Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2021 Volume 21 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2021 Volume 21 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Innate immune cells and their interaction with T cells in hepatocellular carcinoma (Review)

  • Authors:
    • Guo-Qing Hong
    • Dong Cai
    • Jian-Ping Gong
    • Xing Lai
  • View Affiliations / Copyright

    Affiliations: Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, Chongqing 402660, P.R. China, Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
    Copyright: © Hong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 57
    |
    Published online on: November 19, 2020
       https://doi.org/10.3892/ol.2020.12319
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatocellular carcinoma (HCC) is a malignant tumor and is associated with necroinflammation driven by various immune cells, such as dendritic cells, macrophages and natural killer cells. Innate immune cells can directly affect HCC or regulate the T‑cell responses that mediate HCC. In addition, innate immune cells and T cells are not isolated, which means the interaction between them is important in the HCC microenvironment. Considering the current unsatisfactory efficacy of immunotherapy in patients with HCC, understanding the relationship between innate immune cells and T cells is necessary. In the present review the roles and clinical value of innate immune cells that have been widely reported to be involved in HCC, including dendritic cells, macrophages (including kupffer cells), neutrophils, eosinophils, basophils and innate lymphoid cells and the crosstalk between the innate and adaptive immune responses in the antitumor process have been discussed. The present review will facilitate researchers in understanding the importance of innate immune cells in HCC and lead to innovative immunotherapy approaches for the treatment of HCC.
View Figures

Figure 1

Figure 2

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Villanueva A: Hepatocellular carcinoma. N Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Kulik L and El-Serag H: Epidemiology and management of hepatocellular carcinoma. Gastroenterology. 156:477–491.e1. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A and Roberts LR: A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Macek Jilkova Z, Aspord C and Decaens T: Predictive factors for response to PD-1/PD-L1 checkpoint inhibition in the field of hepatocellular carcinoma: Current status and challenges. Cancers (Basel). 11:15542019. View Article : Google Scholar

6 

El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH, et al: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 389:2492–2502. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Syn NL, Teng MWL, Mok TSK and Soo RA: De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18:e731–e741. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Jenne CN and Kubes P: Immune surveillance by the liver. Nat Immunol. 14:996–1006. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Ringelhan M, Pfister D, O'Connor T, Pikarsky E and Heikenwalder M: The immunology of hepatocellular carcinoma. Nat Immunol. 19:222–232. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Greten T, Wang X and Korangy F: Current concepts of immune based treatments for patients with HCC: From basic science to novel treatment approaches. Gut. 64:842–848. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Wherry EJ and Kurachi M: Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15:486–499. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, et al: Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 479:547–551. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS, Chen WJ, Liu W, Tai Y, Peng YW and Zhang Q: Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation. Oncogenesis. 5:e1982016. View Article : Google Scholar : PubMed/NCBI

14 

Steinman R and Cohn Z: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 137:1142–1162. 1973. View Article : Google Scholar : PubMed/NCBI

15 

Benites BD, Alvarez MC and Saad STO: Small particles, Big effects: The interplay between exosomes and dendritic cells in antitumor immunity and immunotherapy. Cells. 8:16482019. View Article : Google Scholar

16 

Osada T, Clay T, Hobeika A, Lyerly HK and Morse MA: NK cell activation by dendritic cell vaccine: A mechanism of action for clinical activity. Cancer Immunol Immunother. 55:1122–1131. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Shang N, Figini M, Shangguan J, Wang B, Sun C, Pan L, Ma Q and Zhang Z: Dendritic cells based immunotherapy. Am J Cancer Res. 7:2091–2102. 2017.PubMed/NCBI

18 

Chen S: Absence of CD83-positive mature and activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: Relevance to hepatocarcinogenesis. Cancer Lett. 148:49–57. 2000. View Article : Google Scholar : PubMed/NCBI

