|
1
|
Vazquez A, Kamphorst JJ, Markert EK, Schug
ZT, Tardito S and Gottlieb E: Cancer metabolism at a glance. J Cell
Sci. 129:3367–3373. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Weber GF: Metabolism in cancer metastasis.
Int J Cancer. 138:2061–2066. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lu J, Tan M and Cai Q: The Warburg effect
in tumor progression: Mitochondrial oxidative metabolism as an
anti-metastasis mechanism. Cancer Lett. 356:156–164. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Martinez-Outschoorn UE, Peiris-Pagés M,
Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A
therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ramos-Martinez JI: The regulation of the
pentose phosphate pathway: Remember Krebs. Arch Biochem Biophys.
614:50–52. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Patra KC and Hay N: The pentose phosphate
pathway and cancer. Trends Biochem Sci. 39:347–354. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kruger NJ and von Schaewen A: The
oxidative pentose phosphate pathway: Structure and organisation.
Curr Opin Plant Biol. 6:236–246. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Stincone A, Prigione A, Cramer T, Wamelink
MM, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A,
Tauqeer Alam M, et al: The return of metabolism: Biochemistry and
physiology of the pentose phosphate pathway. Biol Rev Camb Philos
Soc. 90:927–963. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang C, Zhang Z, Zhu Y and Qin S:
Glucose-6-phosphate dehydrogenase: A biomarker and potential
therapeutic target for cancer. Anticancer Agents Med Chem.
14:280–289. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kathagen-Buhmann A, Schulte A, Weller J,
Holz M, Herold-Mende C, Glass R and Lamszus K: Glycolysis and the
pentose phosphate pathway are differentially associated with the
dichotomous regulation of glioblastoma cell migration versus
proliferation. Neuro Oncol. 18:1219–1229. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ju HQ, Lu YX, Wu QN, Liu J, Zeng ZL, Mo
HY, Chen Y, Tian T, Wang Y, Kang TB, et al: Disrupting
G6PD-mediated Redox homeostasis enhances chemosensitivity in
colorectal cancer. Oncogene. 36:6282–6292. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Au SW, Gover S, Lam VM and Adams MJ: Human
glucose-6-phosphate dehydrogenase: The crystal structure reveals a
structural NADP(+) molecule and provides insights into enzyme
deficiency. Structure. 8:293–303. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cohen P and Rosemeyer MA: Subunit
interactions of glucose-6-phosphate dehydrogenase from human
erythrocytes. Eur J Biochem. 8:8–15. 1969. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jiang P, Du W, Wang X, Mancuso A, Gao X,
Wu M and Yang X: p53 regulates biosynthesis through direct
inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol.
13:310–316. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ma X, Wang L, Huang, Li Y, Yang D, Li T,
Li F, Sun L, Wei H, He K, et al: Polo-like kinase 1 coordinates
biosynthesis during cell cycle progression by directly activating
pentose phosphate pathway. Nat Commun. 8:15062017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rao X, Duan X, Mao W, Li X, Li Z, Li Q,
Zheng Z, Xu H, Chen M, Wang PG, et al: O-GlcNAcylation of G6PD
promotes the pentose phosphate pathway and tumor growth. Nat
Commun. 6:84682015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Thiepold AL, Lorenz NI, Foltyn M, Engel
AL, Divé I, Urban H, Heller S, Bruns I, Hofmann U, Dröse S, et al:
Mammalian target of rapamycin complex 1 activation sensitizes human
glioma cells to hypoxia-induced cell death. Brain. 140:2623–2638.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang X, Zhang X, Li Y, Shao Y, Xiao J,
Zhu G and Li F: PAK4 regulates G6PD activity by p53 degradation
involving colon cancer cell growth. Cell Death Dis. 8:e28202017.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yang X, Peng X and Huang J: Inhibiting
6-phosphogluconate dehydrogenase selectively targets breast cancer
