|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Villanueva A: Hepatocellular carcinoma. N
Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kulik L and El-Serag H: Epidemiology and
management of hepatocellular carcinoma. Gastroenterology.
156:477–491.e1. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yang JD, Hainaut P, Gores GJ, Amadou A,
Plymoth A and Roberts LR: A global view of hepatocellular
carcinoma: Trends, risk, prevention and management. Nat Rev
Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Macek Jilkova Z, Aspord C and Decaens T:
Predictive factors for response to PD-1/PD-L1 checkpoint inhibition
in the field of hepatocellular carcinoma: Current status and
challenges. Cancers (Basel). 11:15542019. View Article : Google Scholar
|
|
6
|
El-Khoueiry AB, Sangro B, Yau T, Crocenzi
TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH, et al:
Nivolumab in patients with advanced hepatocellular carcinoma
(CheckMate 040): An open-label, non-comparative, phase 1/2 dose
escalation and expansion trial. Lancet. 389:2492–2502. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Syn NL, Teng MWL, Mok TSK and Soo RA:
De-novo and acquired resistance to immune checkpoint targeting.
Lancet Oncol. 18:e731–e741. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jenne CN and Kubes P: Immune surveillance
by the liver. Nat Immunol. 14:996–1006. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ringelhan M, Pfister D, O'Connor T,
Pikarsky E and Heikenwalder M: The immunology of hepatocellular
carcinoma. Nat Immunol. 19:222–232. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Greten T, Wang X and Korangy F: Current
concepts of immune based treatments for patients with HCC: From
basic science to novel treatment approaches. Gut. 64:842–848. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wherry EJ and Kurachi M: Molecular and
cellular insights into T cell exhaustion. Nat Rev Immunol.
15:486–499. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kang TW, Yevsa T, Woller N, Hoenicke L,
Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova
A, et al: Senescence surveillance of pre-malignant hepatocytes
limits liver cancer development. Nature. 479:547–551. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cheng JT, Deng YN, Yi HM, Wang GY, Fu BS,
Chen WJ, Liu W, Tai Y, Peng YW and Zhang Q: Hepatic
carcinoma-associated fibroblasts induce IDO-producing regulatory
dendritic cells through IL-6-mediated STAT3 activation.
Oncogenesis. 5:e1982016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Steinman R and Cohn Z: Identification of a
novel cell type in peripheral lymphoid organs of mice. I.
Morphology, quantitation, tissue distribution. J Exp Med.
137:1142–1162. 1973. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Benites BD, Alvarez MC and Saad STO: Small
particles, Big effects: The interplay between exosomes and
dendritic cells in antitumor immunity and immunotherapy. Cells.
8:16482019. View Article : Google Scholar
|
|
16
|
Osada T, Clay T, Hobeika A, Lyerly HK and
Morse MA: NK cell activation by dendritic cell vaccine: A mechanism
of action for clinical activity. Cancer Immunol Immunother.
55:1122–1131. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shang N, Figini M, Shangguan J, Wang B,
Sun C, Pan L, Ma Q and Zhang Z: Dendritic cells based
immunotherapy. Am J Cancer Res. 7:2091–2102. 2017.PubMed/NCBI
|
|
18
|
Chen S: Absence of CD83-positive mature
and activated dendritic cells at cancer nodules from patients with
hepatocellular carcinoma: Relevance to hepatocarcinogenesis. Cancer
Lett. 148:49–57. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J
and Tang ZY: Dendritic cell infiltration and prognosis of human
hepatocellular carcinoma. J Cancer Res Clin Oncol. 132:293–301.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shibolet O, Alper R, Zlotogarov L,
Thalenfeld B, Engelhardt D, Rabbani E and Ilan Y: NKT and CD8
lymphocytes mediate suppression of hepatocellular carcinoma growth
via tumor antigen-pulsed dendritic cells. Int J Cancer.