19 

Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J and Tang ZY: Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol. 132:293–301. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Shibolet O, Alper R, Zlotogarov L, Thalenfeld B, Engelhardt D, Rabbani E and Ilan Y: NKT and CD8 lymphocytes mediate suppression of hepatocellular carcinoma growth via tumor antigen-pulsed dendritic cells. Int J Cancer. 106:236–243. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Chen YX, Man K, Ling GS, Chen Y, Sun BS, Cheng Q, Wong OH, Lo CK, Ng IO, Chan LC, et al: A crucial role for dendritic cell (DC) IL-10 in inhibiting successful DC-based immunotherapy: Superior antitumor immunity against hepatocellular carcinoma evoked by DC devoid of IL-10. J Immunol. 179:6009–6015. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Tatsumi T, Takehara T, Kanto T, Miyagi T, Kuzushita N, Sugimoto Y, Jinushi M, Kasahara A, Sasaki Y, Hori M and Hayashi N: Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma. Cancer Res. 61:7563–7567. 2001.PubMed/NCBI

23 

Rai V, Abdo J, Alsuwaidan AN, Agrawal S, Sharma P and Agrawal DK: Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol Cell Biochem. 437:13–36. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Santos PM, Menk AV, Shi J, Tsung A, Delgoffe GM and Butterfield LH: Tumor-derived alpha-fetoprotein suppresses fatty acid metabolism and oxidative phosphorylation in dendritic cells. Cancer Immunol Res. 7:1001–1012. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, Lin C, Pan Z, Yu Y, Jiang M, et al: Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology. 59:567–579. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Zeng Z, Yao WJ, Xu X, Xu GQ, Long JH, Wang X, Wen ZY and Chien S: Hepatocellular carcinoma cells deteriorate the biophysical properties of dendritic cells. Cell Biochem Biophys. 55:33–43. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Vitale I, Manic G, Coussens L, Kroemer G and Galluzzi L: Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30:36–50. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Mantovani A and Sica A: Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opin Immunol. 22:231–237. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, Ng KT, Forbes SJ, Guan XY, Poon RT, et al: Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 62:607–616. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Kang FB, Wang L, Li D, Zhang YG and Sun DX: Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression. Oncol Rep. 33:274–282. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC, Han H, Liu WC and Qin HY: Crosstalk between hepatic tumor cells and macrophages via Wnt/β-catenin signaling promotes M2-like macrophage polarization and reinforces tumor malignant behaviors. Cell Death Dis. 9:7932018. View Article : Google Scholar : PubMed/NCBI

33 

Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S and Jian Z: IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J Cell Biochem. 119:9419–9432. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Ye Y, Xu Y, Lai Y, He W, Li Y, Wang R, Luo X, Chen R and Chen T: Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization. J Cell Biochem. 119:2951–2963. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Zong Z, Zou J, Mao R, Ma C, Li N, Wang J, Wang X, Zhou H, Zhang L and Shi Y: M1 macrophages induce PD-L1 expression in hepatocellular carcinoma cells through IL-1β signaling. Front Immunol. 10:16432019. View Article : Google Scholar : PubMed/NCBI

36 

Zhang J, Zhang Q, Lou Y, Fu Q, Chen Q, Wei T, Yang J, Tang J, Wang J, Chen Y, et al: Hypoxia-inducible factor-1alpha/interleukin-1beta signaling enhances hepatoma epithelial-mesenchymal transition through macrophages in a hypoxic-inflammatory microenvironment. Hepatology. 67:1872–1889. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Fu XT, Dai Z, Song K, Zhang ZJ, Zhou ZJ, Zhou SL, Zhao YM, Xiao YS, Sun QM, Ding ZB and Fan J: Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol. 46:587–596. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F and Alesse E: The inflammatory microenvironment in hepatocellular carcinoma: A pivotal role for tumor-associated macrophages. Biomed Res Int. 2013:1872042013. View Article : Google Scholar : PubMed/NCBI

39 

Fu XT, Song K, Zhou J, Shi YH, Liu WR, Shi GM, Gao Q, Wang XY, Ding ZB and Fan J: Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma. Cancer Cell Int. 19:712019. View Article : Google Scholar : PubMed/NCBI