through AMPK activation. Clin Transl Oncol. 20:1145–1152. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bhanot H, Weisberg EL, Reddy MM, Nonami A,
Neuberg D, Stone RM, Podar K, Salgia R, Griffin JD and Sattler M:
Acute myeloid leukemia cells require 6-phosphogluconate
dehydrogenase for cell growth and NADPH-dependent metabolic
reprogramming. Oncotarget. 8:67639–67650. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zheng W, Feng Q, Liu J, Guo Y, Gao L, Li
R, Xu M, Yan G, Yin Z, Zhang S, et al: Inhibition of
6-phosphogluconate dehydrogenase reverses cisplatin resistance in
ovarian and lung cancer. Front Pharmacol. 8:4212017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Shan C, Elf S, Ji Q, Kang HB, Zhou L,
Hitosugi T, Jin L, Lin R, Zhang L, Seo JH, et al: Lysine
acetylation activates 6-phosphogluconate dehydrogenase to promote
tumor growth. Mol Cell. 55:552–565. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou
L, Hitosugi T, Zhang L, Zhang S, Seo JH, et al: 6-Phosphogluconate
dehydrogenase links oxidative PPP, lipogenesis and tumour growth by
inhibiting LKB1-AMPK signalling. Nat Cell Biol. 17:1484–1496. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hitosugi T, Zhou L, Elf S, Fan J, Kang HB,
Seo JH, Shan C, Dai Q, Zhang L, Xie J, et al: Phosphoglycerate
mutase 1 coordinates glycolysis and biosynthesis to promote tumor
growth. Cancer Cell. 22:585–600. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Yao P, Sun H, Xu C, Chen T, Zou B, Jiang P
and Du W: Evidence for a direct cross-talk between malic enzyme and
the pentose phosphate pathway via structural interactions. J Biol
Chem. 292:17113–17120. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Qiu Z, Guo W, Wang Q, Chen Z, Huang S,
Zhao F, Yao M, Zhao Y and He X: MicroRNA-124 reduces the pentose
phosphate pathway and proliferation by targeting PRPS1 and RPIA
mRNAs in human colorectal cancer cells. Gastroenterology.
149:1587–1598.e11. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chou YT, Jiang JK, Yang MH, Lu JW, Lin HK,
Wang HD and Yuh CH: Identification of a noncanonical function for
ribose-5-phosphate isomerase A promotes colorectal cancer formation
by stabilizing and activating β-catenin via a novel C-terminal
domain. PLoS Biol. 16:e20037142018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ciou SC, Chou YT, Liu YL, Nieh YC, Lu JW,
Huang SF, Chou YT, Cheng LH, Lo JF, Chen MJ, et al:
Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via
PP2A and ERK signaling. Int J Cancer. 137:104–115. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Benito A, Polat IH, Noé V, Ciudad CJ,
Marin S and Cascante M: Glucose-6-phosphate dehydrogenase and
transketolase modulate breast cancer cell metabolic reprogramming
and correlate with poor patient outcome. Oncotarget.
8:106693–106706. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu IM, Lai RK, Lin SH, Tse AP, Chiu DK,
Koh HY, Law CT, Wong CM, Cai Z, Wong CC and Ng IO: Transketolase
counteracts oxidative stress to drive cancer development. Proc Natl
Acad Sci USA. 113:E725–E734. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kamenisch Y, Baban TSA, Schuller W, von
Thaler AK, Sinnberg T, Metzler G, Bauer J, Schittek B, Garbe C,
Rocken M and Berneburg M: UVA-irradiation induces melanoma invasion
via the enhanced Warburg effect. J Invest Dermatol. 136:1866–1875.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liu H, Huang D, McArthur D, Boros L,
Nissen N and Heaney A: Fructose induces transketolase flux to
promote pancreatic cancer growth. Cancer Res. 70:6368–6376. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Coy JF, Dressler D, Wilde J and Schubert
P: Mutations in the transketolase-like gene TKTL1: Clinical
implications for neurodegenerative diseases, diabetes and cancer.
Clin Lab. 51:257–273. 2005.PubMed/NCBI
|
|
36
|
Coy JF, Dübel S, Kioschis P, Thomas K,
Micklem G, Delius H and Poustka A: Molecular cloning of
tissue-specific transcripts of a transketolase-related gene:
Implications for the evolution of new vertebrate genes. Genomics.