106:236–243. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen YX, Man K, Ling GS, Chen Y, Sun BS,
Cheng Q, Wong OH, Lo CK, Ng IO, Chan LC, et al: A crucial role for
dendritic cell (DC) IL-10 in inhibiting successful DC-based
immunotherapy: Superior antitumor immunity against hepatocellular
carcinoma evoked by DC devoid of IL-10. J Immunol. 179:6009–6015.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tatsumi T, Takehara T, Kanto T, Miyagi T,
Kuzushita N, Sugimoto Y, Jinushi M, Kasahara A, Sasaki Y, Hori M
and Hayashi N: Administration of interleukin-12 enhances the
therapeutic efficacy of dendritic cell-based tumor vaccines in
mouse hepatocellular carcinoma. Cancer Res. 61:7563–7567.
2001.PubMed/NCBI
|
|
23
|
Rai V, Abdo J, Alsuwaidan AN, Agrawal S,
Sharma P and Agrawal DK: Cellular and molecular targets for the
immunotherapy of hepatocellular carcinoma. Mol Cell Biochem.
437:13–36. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Santos PM, Menk AV, Shi J, Tsung A,
Delgoffe GM and Butterfield LH: Tumor-derived alpha-fetoprotein
suppresses fatty acid metabolism and oxidative phosphorylation in
dendritic cells. Cancer Immunol Res. 7:1001–1012. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu
Y, Lin C, Pan Z, Yu Y, Jiang M, et al: Human CD14+ CTLA-4+
regulatory dendritic cells suppress T-cell response by cytotoxic
T-lymphocyte antigen-4-dependent IL-10 and
indoleamine-2,3-dioxygenase production in hepatocellular carcinoma.
Hepatology. 59:567–579. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zeng Z, Yao WJ, Xu X, Xu GQ, Long JH, Wang
X, Wen ZY and Chien S: Hepatocellular carcinoma cells deteriorate
the biophysical properties of dendritic cells. Cell Biochem
Biophys. 55:33–43. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Qian BZ and Pollard JW: Macrophage
diversity enhances tumor progression and metastasis. Cell.
141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Vitale I, Manic G, Coussens L, Kroemer G
and Galluzzi L: Macrophages and metabolism in the tumor
microenvironment. Cell Metab. 30:36–50. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mantovani A and Sica A: Macrophages,
innate immunity and cancer: Balance, tolerance, and diversity. Curr
Opin Immunol. 22:231–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li
CX, Ng KT, Forbes SJ, Guan XY, Poon RT, et al: Alternatively
activated (M2) macrophages promote tumour growth and invasiveness
in hepatocellular carcinoma. J Hepatol. 62:607–616. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kang FB, Wang L, Li D, Zhang YG and Sun
DX: Hepatocellular carcinomas promote tumor-associated macrophage
M2-polarization via increased B7-H3 expression. Oncol Rep.
33:274–282. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yang Y, Ye YC, Chen Y, Zhao JL, Gao CC,
Han H, Liu WC and Qin HY: Crosstalk between hepatic tumor cells and
macrophages via Wnt/β-catenin signaling promotes M2-like macrophage
polarization and reinforces tumor malignant behaviors. Cell Death
Dis. 9:7932018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S
and Jian Z: IL-6/STAT3 pathway intermediates M1/M2 macrophage
polarization during the development of hepatocellular carcinoma. J
Cell Biochem. 119:9419–9432. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ye Y, Xu Y, Lai Y, He W, Li Y, Wang R, Luo
X, Chen R and Chen T: Long non-coding RNA cox-2 prevents immune
evasion and metastasis of hepatocellular carcinoma by altering
M1/M2 macrophage polarization. J Cell Biochem. 119:2951–2963. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zong Z, Zou J, Mao R, Ma C, Li N, Wang J,
Wang X, Zhou H, Zhang L and Shi Y: M1 macrophages induce PD-L1
expression in hepatocellular carcinoma cells through IL-1β
signaling. Front Immunol. 10:16432019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang J, Zhang Q, Lou Y, Fu Q, Chen Q, Wei
T, Yang J, Tang J, Wang J, Chen Y, et al: Hypoxia-inducible
factor-1alpha/interleukin-1beta signaling enhances hepatoma
epithelial-mesenchymal transition through macrophages in a
hypoxic-inflammatory microenvironment. Hepatology. 67:1872–1889.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Fu XT, Dai Z, Song K, Zhang ZJ, Zhou ZJ,
Zhou SL, Zhao YM, Xiao YS, Sun QM, Ding ZB and Fan J:
Macrophage-secreted IL-8 induces epithelial-mesenchymal transition
in hepatocellular carcinoma cells by activating the
JAK2/STAT3/Snail pathway. Int J Oncol. 46:587–596. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Capece D, Fischietti M, Verzella D,
Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F and Alesse E:
The inflammatory microenvironment in hepatocellular carcinoma: A
pivotal role for tumor-associated macrophages. Biomed Res Int.