40 

Tacke F: Targeting hepatic macrophages to treat liver diseases. J Hepatol. 66:1300–1312. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Dou L, Shi X, He X and Gao Y: Macrophage phenotype and function in liver disorder. Front Immunol. 10:31122019. View Article : Google Scholar : PubMed/NCBI

42 

Naugler W, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy A and Karin M: Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 317:121–124. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Martínez-Cardona C, Lozano-Ruiz B, Bachiller V, Peiró G, Algaba-Chueca F, Gómez-Hurtado I, Such J, Zapater P, Francés R and González-Navajas J: AIM2 deficiency reduces the development of hepatocellular carcinoma in mice. Int J Cancer. 143:2997–3007. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Miura K, Ohnishi H, Morimoto N, Minami S, Ishioka M, Watanabe S, Tsukui M, Takaoka Y, Nomoto H, Isoda N and Yamamoto H: Ezetimibe suppresses development of liver tumors by inhibiting angiogenesis in mice fed a high-fat diet. Cancer Sci. 110:771–783. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Wu H, Zhong Z, Wang A, Yuan C, Ning K, Hu H, Wang C and Yin X: LncRNA FTX represses the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma via regulating the M1/M2 polarization of Kupffer cells. Cancer Cell Int. 20:2662020. View Article : Google Scholar : PubMed/NCBI

46 

Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, Yin XY and Zheng L: Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol. 54:948–955. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Gomez D, Farid S, Malik HZ, Young AL, Toogood GJ, Lodge JPA and Prasad KR: Preoperative neutrophil-to-lymphocyte ratio as a prognostic predictor after curative resection for hepatocellular carcinoma. World J Surg. 32:1757–1762. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao YS and Xu YF: Intratumoral neutrophils: A poor prognostic factor for hepatocellular carcinoma following resection. J Hepatol. 54:497–505. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Li L, Xu L, Yan J, Zhen ZJ, Ji Y, Liu CQ, Lau WY, Zheng L and Xu J: CXCR2-CXCL1 axis is correlated with neutrophil infiltration and predicts a poor prognosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1292015. View Article : Google Scholar : PubMed/NCBI

50 

Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J and Zhou J: Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 56:2242–2254. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z and Tang W: Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: Challenges and opportunities. Mol Cancer. 18:1302019. View Article : Google Scholar : PubMed/NCBI

52 

He M, Peng A, Huang XZ, Shi DC, Wang JC, Zhao Q, Lin H, Kuang DM, Ke PF and Lao XM: Peritumoral stromal neutrophils are essential for c-Met-elicited metastasis in human hepatocellular carcinoma. Oncoimmunology. 5:e12198282016. View Article : Google Scholar : PubMed/NCBI

53 

Wilson CL, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C, et al: NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 6:68182015. View Article : Google Scholar : PubMed/NCBI

54 

Jorch SK and Kubes P: An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 23:279–287. 2017. View Article : Google Scholar : PubMed/NCBI

55 

van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, Tohme S, Loughran P, O'Doherty RM, Minervini MI, et al: Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology. 68:1347–1360. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei R, Lin ZF, Wang XY, Wang CQ, Lu M, et al: Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J Hematol Oncol. 13:32020. View Article : Google Scholar : PubMed/NCBI

57 

Fulkerson P: Transcription factors in eosinophil development and as therapeutic targets. Front Med (Lausanne). 4:1152017. View Article : Google Scholar : PubMed/NCBI

58 

Bernsmeier C, van der Merwe S and Périanin A: Innate immune cells in cirrhosis. J Hepatol. 73:186–201. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Grisaru-Tal S, Itan M, Klion A and Munitz A: A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer. 10:594–607. 2020. View Article : Google Scholar