32:309–316. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Langbein S, Zerilli M, Zur Hausen A,
Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP,
Steidler A, Weiss C, et al: Expression of transketolase TKTL1
predicts colon and urothelial cancer patient survival: Warburg
effect reinterpreted. Br J Cancer. 94:578–585. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lange CA, Tisch-Rottensteiner J, Böhringer
D, Martin G, Schwartzkopff J and Auw-Haedrich C: Enhanced TKTL1
expression in malignant tumors of the ocular adnexa predicts
clinical outcome. Ophthalmology. 119:1924–1929. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lin CC, Chen LC, Tseng VS, Yan JJ, Lai WW,
Su WP, Lin CH, Huang CY and Su WC: Malignant pleural effusion cells
show aberrant glucose metabolism gene expression. Eur Respir J.
37:1453–1465. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xu X, Zur Hausen A, Coy JF and Löchelt M:
Transketolase-like protein 1 (TKTL1) is required for rapid cell
growth and full viability of human tumor cells. Int J Cancer.
124:1330–1337. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kočevar N, Odreman F, Vindigni A, Grazio
SF and Komel R: Proteomic analysis of gastric cancer and immunoblot
validation of potential biomarkers. World J Gastroenterol.
18:1216–1228. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang C, Guo K, Gao D, Kang X, Jiang K, Li
Y, Sun L, Zhang S, Sun C, Liu X, et al: Identification of
transaldolase as a novel serum biomarker for hepatocellular
carcinoma metastasis using xenografted mouse model and clinic
samples. Cancer Lett. 313:154–166. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hsieh BS, Huang LW, Su SJ, Cheng HL, Hu
YC, Hung TC and Chang KL: Combined arginine and ascorbic acid
treatment induces apoptosis in the hepatoma cell line HA22T/VGH and
changes in redox status involving the pentose phosphate pathway and
reactive oxygen and nitrogen species. J Nutr Biochem. 22:234–241.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li Z, Zhang B, Yao W, Zhang C, Wan L and
Zhang Y: APC-Cdh1 regulates neuronal apoptosis through modulating
glycolysis and pentose-phosphate pathway after oxygen-glucose
deprivation and reperfusion. Cell Mol Neurobiol. 39:123–135. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Senyilmaz D and Teleman A: Chicken or the
egg: Warburg effect and mitochondrial dysfunction. F1000Prime Rep.
7:412015. View
Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wilson JE: Isozymes of mammalian
hexokinase: Structure, subcellular localization and metabolic
function. J Exp Biol. 206:2049–2057. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gu J, Singh A, Xue K, Mavis C, Barth M,
Yanamadala V, Lenz P, Grau M, Lenz G, Czuczman MS and
Hernandez-Ilizaliturri FJ: Up-regulation of hexokinase II
contributes to rituximab-chemotherapy resistance and is a
clinically relevant target for therapeutic development. Oncotarget.
9:4020–4033. 2017.PubMed/NCBI
|
|
48
|
Patra KC, Wang Q, Bhaskar PT, Miller L,
Wang Z, Wheaton W, Chandel N, Laakso M, Muller WJ, Allen EL, et al:
Hexokinase 2 is required for tumor initiation and maintenance and
its systemic deletion is therapeutic in mouse models of cancer.