2013:1872042013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fu XT, Song K, Zhou J, Shi YH, Liu WR, Shi
GM, Gao Q, Wang XY, Ding ZB and Fan J: Tumor-associated macrophages
modulate resistance to oxaliplatin via inducing autophagy in
hepatocellular carcinoma. Cancer Cell Int. 19:712019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Tacke F: Targeting hepatic macrophages to
treat liver diseases. J Hepatol. 66:1300–1312. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Dou L, Shi X, He X and Gao Y: Macrophage
phenotype and function in liver disorder. Front Immunol.
10:31122019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Naugler W, Sakurai T, Kim S, Maeda S, Kim
K, Elsharkawy A and Karin M: Gender disparity in liver cancer due
to sex differences in MyD88-dependent IL-6 production. Science.
317:121–124. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Martínez-Cardona C, Lozano-Ruiz B,
Bachiller V, Peiró G, Algaba-Chueca F, Gómez-Hurtado I, Such J,
Zapater P, Francés R and González-Navajas J: AIM2 deficiency
reduces the development of hepatocellular carcinoma in mice. Int J
Cancer. 143:2997–3007. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Miura K, Ohnishi H, Morimoto N, Minami S,
Ishioka M, Watanabe S, Tsukui M, Takaoka Y, Nomoto H, Isoda N and
Yamamoto H: Ezetimibe suppresses development of liver tumors by
inhibiting angiogenesis in mice fed a high-fat diet. Cancer Sci.
110:771–783. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wu H, Zhong Z, Wang A, Yuan C, Ning K, Hu
H, Wang C and Yin X: LncRNA FTX represses the progression of
non-alcoholic fatty liver disease to hepatocellular carcinoma via
regulating the M1/M2 polarization of Kupffer cells. Cancer Cell
Int. 20:2662020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu
Z, Yin XY and Zheng L: Peritumoral neutrophils link inflammatory
response to disease progression by fostering angiogenesis in
hepatocellular carcinoma. J Hepatol. 54:948–955. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gomez D, Farid S, Malik HZ, Young AL,
Toogood GJ, Lodge JPA and Prasad KR: Preoperative
neutrophil-to-lymphocyte ratio as a prognostic predictor after
curative resection for hepatocellular carcinoma. World J Surg.
32:1757–1762. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li YW, Qiu SJ, Fan J, Zhou J, Gao Q, Xiao
YS and Xu YF: Intratumoral neutrophils: A poor prognostic factor
for hepatocellular carcinoma following resection. J Hepatol.