60 

Kataoka S, Konishi Y, Nishio Y, Fujikawa-Adachi K and Tominaga A: Antitumor activity of eosinophils activated by IL-5 and eotaxin against hepatocellular carcinoma. DNA Cell Biol. 23:549–560. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Steel JL, Kim KH, Dew MA, Unruh ML, Antoni MH, Olek MC, Geller DA, Carr BI, Butterfield LH and Gamblin TC: Cancer-related symptom clusters, eosinophils, and survival in hepatobiliary cancer: An exploratory study. J Pain Symptom Manage. 39:859–871. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Gabrilovich D, Ostrand-Rosenberg S and Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 12:253–268. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, Nakamoto Y and Kaneko S: Increase in CD14+HLA-DR-/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immunother. 62:1421–1430. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns M, Greten T and Korangy F: Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 50:799–807. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Hu C, Gan J, Zhang R, Cheng Y and Huang G: Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function. Scand J Gastroenterol. 46:156–164. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Lu L, Chang C and Hsu C: Targeting myeloid-derived suppressor cells in the treatment of hepatocellular carcinoma: Current state and future perspectives. J Hepatocell Carcinoma. 6:71–84. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK, Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, et al: Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun. 8:5172017. View Article : Google Scholar : PubMed/NCBI

68 

Li Y, Liu Z, Wang J, Yu J, Li Z, Yang H, Tang J and Chen Z: Receptor-interacting protein kinase 3 deficiency recruits myeloid-derived suppressor cells to hepatocellular carcinoma through the chemokine (C-X-C Motif) ligand 1-chemokine (C-X-C Motif) receptor 2 axis. Hepatology. 70:1564–1581. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Xu M, Zhao Z, Song J, Lan X, Lu S, Chen M, Wang Z, Chen W, Fan X, Wu F, et al: Interactions between interleukin-6 and myeloid-derived suppressor cells drive the chemoresistant phenotype of hepatocellular cancer. Exp Cell Res. 351:142–149. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Sonnenberg GF and Hepworth MR: Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol. 19:599–613. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Warner K and Ohashi PS: ILC regulation of T cell responses in inflammatory diseases and cancer. Semin Immunol. 41:1012842019. View Article : Google Scholar : PubMed/NCBI

72 

Han X, Huang T and Han J: Cytokines derived from innate lymphoid cells assist Helicobacter hepaticus to aggravate hepatocellular tumorigenesis in viral transgenic mice. Gut Pathog. 11:232019. View Article : Google Scholar : PubMed/NCBI

73 

Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, Shi M, Zhang H, Yang Y, Wu H, et al: Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol. 129:428–437. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Wu Y, Kuang DM, Pan WD, Wan YL, Lao XM, Wang D, Li XF and Zheng L: Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology. 57:1107–1116. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Tatsumi T and Takehara T: Impact of natural killer cells on chronic hepatitis C and hepatocellular carcinoma. Hepatol Res. 46:416–422. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Bugide S, Green MR and Wajapeyee N: Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proc Natl Acad Sci USA. 115:E3509–E3518. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Chen Y, Hao X, Sun R, Wei H and Tian Z: Natural killer cell-derived interferon-gamma promotes hepatocellular carcinoma through the epithelial cell adhesion molecule-epithelial-to-mesenchymal transition axis in hepatitis B virus transgenic mice. Hepatology. 69:1735–1750. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Luo Q, Luo W, Zhu Q, Huang H, Peng H, Liu R, Xie M, Li S, Li M, Hu X and Zou Y: Tumor-derived soluble MICA obstructs the NKG2D pathway to restrain NK cytotoxicity. Aging Dis. 11:118–128. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Vujanovic L, Stahl EC, Pardee AD, Geller DA, Tsung A, Watkins SC, Gibson GA, Storkus WJ and Butterfield LH: Tumor-derived α-fetoprotein directly drives human natural killer-cell activation and subsequent cell death. Cancer Immunol Res. 5:493–502. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Mossanen J, Kohlhepp M, Wehr A, Krenkel O, Liepelt A, Roeth A, Möckel D, Heymann F, Lammers T, Gassler N, et al: CXCR6 inhibits hepatocarcinogenesis by promoting natural killer T- and CD4 T-cell-dependent control of senescence. Gastroenterology. 156:1877–1889.e4. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Miyagi T, Takehara T, Tatsumi T, Kanto T, Suzuki T, Jinushi M, Sugimoto Y, Sasaki Y, Hori M and Hayashi N: CD1d-mediated stimulation of natural killer T cells selectively activates hepatic natural killer cells to eliminate experimentally disseminated hepatoma cells in murine liver. Int J Cancer. 106:81–89. 2003. View Article : Google Scholar : PubMed/NCBI