Cancer Cell. 24:213–228. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
An MX, Li S, Yao HB, Li C, Wang JM, Sun J,
Li XY, Meng XN and Wang HQ: BAG3 directly stabilizes Hexokinase 2
mRNA and promotes aerobic glycolysis in pancreatic cancer cells. J
Cell Biol. 216:4091–4105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hoppe-Seyler K, Honegger A, Bossler F,
Sponagel J, Bulkescher J, Lohrey C and Hoppe-Seyler F: Viral E6/E7
oncogene and cellular hexokinase 2 expression in HPV-positive
cancer cell lines. Oncotarget. 8:106342–106351. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ju HQ, Zhan G, Huang A, Sun Y, Wen S, Yang
J, Lu WH, Xu RH, Li J, Li Y, et al: ITD mutation in FLT3 tyrosine
kinase promotes Warburg effect and renders therapeutic sensitivity
to glycolytic inhibition. Leukemia. 31:2143–2150. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang J, Duan Z, Nugent Z, Zou JX, Borowsky
AD, Zhang Y, Tepper CG, Li JJ, Fiehn O, Xu J, et al: Reprogramming
metabolism by histone methyltransferase NSD2 drives endocrine
resistance via coordinated activation of pentose phosphate pathway
enzymes. Cancer Lett. 378:69–79. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ha JH, Radhakrishnan R, Jayaraman M, Yan
M, Ward JD, Fung KM, Moxley K, Sood AK, Isidoro C, Mukherjee P, et
al: LPA induces metabolic reprogramming in ovarian cancer via a
pseudohypoxic response. Cancer Res. 78:1923–1934. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Moon JS, Kim HE, Koh E, Park SH, Jin WJ,
Park BW, Park SW and Kim KS: Krüppel-like factor 4 (KLF4) activates
the transcription of the gene for the platelet isoform of
phosphofructokinase (PFKP) in breast cancer. J Biol Chem.
286:23808–23816. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Park YY, Kim SB, Han HD, Sohn BH, Kim JH,
Liang J, Lu Y, Rodriguez-Aguayo C, Lopez-Berestein G, Mills GB, et
al: Tat-activating regulatory DNA-binding protein regulates
glycolysis in hepatocellular carcinoma by regulating the platelet
isoform of phosphofructokinase through microRNA 520. Hepatology.
58:182–191. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cabrera R, Baez M, Pereira HM, Caniuguir
A, Garratt RC and Babul J: The crystal complex of
phosphofructokinase-2 of Escherichia coli with
fructose-6-phosphate: Kinetic and structural analysis of the
allosteric ATP inhibition. J Biol Chem. 286:5774–5783. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yi W, Clark PM, Mason DE, Keenan MC, Hill
C, Goddard WA III, Peters EC, Driggers EM and Hsieh-Wilson LC:
Phosphofructokinase 1 glycosylation regulates cell growth and
metabolism. Science. 337:975–980. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang S, Peng Z, Wang S, Yang L, Chen Y,
Kong X, Song S, Pei P, Tian C, Yan H, et al: KRAB-type zinc-finger
proteins PITA and PISA specifically regulate p53-dependent
glycolysis and mitochondrial respiration. Cell Res. 28:572–592.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai
Q, Qian X, Xia Y, Zheng Y, Piao Y, et al: Stabilization of
phosphofructokinase 1 platelet isoform by AKT promotes
tumorigenesis. Nat Commun. 8:9492017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang H, Nicolay BN, Chick JM, Gao X, Geng
Y, Ren H, Gao H, Yang G, Williams JA, Suski JM, et al: The
metabolic function of cyclin D3-CDK6 kinase in cancer cell
survival. Nature. 546:426–430. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kim NH, Cha YH, Lee J, Lee SH, Yang JH,
Yun JS, Cho ES, Zhang X, Nam M, Kim N, et al: Snail reprograms
glucose metabolism by repressing phosphofructokinase PFKP allowing
cancer cell survival under metabolic stress. Nat Commun.
8:143742017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yamamoto T, Takano N, Ishiwata K, Ohmura
M, Nagahata Y, Matsuura T, Kamata A, Sakamoto K, Nakanishi T, Kubo
A, et al: Reduced methylation of PFKFB3 in cancer cells shunts
glucose towards the pentose phosphate pathway. Nat Commun.
5:34802014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Gui DY, Lewis CA and Vander Heiden MG:
Allosteric regulation of PKM2 allows cellular adaptation to
different physiological states. Sci Signal. 263:pe72013.