54:497–505. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li L, Xu L, Yan J, Zhen ZJ, Ji Y, Liu CQ,
Lau WY, Zheng L and Xu J: CXCR2-CXCL1 axis is correlated with
neutrophil infiltration and predicts a poor prognosis in
hepatocellular carcinoma. J Exp Clin Cancer Res. 34:1292015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH,
Wang Z, Huang XW, Fan J and Zhou J: Overexpression of CXCL5
mediates neutrophil infiltration and indicates poor prognosis for
hepatocellular carcinoma. Hepatology. 56:2242–2254. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lu C, Rong D, Zhang B, Zheng W, Wang X,
Chen Z and Tang W: Current perspectives on the immunosuppressive
tumor microenvironment in hepatocellular carcinoma: Challenges and
opportunities. Mol Cancer. 18:1302019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
He M, Peng A, Huang XZ, Shi DC, Wang JC,
Zhao Q, Lin H, Kuang DM, Ke PF and Lao XM: Peritumoral stromal
neutrophils are essential for c-Met-elicited metastasis in human
hepatocellular carcinoma. Oncoimmunology. 5:e12198282016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wilson CL, Jurk D, Fullard N, Banks P,
Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C,
et al: NFκB1 is a suppressor of neutrophil-driven hepatocellular
carcinoma. Nat Commun. 6:68182015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jorch SK and Kubes P: An emerging role for
neutrophil extracellular traps in noninfectious disease. Nat Med.
23:279–287. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
van der Windt DJ, Sud V, Zhang H, Varley
PR, Goswami J, Yazdani HO, Tohme S, Loughran P, O'Doherty RM,
Minervini MI, et al: Neutrophil extracellular traps promote
inflammation and development of hepatocellular carcinoma in
nonalcoholic steatohepatitis. Hepatology. 68:1347–1360. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang LY, Luo Q, Lu L, Zhu WW, Sun HT, Wei
R, Lin ZF, Wang XY, Wang CQ, Lu M, et al: Increased neutrophil
extracellular traps promote metastasis potential of hepatocellular
carcinoma via provoking tumorous inflammatory response. J Hematol
Oncol. 13:32020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Fulkerson P: Transcription factors in
eosinophil development and as therapeutic targets. Front Med
(Lausanne). 4:1152017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bernsmeier C, van der Merwe S and Périanin
A: Innate immune cells in cirrhosis. J Hepatol. 73:186–201. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Grisaru-Tal S, Itan M, Klion A and Munitz
A: A new dawn for eosinophils in the tumour microenvironment. Nat
Rev Cancer. 10:594–607. 2020. View Article : Google Scholar
|
|
60
|
Kataoka S, Konishi Y, Nishio Y,
Fujikawa-Adachi K and Tominaga A: Antitumor activity of eosinophils
activated by IL-5 and eotaxin against hepatocellular carcinoma. DNA
Cell Biol. 23:549–560. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Steel JL, Kim KH, Dew MA, Unruh ML, Antoni
MH, Olek MC, Geller DA, Carr BI, Butterfield LH and Gamblin TC:
Cancer-related symptom clusters, eosinophils, and survival in
hepatobiliary cancer: An exploratory study. J Pain Symptom Manage.
39:859–871. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gabrilovich D, Ostrand-Rosenberg S and
Bronte V: Coordinated regulation of myeloid cells by tumours. Nat
Rev Immunol. 12:253–268. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Arihara F, Mizukoshi E, Kitahara M, Takata
Y, Arai K, Yamashita T, Nakamoto Y and Kaneko S: Increase in
CD14+HLA-DR-/low myeloid-derived suppressor cells in hepatocellular
carcinoma patients and its impact on prognosis. Cancer Immunol
Immunother. 62:1421–1430. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hoechst B, Voigtlaender T, Ormandy L,
Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns M, Greten T
and Korangy F: Myeloid derived suppressor cells inhibit natural
killer cells in patients with hepatocellular carcinoma via the
NKp30 receptor. Hepatology. 50:799–807. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hu C, Gan J, Zhang R, Cheng Y and Huang G:
Up-regulated myeloid-derived suppressor cell contributes to
hepatocellular carcinoma development by impairing dendritic cell
function. Scand J Gastroenterol. 46:156–164. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lu L, Chang C and Hsu C: Targeting
myeloid-derived suppressor cells in the treatment of hepatocellular
carcinoma: Current state and future perspectives. J Hepatocell
Carcinoma. 6:71–84. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK,
Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, et al: Hypoxia inducible
factor HIF-1 promotes myeloid-derived suppressor cells accumulation
through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun.
