effect of siRNA-mediated gene silencing of transketolase on A549 lung cancer cells. Oncol Lett. 14:5906–5912. 2017.PubMed/NCBI

102 

Wang H, Wang L, Zhang Y, Wang J, Deng Y and Lin D: Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth. Cancer Cell Int. 16:92016. View Article : Google Scholar : PubMed/NCBI

103 

De Rosa V, Iommelli F, Monti M, Fonti R, Votta G, Stoppelli MP and Del Vecchio S: Reversal of Warburg effect and reactivation of oxidative phosphorylation by differential inhibition of EGFR signaling pathways in non-small cell lung cancer. Clin Cancer Res. 21:5110–5120. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Su H, Bodenstein C, Dumont RA, Seimbille Y, Dubinett S, Phelps ME, Herschman H, Czernin J and Weber W: Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res. 12:5659–5667. 2006. View Article : Google Scholar : PubMed/NCBI

105 

Zhang K, Zhang M, Jiang H, Liu F, Liu H and Li Y: Down-regulation of miR-214 inhibits proliferation and glycolysis in non-small-cell lung cancer cells via down-regulating the expression of hexokinase 2 and pyruvate kinase isozyme M2. Biomed Pharmacother. 105:545–552. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Cheng X, Liu F, Liu H, Wang G and Hao H: Enhanced glycometabolism as a mechanism of NQO1 potentiated growth of NSCLC revealed by metabolomic profiling. Biochem Biophys Res Commun. 496:31–36. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Minchenko OH, Ogura T, Opentanova IL, Minchenko DO, Ochiai A, Caro J, Komisarenko SV and Esumi H: 6-Phospho-fructo-2-kinase/fructose-2,6-bisphosphatase gene family overexpression in human lung tumor. Ukr Biokhim Zh (1999). 77:46–50. 2005.PubMed/NCBI

108 

Yang J, Li J, Le Y, Zhou C, Zhang S and Gong Z: PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer. Am J Cancer Res. 6:473–485. 2016.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jin L and Zhou Y: Crucial role of the pentose phosphate pathway in malignant tumors (Review). Oncol Lett 17: 4213-4221, 2019.
APA
Jin, L., & Zhou, Y. (2019). Crucial role of the pentose phosphate pathway in malignant tumors (Review). Oncology Letters, 17, 4213-4221. https://doi.org/10.3892/ol.2019.10112
MLA
Jin, L., Zhou, Y."Crucial role of the pentose phosphate pathway in malignant tumors (Review)". Oncology Letters 17.5 (2019): 4213-4221.
Chicago
Jin, L., Zhou, Y."Crucial role of the pentose phosphate pathway in malignant tumors (Review)". Oncology Letters 17, no. 5 (2019): 4213-4221. https://doi.org/10.3892/ol.2019.10112
Copy and paste a formatted citation
x
Spandidos Publications style
Jin L and Zhou Y: Crucial role of the pentose phosphate pathway in malignant tumors (Review). Oncol Lett 17: 4213-4221, 2019.
APA
Jin, L., & Zhou, Y. (2019). Crucial role of the pentose phosphate pathway in malignant tumors (Review). Oncology Letters, 17, 4213-4221. https://doi.org/10.3892/ol.2019.10112
MLA
Jin, L., Zhou, Y."Crucial role of the pentose phosphate pathway in malignant tumors (Review)". Oncology Letters 17.5 (2019): 4213-4221.
Chicago
Jin, L., Zhou, Y."Crucial role of the pentose phosphate pathway in malignant tumors (Review)". Oncology Letters 17, no. 5 (2019): 4213-4221. https://doi.org/10.3892/ol.2019.10112
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team