|
|
64
|
Fukuda S, Miyata H, Miyazaki Y, Makino T,
Takahashi T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Mori
M and Doki Y: Pyruvate kinase M2 modulates esophageal squamous cell
carcinoma chemotherapy response by regulating the pentose phosphate
pathway. Ann Surg Oncol. 22 (Suppl 3):S1461–S1468. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Israelsen WJ, Dayton TL, Davidson SM,
Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW,
et al: PKM2 isoform-specific deletion reveals a differential
requirement for pyruvate kinase in tumor cells. Cell. 155:397–409.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Keller KE, Tan IS and Lee YS: SAICAR
stimulates pyruvate kinase isoform M2 and promotes cancer cell
survival in glucose-limited conditions. Science. 338:1069–1072.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yang W, Xia Y, Hawke D, Li X, Liang J,
Xing D, Aldape K, Hunter T, Alfred Yung WK and Lu Z: PKM2
phosphorylates histone H3 and promotes gene transcription and
tumorigenesis. Cell. 150:685–696. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Anastasiou D, Poulogiannis G, Asara JM,
Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW,
Auld DS, et al: Inhibition of pyruvate kinase M2 by reactive oxygen
species contributes to cellular antioxidant responses. Science.
334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Luo W, Hu H, Chang R, Zhong J, Knabel M,
O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is
a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell.
145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chaneton B, Hillmann P, Zheng L, Martin
ACL, Maddocks ODK, Chokkathukalam A, Coyle JE, Jankevics A, Holding
FP, Vousden KH, et al: Serine is a natural ligand and allosteric
activator of pyruvate kinase M2. Nature. 491:458–462. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Goh GB, Li JW, Chang PE, Chow KY and Tan
CK: Deciphering the epidemiology of hepatocellular carcinoma
through the passage of time: A study of 1,401 patients across 3
decades. Hepatol Commun. 1:564–571. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Busby J, Mills K, Zhang S, Liberante F and
Cardwell C: Postdiagnostic Calcium channel blocker use and breast
cancer mortality: A population-based cohort study. Epidemiology.
29:407–413. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Nanavaty P, Alvarez MS and Alberts WM:
Lung cancer screening: Advantages, controversies, and applications.
Cancer Control. 21:9–14. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lu M, Lu L, Dong Q, Yu G, Chen J, Qin L,
Wang L, Zhu W and Jia H: Elevated G6PD expression contributes to
migration and invasion of hepatocellular carcinoma cells by
inducing epithelial-mesenchymal transition. Acta Biochim Biophys
Sin (Shanghai). 50:370–380. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kowalik M, Guzzo G, Morandi A, Perra A,
Menegon S, Masgras I, Trevisan E, Angioni MM, Fornari F, Quagliata
L, et al: Metabolic reprogramming identifies the most aggressive
lesions at early phases of hepatic carcinogenesis. Oncotarget.
7:32375–32393. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kong DH, Li S, Du ZX, Liu C, Liu BQ, Li C,
Zong ZH and Wang HQ: BAG3 elevation inhibits cell proliferation via
direct interaction with G6PD in hepatocellular carcinomas.
Oncotarget. 7:700–711. 2016.PubMed/NCBI
|
|
77
|
Hong X, Song R, Song H, Zheng T, Wang J,
Liang Y, Qi S, Lu Z, Song X, Jiang H, et al: PTEN antagonises
Tcl1/hnRNPK-mediated G6PD pre-mRNA splicing which contributes to
hepatocarcinogenesis. Gut. 63:1635–1647. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Maruyama H, Kleeff J, Wildi S, Friess H,
Büchler MW, Israel MA and Korc M: Id-1 and Id-2 are overexpressed
in pancreatic cancer and in dysplastic lesions in chronic
pancreatitis. Am J Pathol. 155:815–822. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yin X, Tang B, Li JH, Wang Y, Zhang L, Xie
XY, Zhang BH, Qiu SJ, Wu WZ and Ren ZG: ID1 promotes hepatocellular
carcinoma proliferation and confers chemoresistance to oxaliplatin
by activating pentose phosphate pathway. J Exp Clin Cancer Res.