8:5172017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li Y, Liu Z, Wang J, Yu J, Li Z, Yang H,
Tang J and Chen Z: Receptor-interacting protein kinase 3 deficiency
recruits myeloid-derived suppressor cells to hepatocellular
carcinoma through the chemokine (C-X-C Motif) ligand 1-chemokine
(C-X-C Motif) receptor 2 axis. Hepatology. 70:1564–1581. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xu M, Zhao Z, Song J, Lan X, Lu S, Chen M,
Wang Z, Chen W, Fan X, Wu F, et al: Interactions between
interleukin-6 and myeloid-derived suppressor cells drive the
chemoresistant phenotype of hepatocellular cancer. Exp Cell Res.
351:142–149. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sonnenberg GF and Hepworth MR: Functional
interactions between innate lymphoid cells and adaptive immunity.
Nat Rev Immunol. 19:599–613. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Warner K and Ohashi PS: ILC regulation of
T cell responses in inflammatory diseases and cancer. Semin
Immunol. 41:1012842019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Han X, Huang T and Han J: Cytokines
derived from innate lymphoid cells assist Helicobacter hepaticus to
aggravate hepatocellular tumorigenesis in viral transgenic mice.
Gut Pathog. 11:232019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cai L, Zhang Z, Zhou L, Wang H, Fu J,
Zhang S, Shi M, Zhang H, Yang Y, Wu H, et al: Functional impairment
in circulating and intrahepatic NK cells and relative mechanism in
hepatocellular carcinoma patients. Clin Immunol. 129:428–437. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wu Y, Kuang DM, Pan WD, Wan YL, Lao XM,
Wang D, Li XF and Zheng L: Monocyte/macrophage-elicited natural
killer cell dysfunction in hepatocellular carcinoma is mediated by
CD48/2B4 interactions. Hepatology. 57:1107–1116. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tatsumi T and Takehara T: Impact of
natural killer cells on chronic hepatitis C and hepatocellular
carcinoma. Hepatol Res. 46:416–422. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bugide S, Green MR and Wajapeyee N:
Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural
killer cell-mediated eradication of hepatocellular carcinoma cells.
Proc Natl Acad Sci USA. 115:E3509–E3518. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen Y, Hao X, Sun R, Wei H and Tian Z:
Natural killer cell-derived interferon-gamma promotes
hepatocellular carcinoma through the epithelial cell adhesion
molecule-epithelial-to-mesenchymal transition axis in hepatitis B
virus transgenic mice. Hepatology. 69:1735–1750. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Luo Q, Luo W, Zhu Q, Huang H, Peng H, Liu
R, Xie M, Li S, Li M, Hu X and Zou Y: Tumor-derived soluble MICA
obstructs the NKG2D pathway to restrain NK cytotoxicity. Aging Dis.
11:118–128. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Vujanovic L, Stahl EC, Pardee AD, Geller
DA, Tsung A, Watkins SC, Gibson GA, Storkus WJ and Butterfield LH:
Tumor-derived α-fetoprotein directly drives human natural
killer-cell activation and subsequent cell death. Cancer Immunol
Res. 5:493–502. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Mossanen J, Kohlhepp M, Wehr A, Krenkel O,
Liepelt A, Roeth A, Möckel D, Heymann F, Lammers T, Gassler N, et
al: CXCR6 inhibits hepatocarcinogenesis by promoting natural killer
T- and CD4 T-cell-dependent control of senescence.