82 

Vivier E, Ugolini S, Blaise D, Chabannon C and Brossay L: Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol. 12:239–252. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Xiao Y, Gao Q, Xu X, Li Y, Ju M, Cai M, Dai C, Hu J, Qiu S, Zhou J and Fan J: Combination of intratumoral invariant natural killer T cells and interferon-gamma is associated with prognosis of hepatocellular carcinoma after curative resection. PLoS One. 8:e703452013. View Article : Google Scholar : PubMed/NCBI

84 

Chen J, Gingold J and Su X: Immunomodulatory TGF-β signaling in hepatocellular carcinoma. Trends Mol Med. 25:1010–1023. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Li J, Lee Y, Li Y, Jiang Y, Lu H, Zang W, Zhao X, Liu L, Chen Y, Tan H, et al: Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-infiltrating myeloid cells induces dysfunction of anti-tumor CD8+ T cells. Immunity. 48:773–786.e5. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Hiroishi K, Eguchi J, Baba T, Shimazaki T, Ishii S, Hiraide A, Sakaki M, Doi H, Uozumi S, Omori R, et al: Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol. 45:451–458. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Zong L, Peng H, Sun C, Li F, Zheng M, Chen Y, Wei H, Sun R and Tian Z: Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nat Commun. 10:2212019. View Article : Google Scholar : PubMed/NCBI

88 

Sachdeva M: Immunology of hepatocellular carcinoma. World J Hepatol. 7:2080–2090. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H and Yin H: Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 67:739–748. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Sconocchia G, Eppenberger S, Spagnoli GC, Tornillo L, Droeser R, Caratelli S, Ferrelli F, Coppola A, Arriga R, Lauro D, et al: NK cells and T cells cooperate during the clinical course of colorectal cancer. Oncoimmunology. 3:e9521972014. View Article : Google Scholar : PubMed/NCBI

91 

Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Liu Y, Song Y, Lin D, Lei L, Mei Y, Jin Z, Gong H, Zhu Y, Hu B, Zhang Y, et al: NCR− group 3 innate lymphoid cells orchestrate IL-23/IL-17 axis to promote hepatocellular carcinoma development. EBioMedicine. 41:333–344. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Liu CQ, Xu J, Zhou ZG, Jin LL, Yu XJ, Xiao G, Lin J, Zhuang SM, Zhang YJ and Zheng L: Expression patterns of programmed death ligand 1 correlate with different microenvironments and patient prognosis in hepatocellular carcinoma. Br J Cancer. 119:80–88. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Lim T, Chew V, Sieow J, Goh S, Yeong J, Soon A and Ricciardi-Castagnoli P: PD-1 expression on dendritic cells suppresses CD8 T cell function and antitumor immunity. Oncoimmunology. 5:e10851462016. View Article : Google Scholar : PubMed/NCBI

95 

Liu J, Fan L, Yu H, Zhang J, He Y, Feng D, Wang F, Li X, Liu Q, Li Y, et al: Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology. 70:241–258. 2019.PubMed/NCBI