36:1662017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
DeWaal D, Nogueira V, Terry AR, Patra KC,
Jeon SM, Guzman G, Au J, Long CP, Antoniewicz MR and Hay N:
Hexokinase-2 depletion inhibits glycolysis and induces oxidative
phosphorylation in hepatocellular carcinoma and sensitizes to
metformin. Nat Commun. 9:4462018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lin YH, Wu MH, Huang YH, Yeh CT, Cheng ML,
Chi HC, Tsai CY, Chung IH, Chen CY and Lin KH: Taurine up-regulated
gene 1 functions as a master regulator to coordinate glycolysis and
metastasis in hepatocellular carcinoma. Hepatology. 67:188–203.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jin F, Wang Y, Zhu Y, Li S, Liu Y, Chen C,
Wang X, Zen K and Li L: The miR-125a/HK2 axis regulates cancer cell
energy metabolism reprogramming in hepatocellular carcinoma. Sci
Rep. 7:30892017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li M, Jin R, Wang W, Zhang T, Sang J, Li
N, Han Q, Zhao W, Li C and Liu Z: STAT3 regulates glycolysis via
targeting hexokinase 2 in hepatocellular carcinoma cells.
Oncotarget. 8:24777–24784. 2017.PubMed/NCBI
|
|
84
|
Lee H, Kim H, Son T, Jeong Y, Kim SU, Dong
SM, Park YN, Lee JD, Lee JM and Park JH: Regulation of HK2
expression through alterations in CpG methylation of the HK2
promoter during progression of hepatocellular carcinoma.
Oncotarget. 7:41798–41810. 2016.PubMed/NCBI
|
|
85
|
Dong T, Kang X, Liu Z, Zhao S, Ma W, Xuan
Q, Liu H, Wang Z and Zhang Q: Altered glycometabolism affects both
clinical features and prognosis of triple-negative and neoadjuvant
chemotherapy-treated breast cancer. Tumour Biol. 37:8159–8168.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Pu H, Zhang Q, Zhao C, Shi L, Wang Y, Wang
J and Zhang M: Overexpression of G6PD is associated with high risks
of recurrent metastasis and poor progression-free survival in
primary breast carcinoma. World J Surg Oncol. 13:3232015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Tseng CW, Kuo WH, Chan SH, Chan HL, Chang
KJ and Wang LH: Transketolase regulates the metabolic switch to
control breast cancer cell metastasis via the α-ketoglutarate
signaling pathway. Cancer Res. 78:2799–2812. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gao Y, Yang Y, Yuan F, Huang J, Xu W, Mao
B, Yuan Z and Bi W: TNFα-YAP/p65-HK2 axis mediates breast cancer
cell migration. Oncogenesis. 6:e3832017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gallagher LE, Radhi OA, Abdullah MO,
McCluskey AG, Boyd M and Chan EYW: Lysosomotropism depends on
glucose: A chloroquine resistance mechanism. Cell Death Dis.
8:e30142017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Marini C, Bianchi G, Buschiazzo A, Ravera
S, Martella R, Bottoni G, Petretto A, Emionite L, Monteverde E,
Capitanio S, et al: Divergent targets of glycolysis and oxidative
phosphorylation result in additive effects of metformin and
starvation in colon and breast cancer. Sci Rep. 6:195692016.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Doménech E, Maestre C, Esteban-Martínez L,
Partida D, Pascual R, Fernández-Miranda G, Seco E, Campos-Olivas R,
Pérez M, Megias D, et al: AMPK and PFKFB3 mediate glycolysis and
survival in response to mitophagy during mitotic arrest. Nat Cell
Biol. 17:1304–1316. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ge X, Lyu P, Gu Y, Li L, Li J, Wang Y,
Zhang L, Fu C and Cao Z: Sonic hedgehog stimulates glycolysis and
proliferation of breast cancer cells: Modulation of PFKFB3
activation. Biochem Biophys Res Commun. 464:862–868. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dasgupta S, Rajapakshe K, Zhu B, Nikolai
BC, Yi P, Putluri N, Choi JM, Jung SY, Coarfa C, Westbrook TF, et
al: Metabolic enzyme PFKFB4 activates transcriptional coactivator
SRC-3 to drive breast cancer. Nature. 556:249–254. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhou Z, Li M, Zhang L, Zhao H, Şahin Ö,
Chen J, Zhao JJ, Songyang Z and Yu D: Oncogenic kinase-induced PKM2
tyrosine 105 phosphorylation converts non-oncogenic PKM2 to a tumor
promoter and induces cancer stem-like cells. Cancer Res.