Gastroenterology. 156:1877–1889.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Miyagi T, Takehara T, Tatsumi T, Kanto T,
Suzuki T, Jinushi M, Sugimoto Y, Sasaki Y, Hori M and Hayashi N:
CD1d-mediated stimulation of natural killer T cells selectively
activates hepatic natural killer cells to eliminate experimentally
disseminated hepatoma cells in murine liver. Int J Cancer.
106:81–89. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Vivier E, Ugolini S, Blaise D, Chabannon C
and Brossay L: Targeting natural killer cells and natural killer T
cells in cancer. Nat Rev Immunol. 12:239–252. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xiao Y, Gao Q, Xu X, Li Y, Ju M, Cai M,
Dai C, Hu J, Qiu S, Zhou J and Fan J: Combination of intratumoral
invariant natural killer T cells and interferon-gamma is associated
with prognosis of hepatocellular carcinoma after curative
resection. PLoS One. 8:e703452013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen J, Gingold J and Su X:
Immunomodulatory TGF-β signaling in hepatocellular carcinoma.
Trends Mol Med. 25:1010–1023. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Li J, Lee Y, Li Y, Jiang Y, Lu H, Zang W,
Zhao X, Liu L, Chen Y, Tan H, et al: Co-inhibitory molecule B7
superfamily member 1 expressed by tumor-infiltrating myeloid cells
induces dysfunction of anti-tumor CD8+ T cells.
Immunity. 48:773–786.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hiroishi K, Eguchi J, Baba T, Shimazaki T,
Ishii S, Hiraide A, Sakaki M, Doi H, Uozumi S, Omori R, et al:
Strong CD8(+) T-cell responses against tumor-associated antigens
prolong the recurrence-free interval after tumor treatment in
patients with hepatocellular carcinoma. J Gastroenterol.
45:451–458. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zong L, Peng H, Sun C, Li F, Zheng M, Chen
Y, Wei H, Sun R and Tian Z: Breakdown of adaptive immunotolerance
induces hepatocellular carcinoma in HBsAg-tg mice. Nat Commun.
10:2212019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sachdeva M: Immunology of hepatocellular
carcinoma. World J Hepatol. 7:2080–2090. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z,
Qi H, Guo H and Yin H: Dendritic cell-derived exosomes elicit tumor
regression in autochthonous hepatocellular carcinoma mouse models.
J Hepatol. 67:739–748. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sconocchia G, Eppenberger S, Spagnoli GC,
Tornillo L, Droeser R, Caratelli S, Ferrelli F, Coppola A, Arriga
R, Lauro D, et al: NK cells and T cells cooperate during the
clinical course of colorectal cancer. Oncoimmunology.
3:e9521972014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li X, Yao W, Yuan Y, Chen P, Li B, Li J,
Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of
tumour-infiltrating macrophages via CCL2/CCR2 signalling as a
therapeutic strategy against hepatocellular carcinoma. Gut.
66:157–167. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Liu Y, Song Y, Lin D, Lei L, Mei Y, Jin Z,
Gong H, Zhu Y, Hu B, Zhang Y, et al: NCR− group 3 innate
lymphoid cells orchestrate IL-23/IL-17 axis to promote
hepatocellular carcinoma development. EBioMedicine. 41:333–344.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Liu CQ, Xu J, Zhou ZG, Jin LL, Yu XJ, Xiao
G, Lin J, Zhuang SM, Zhang YJ and Zheng L: Expression patterns of
programmed death ligand 1 correlate with different
microenvironments and patient prognosis in hepatocellular
carcinoma. Br J Cancer. 119:80–88. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lim T, Chew V, Sieow J, Goh S, Yeong J,
Soon A and Ricciardi-Castagnoli P: PD-1 expression on dendritic
cells suppresses CD8 T cell function and antitumor immunity.
Oncoimmunology. 5:e10851462016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liu J, Fan L, Yu H, Zhang J, He Y, Feng D,
Wang F, Li X, Liu Q, Li Y, et al: Endoplasmic reticulum stress
causes liver cancer cells to release exosomal miR-23a-3p and
up-regulate programmed death ligand 1 expression in macrophages.