96 

Mossanen JC, Kohlhepp M, Wehr A, Krenkel O, Liepelt A, Roeth AA, Mockel D, Heymann F, Lammers T, Gassler N, et al: CXCR6 inhibits hepatocarcinogenesis by promoting natural killer T- and CD4+ T-cell-dependent control of senescence. Gastroenterology. 156:1877–1889.e4. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Shigeta K, Datta M, Hato T, Kitahara S, Chen IX, Matsui A, Kikuchi H, Mamessier E, Aoki S, Ramjiawan RR, et al: Dual programmed death receptor-1 and vascular endothelial growth factor receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma. Hepatology. 71:1247–1261. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Zhou Y, Xu X, Ding J, Jing X, Wang F, Wang Y and Wang P: Dynamic changes of T-cell subsets and their relation with tumor recurrence after microwave ablation in patients with hepatocellular carcinoma. J Cancer Res Ther. 14:40–45. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Zhang H, Jiang Z and Zhang L: Dual effect of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver pathological process: From occurrence to end stage of disease. Int Immunopharmacol. 69:50–59. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Kondo Y and Shimosegawa T: Significant roles of regulatory T cells and myeloid derived suppressor cells in hepatitis B virus persistent infection and hepatitis B virus-related HCCs. Int J Mol Sci. 16:3307–3322. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Wu Q, Zhou W, Yin S, Zhou Y, Chen T, Qian J, Su R, Hong L, Lu H, Zhang F, et al: Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology. 70:198–214. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 150:1646–1658.e7. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Murphy K and Reiner S: The lineage decisions of helper T cells. Nat Rev Immunol. 2:933–944. 2002. View Article : Google Scholar : PubMed/NCBI

104 

Geginat J, Paroni M, Maglie S, Alfen J, Kastirr I, Gruarin P, De Simone M, Pagani M and Abrignani S: Plasticity of human CD4 T cell subsets. Front Immunol. 5:6302014. View Article : Google Scholar : PubMed/NCBI

105 

Mirchandani AS, Besnard AG, Yip E, Scott C, Bain CC, Cerovic V, Salmond RJ and Liew FY: Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J Immunol. 192:2442–2448. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Shen G, Krienke S, Schiller P, Nießen A, Neu S, Eckstein V, Schiller M, Lorenz H-M and Tykocinski LO: Microvesicles released by apoptotic human neutrophils suppress proliferation and IL-2/IL-2 receptor expression of resting T helper cells. Eur J Immunol. 47:900–910. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Duffy A, Ulahannan S, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, Davis J, Hughes M, Heller T, ElGindi M, et al: Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 66:545–551. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ, Yu SJ, Gwak GY, Kim KM, Kim YJ, Lee JW and Yoon JH: Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology. 148:1383–1391.e6. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Okusaka T and Ikeda M: Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. ESMO Open. 3:e0004552018. View Article : Google Scholar : PubMed/NCBI

110 

Guerra AD, Yeung OWH, Qi X, Kao WJ and Man K: The anti-tumor effects of M1 macrophage-loaded poly (ethylene glycol) and gelatin-based hydrogels on hepatocellular carcinoma. Theranostics. 7:3732–3744. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Jiang W, Zhang C, Tian Z and Zhang J: hIL-15 gene-modified human natural killer cells (NKL-IL15) augments the anti-human hepatocellular carcinoma effect in vivo. Immunobiology. 219:547–553. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, Steven NM, Kerr DJ, Young LS and Adams DH: A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 49:124–132. 2009. View Article : Google Scholar : PubMed/NCBI

113 

Lee JH, Tak WY, Lee Y, Heo MK, Song JS, Kim HY, Park SY, Bae SH, Lee JH, Heo J, et al: Adjuvant immunotherapy with autologous dendritic cells for hepatocellular carcinoma, randomized phase II study. Oncoimmunology. 6:e13283352017. View Article : Google Scholar : PubMed/NCBI