78:2248–2261. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Singh S, Narayanan S, Biswas K, Gupta A,
Ahuja N, Yadav S, Panday RK, Samaiya A, Sharan SK and Shukla S:
Intragenic DNA methylation and BORIS-mediated cancer-specific
splicing contribute to the Warburg effect. Proc Natl Acad Sci USA.
114:11440–11445. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Giatromanolaki A, Sivridis E, Arelaki S
and Koukourakis M: Expression of enzymes related to glucose
metabolism in non-small cell lung cancer and prognosis. Exp Lung
Res. 43:167–174. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nagashio R, Oikawa S, Yanagita K, Hagiuda
D, Kuchitsu Y, Igawa S, Naoki K, Satoh Y, Ichinoe M, Murakumo Y, et
al: Prognostic significance of G6PD expression and localization in
lung adenocarcinoma. Biochim Biophys Acta Proteins Proteom.
1867:38–46. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hong W, Cai P, Xu C, Cao D, Yu W, Zhao Z,
Huang M and Jin J: Inhibition of Glucose-6-phosphate dehydrogenase
reverses cisplatin resistance in lung cancer cells via the redox
system. Front Pharmacol. 9:432018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chan B, VanderLaan P and Sukhatme VP:
6-Phosphogluconate dehydrogenase regulates tumor cell migration in
vitro by regulating receptor tyrosine kinase c-Met. Biochem Biophys
Res Commun. 439:247–251. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kayser G, Sienel W, Kubitz B, Mattern D,
Stickeler E, Passlick B, Werner M and Zur Hausen A: Poor outcome in
primary non-small cell lung cancers is predicted by transketolase
TKTL1 expression. Pathology. 43:719–724. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lu H and Zhu H: Effect of siRNA-mediated
gene silencing of transketolase on A549 lung cancer cells. Oncol
Lett. 14:5906–5912. 2017.PubMed/NCBI
|
|
102
|
Wang H, Wang L, Zhang Y, Wang J, Deng Y
and Lin D: Inhibition of glycolytic enzyme hexokinase II (HK2)
suppresses lung tumor growth. Cancer Cell Int. 16:92016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
De Rosa V, Iommelli F, Monti M, Fonti R,
Votta G, Stoppelli MP and Del Vecchio S: Reversal of Warburg effect
and reactivation of oxidative phosphorylation by differential
inhibition of EGFR signaling pathways in non-small cell lung
cancer. Clin Cancer Res. 21:5110–5120. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Su H, Bodenstein C, Dumont RA, Seimbille
Y, Dubinett S, Phelps ME, Herschman H, Czernin J and Weber W:
Monitoring tumor glucose utilization by positron emission
tomography for the prediction of treatment response to epidermal
growth factor receptor kinase inhibitors. Clin Cancer Res.
12:5659–5667. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang K, Zhang M, Jiang H, Liu F, Liu H
and Li Y: Down-regulation of miR-214 inhibits proliferation and
glycolysis in non-small-cell lung cancer cells via down-regulating
the expression of hexokinase 2 and pyruvate kinase isozyme M2.
Biomed Pharmacother. 105:545–552. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cheng X, Liu F, Liu H, Wang G and Hao H:
Enhanced glycometabolism as a mechanism of NQO1 potentiated growth
of NSCLC revealed by metabolomic profiling. Biochem Biophys Res
Commun. 496:31–36. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Minchenko OH, Ogura T, Opentanova IL,
Minchenko DO, Ochiai A, Caro J, Komisarenko SV and Esumi H:
6-Phospho-fructo-2-kinase/fructose-2,6-bisphosphatase gene family
overexpression in human lung tumor. Ukr Biokhim Zh (1999).
77:46–50. 2005.PubMed/NCBI
|
|
108
|
Yang J, Li J, Le Y, Zhou C, Zhang S and
Gong Z: PFKL/miR-128 axis regulates glycolysis by inhibiting AKT
phosphorylation and predicts poor survival in lung cancer. Am J
Cancer Res. 6:473–485. 2016.PubMed/NCBI
|