Hepatology. 70:241–258. 2019.PubMed/NCBI
|
|
96
|
Mossanen JC, Kohlhepp M, Wehr A, Krenkel
O, Liepelt A, Roeth AA, Mockel D, Heymann F, Lammers T, Gassler N,
et al: CXCR6 inhibits hepatocarcinogenesis by promoting natural
killer T- and CD4+ T-cell-dependent control of
senescence. Gastroenterology. 156:1877–1889.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Shigeta K, Datta M, Hato T, Kitahara S,
Chen IX, Matsui A, Kikuchi H, Mamessier E, Aoki S, Ramjiawan RR, et
al: Dual programmed death receptor-1 and vascular endothelial
growth factor receptor-2 blockade promotes vascular normalization
and enhances antitumor immune responses in hepatocellular
carcinoma. Hepatology. 71:1247–1261. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhou Y, Xu X, Ding J, Jing X, Wang F, Wang
Y and Wang P: Dynamic changes of T-cell subsets and their relation
with tumor recurrence after microwave ablation in patients with
hepatocellular carcinoma. J Cancer Res Ther. 14:40–45. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang H, Jiang Z and Zhang L: Dual effect
of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver
pathological process: From occurrence to end stage of disease. Int
Immunopharmacol. 69:50–59. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kondo Y and Shimosegawa T: Significant
roles of regulatory T cells and myeloid derived suppressor cells in
hepatitis B virus persistent infection and hepatitis B
virus-related HCCs. Int J Mol Sci. 16:3307–3322. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wu Q, Zhou W, Yin S, Zhou Y, Chen T, Qian
J, Su R, Hong L, Lu H, Zhang F, et al: Blocking triggering receptor
expressed on myeloid cells-1-positive tumor-associated macrophages
induced by hypoxia reverses immunosuppression and anti-programmed
cell death ligand 1 resistance in liver cancer. Hepatology.
70:198–214. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z,
Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-associated
neutrophils recruit macrophages and T-regulatory cells to promote
progression of hepatocellular carcinoma and resistance to
sorafenib. Gastroenterology. 150:1646–1658.e7. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Murphy K and Reiner S: The lineage
decisions of helper T cells. Nat Rev Immunol. 2:933–944. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Geginat J, Paroni M, Maglie S, Alfen J,
Kastirr I, Gruarin P, De Simone M, Pagani M and Abrignani S:
Plasticity of human CD4 T cell subsets. Front Immunol. 5:6302014.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Mirchandani AS, Besnard AG, Yip E, Scott
C, Bain CC, Cerovic V, Salmond RJ and Liew FY: Type 2 innate
lymphoid cells drive CD4+ Th2 cell responses. J Immunol.
192:2442–2448. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Shen G, Krienke S, Schiller P, Nießen A,
Neu S, Eckstein V, Schiller M, Lorenz H-M and Tykocinski LO:
Microvesicles released by apoptotic human neutrophils suppress
proliferation and IL-2/IL-2 receptor expression of resting T helper
cells. Eur J Immunol. 47:900–910. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Duffy A, Ulahannan S, Makorova-Rusher O,
Rahma O, Wedemeyer H, Pratt D, Davis J, Hughes M, Heller T, ElGindi
M, et al: Tremelimumab in combination with ablation in patients
with advanced hepatocellular carcinoma. J Hepatol. 66:545–551.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ,
Yu SJ, Gwak GY, Kim KM, Kim YJ, Lee JW and Yoon JH: Adjuvant
immunotherapy with autologous cytokine-induced killer cells for
hepatocellular carcinoma. Gastroenterology. 148:1383–1391.e6. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Okusaka T and Ikeda M: Immunotherapy for
hepatocellular carcinoma: Current status and future perspectives.