114 

Sawada Y, Yoshikawa T, Shimomura M, Iwama T, Endo I and Nakatsura T: Programmed death-1 blockade enhances the antitumor effects of peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Int J Oncol. 46:28–36. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Gao H, Li K, Tu H, Pan X, Jiang H, Shi B, Kong J, Wang H, Yang S, Gu J and Li Z: Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res. 20:6418–6428. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Majzner R and Mackall C: Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 25:1341–1355. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Kole C, Charalampakis N, Tsakatikas S, Vailas M, Moris D, Gkotsis E, Kykalos S, Karamouzis M and Schizas D: Immunotherapy for hepatocellular carcinoma: A 2021 update. Cancers (Basel). 12:E28592020. View Article : Google Scholar : PubMed/NCBI

118 

Chang C, Dinh T, Lee Y, Wang F, Sung Y, Yu P, Chiu S, Shih Y, Wu C, Huang Y, et al: Nanoparticle delivery of MnO2 and anti-angiogenic therapy to overcome hypoxia-driven tumor escape and suppress hepatocellular carcinoma. ACS Appl Mater Interfaces. 12:44407–44419. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Tian H, Zhu X, Lv Y, Jiao Y and Wang G: Glucometabolic reprogramming in the hepatocellular carcinoma microenvironment: Cause and effect. Cancer Manag Res. 12:5957–5974. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Zhang Q, Lou Y, Bai X and Liang T: Intratumoral heterogeneity of hepatocellular carcinoma: From single-cell to population-based studies. World J Gastroenterol. 26:3720–3736. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Liu F, Qin L, Liao Z, Song J, Yuan C, Liu Y, Wang Y, Xu H, Zhang Q, Pei Y, et al: Microenvironment characterization and multi-omics signatures related to prognosis and immunotherapy response of hepatocellular carcinoma. Exp Hematol Oncol. 9:102020. View Article : Google Scholar : PubMed/NCBI

122 

Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, Zhao XY, Ji Y, Li C, Guo L, et al: Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell. 75:644–660.e5. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind D, et al: Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 179:829–845.e20. 2019. View Article : Google Scholar : PubMed/NCBI

124 

Caruso S, O'Brien D, Cleary S, Roberts L and Zucman-Rossi J: Genetics of HCC: Novel approaches to explore molecular diversity. Hepatology. May 28–2020.(Epub ahead of print). View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hong G, Cai D, Gong J and Lai X: Innate immune cells and their interaction with T cells in hepatocellular carcinoma (Review). Oncol Lett 21: 57, 2021.
APA
Hong, G., Cai, D., Gong, J., & Lai, X. (2021). Innate immune cells and their interaction with T cells in hepatocellular carcinoma (Review). Oncology Letters, 21, 57. https://doi.org/10.3892/ol.2020.12319
MLA
Hong, G., Cai, D., Gong, J., Lai, X."Innate immune cells and their interaction with T cells in hepatocellular carcinoma (Review)". Oncology Letters 21.1 (2021): 57.
Chicago
Hong, G., Cai, D., Gong, J., Lai, X."Innate immune cells and their interaction with T cells in hepatocellular carcinoma (Review)". Oncology Letters 21, no. 1 (2021): 57. https://doi.org/10.3892/ol.2020.12319
Copy and paste a formatted citation
x
Spandidos Publications style
Hong G, Cai D, Gong J and Lai X: Innate immune cells and their interaction with T cells in hepatocellular carcinoma (Review). Oncol Lett 21: 57, 2021.
APA
Hong, G., Cai, D., Gong, J., & Lai, X. (2021). Innate immune cells and their interaction with T cells in hepatocellular carcinoma (Review). Oncology Letters, 21, 57. https://doi.org/10.3892/ol.2020.12319
MLA
Hong, G., Cai, D., Gong, J., Lai, X."Innate immune cells and their interaction with T cells in hepatocellular carcinoma (Review)". Oncology Letters 21.1 (2021): 57.
Chicago
Hong, G., Cai, D., Gong, J., Lai, X."Innate immune cells and their interaction with T cells in hepatocellular carcinoma (Review)". Oncology Letters 21, no. 1 (2021): 57. https://doi.org/10.3892/ol.2020.12319
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team