ESMO Open. 3:e0004552018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Guerra AD, Yeung OWH, Qi X, Kao WJ and Man
K: The anti-tumor effects of M1 macrophage-loaded poly (ethylene
glycol) and gelatin-based hydrogels on hepatocellular carcinoma.
Theranostics. 7:3732–3744. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Jiang W, Zhang C, Tian Z and Zhang J:
hIL-15 gene-modified human natural killer cells (NKL-IL15) augments
the anti-human hepatocellular carcinoma effect in vivo.
Immunobiology. 219:547–553. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Palmer DH, Midgley RS, Mirza N, Torr EE,
Ahmed F, Steele JC, Steven NM, Kerr DJ, Young LS and Adams DH: A
phase II study of adoptive immunotherapy using dendritic cells
pulsed with tumor lysate in patients with hepatocellular carcinoma.
Hepatology. 49:124–132. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lee JH, Tak WY, Lee Y, Heo MK, Song JS,
Kim HY, Park SY, Bae SH, Lee JH, Heo J, et al: Adjuvant
immunotherapy with autologous dendritic cells for hepatocellular
carcinoma, randomized phase II study. Oncoimmunology.
6:e13283352017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Sawada Y, Yoshikawa T, Shimomura M, Iwama
T, Endo I and Nakatsura T: Programmed death-1 blockade enhances the
antitumor effects of peptide vaccine-induced peptide-specific
cytotoxic T lymphocytes. Int J Oncol. 46:28–36. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Gao H, Li K, Tu H, Pan X, Jiang H, Shi B,
Kong J, Wang H, Yang S, Gu J and Li Z: Development of T cells
redirected to glypican-3 for the treatment of hepatocellular
carcinoma. Clin Cancer Res. 20:6418–6428. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Majzner R and Mackall C: Clinical lessons
learned from the first leg of the CAR T cell journey. Nat Med.
25:1341–1355. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kole C, Charalampakis N, Tsakatikas S,
Vailas M, Moris D, Gkotsis E, Kykalos S, Karamouzis M and Schizas
D: Immunotherapy for hepatocellular carcinoma: A 2021 update.
Cancers (Basel). 12:E28592020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Chang C, Dinh T, Lee Y, Wang F, Sung Y, Yu
P, Chiu S, Shih Y, Wu C, Huang Y, et al: Nanoparticle delivery of
MnO2 and anti-angiogenic therapy to overcome
hypoxia-driven tumor escape and suppress hepatocellular carcinoma.
ACS Appl Mater Interfaces. 12:44407–44419. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Tian H, Zhu X, Lv Y, Jiao Y and Wang G:
Glucometabolic reprogramming in the hepatocellular carcinoma
microenvironment: Cause and effect. Cancer Manag Res. 12:5957–5974.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang Q, Lou Y, Bai X and Liang T:
Intratumoral heterogeneity of hepatocellular carcinoma: From
single-cell to population-based studies. World J Gastroenterol.
26:3720–3736. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Liu F, Qin L, Liao Z, Song J, Yuan C, Liu
Y, Wang Y, Xu H, Zhang Q, Pei Y, et al: Microenvironment
characterization and multi-omics signatures related to prognosis
and immunotherapy response of hepatocellular carcinoma. Exp Hematol
Oncol. 9:102020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Xiong X, Kuang H, Ansari S, Liu T, Gong J,
Wang S, Zhao XY, Ji Y, Li C, Guo L, et al: Landscape of
intercellular crosstalk in healthy and NASH liver revealed by
single-cell secretome gene analysis. Mol Cell. 75:644–660.e5. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao
R, Modak M, Carotta S, Haslinger C, Kind D, et al: Landscape and
dynamics of single immune cells in hepatocellular carcinoma. Cell.
179:829–845.e20. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Caruso S, O'Brien D, Cleary S, Roberts L
and Zucman-Rossi J: Genetics of HCC: Novel approaches to explore
molecular diversity. Hepatology. May 28–2020.(Epub ahead of print).
View Article : Google Scholar
|