|
1
|
Balkan E, Bilici M, Gundogdu B, Aksungur
N, Kara A, Yasar E, Dogan H and Ozturk G: ERCC2 Lys751Gln rs13181
and XRCC2 Arg188His rs3218536 gene polymorphisms contribute to
subsceptibility of colon, gastric, HCC, lung and prostate cancer. J
BUON. 25:574–581. 2020.PubMed/NCBI
|
|
2
|
Lv Y, Xu A, Wang N, Mu K, Wang Z, Zhao L,
Huang Y, Peng L, Xiang K, Hu D and Qi J: Retrospective study of
TACE in the treatment of lobaplatin-induced thrombocytopenia in
primary hepatocellular carcinoma. J BUON. 24:2385–2393.
2019.PubMed/NCBI
|
|
3
|
Nazmy EA, El-Khouly OA, Zaki MMA, MM A,
Elsherbiny NM, Said E, Al-Gayyar MMH and Salem HA: Targeting
p53/TRAIL/caspase-8 signaling by adiponectin reverses
thioacetamide-induced hepatocellular carcinoma in rats. Environ
Toxicol Pharmacol. 72:1032402019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sergio A, Cristofori C, Cardin R, Pivetta
G, Ragazzi R, Baldan A, Girardi L, Cillo U, Burra P, Giacomin A and
Farinati F: Transcatheter arterial chemoembolization (TACE) in
hepatocellular carcinoma (HCC): The role of angiogenesis and
invasiveness. Am J Gastroenterol. 103:914–921. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Xia Y, Zhang J and Ni X: Diagnsosis,
treatment and prognosis of hepatocellualr carcinoma with inferior
vena cava/right atrium tumor thrombus. Oncol Lett. 20:1012020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zeng Z, Yang B and Liao ZY: Current
progress and prospect of immune checkpoint inhipitros in
hepatocellualr carcinoma. Oncol Lett. 2:452020.
|
|
7
|
Iozzo RV: Heparan sulfate proteoglycans:
Intricate molecules with intriguing functions. J Clin Invest.
108:165–167. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kumar AV, Katakam SK, Urbanowitz AK and
Gotte M: Heparan sulphate as a regulator of leukocyte recruitment
in inflammation. Curr Protein Pept Sci. 16:77–86. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Christianson HC and Belting M: Heparan
sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix
Biol. 35:51–55. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rosen SD and Lemjabbar-Alaoui H: Sulf-2:
An extracellular modulator of cell signaling and a cancer target
candidate. Expert Opin Ther Targets. 14:935–949. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bishop JR, Schuksz M and Esko JD: Heparan
sulphate proteoglycans fine-tune mammalian physiology. Nature.
446:1030–1037. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Poulain FE and Yost HJ: Heparan sulfate
proteoglycans: A sugar code for vertebrate development?
Development. 142:3456–3467. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Häcker U, Nybakken K and Perrimon N:
Heparan sulphate proteoglycans: The sweet side of development. Nat
Rev Mol Cell Biol. 6:530–541. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lindahl U and Kjellén L: Pathophysiology
of heparan sulphate: Many diseases, few drugs. J Intern Med.
273:555–571. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Tayel A, Abd El Galil KH, Ebrahim MA,
Ibrahim AS, El-Gayar AM and Al-Gayyar MM: Suramin inhibits hepatic
tissue damage in hepatocellular carcinoma through deactivation of
heparanase enzyme. Eur J Pharmacol. 728:151–160. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Toyoshima M and Nakajima M: Human
heparanase. Purification, characterization, cloning, and
expression. J Biol Chem. 274:24153–24160. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dong S and Wu XZ: Heparanase and
hepatocellular carcinoma: Promoter or inhibitor? World J
Gastroenterol. 16:306–311. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yabluchanskiy A, Ma Y, Iyer RP, Hall ME
and Lindsey ML: Matrix metalloproteinase-9: Many shades of function
in cardiovascular disease. Physiology (Bethesda). 28:391–403.
2013.PubMed/NCBI
|
|
19
|
Powell WC and Matrisian LM: Complex roles
of matrix metalloproteinases in tumor progression. Curr Top
Microbiol Immunol. 213:1–21. 1996.PubMed/NCBI
|
|
20
|
Gonçalves JL, Roma EH, Gomes-Santos AC,
Aguilar EC, Cisalpino D, Fernandes LR, Vieira AT, Oliveira DR,
Cardoso VN, Teixeira MM and Alvarez-Leite JI: Pro-inflammatory
effects of the mushroom Agaricus blazei and its consequences on
atherosclerosis development. Eur J Nutr. 51:927–937. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rowsell S, Hawtin P, Minshull CA, Jepson
H, Brockbank SM, Barratt DG, Slater AM, McPheat WL, Waterson D,
Henney AM and Pauptit RA: Crystal structure of human MMP9 in
complex with a reverse hydroxamate inhibitor. J Mol Biol.
319:173–181. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hadler-Olsen E, Winberg JO and
Uhlin-Hansen L: Matrix metalloproteinases in cancer: Their value as
diagnostic and prognostic markers and therapeutic targets. Tumour
Biol. 34:2041–2051. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Deryugina EI and Quigley JP: Matrix
metalloproteinases and tumor metastasis. Cancer Metastasis Rev.
25:9–34. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tassi E, McDonnell K, Gibby KA, Tilan JU,
Kim SE, Kodack DP, Schmidt MO, Sharif GM, Wilcox CS, Welch WJ, et
al: Impact of fibroblast growth factor-binding protein-1 expression
on angiogenesis and wound healing. Am J Pathol. 179:2220–2232.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lambaerts K, Wilcox-Adelman SA and
Zimmermann P: The signaling mechanisms of syndecan heparan sulfate
proteoglycans. Curr Opin Cell Biol. 21:662–669. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Vlodavsky I, Ilan N, Naggi A and Casu B:
Heparanase: Structure, biological functions, and inhibition by
heparin-derived mimetics of heparan sulfate. Curr Pharm Des.
13:2057–2073. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
McKenzie EA: Heparanase: A target for drug
discovery in cancer and inflammation. Br J Pharmacol. 151:1–14.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ilan N, Elkin M and Vlodavsky I:
Regulation, function and clinical significance of heparanase in
cancer metastasis and angiogenesis. Int J Biochem Cell Biol.
38:2018–2039. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ferro V, Hammond E and Fairweather JK: The
development of inhibitors of heparanase, a key enzyme involved in
tumour metastasis, angiogenesis and inflammation. Mini Rev Med
Chem. 4:693–702. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Morimoto-Tomita M, Uchimura K, Werb Z,
Hemmerich S and Rosen SD: Cloning and characterization of two
extracellular heparin-degrading endosulfatases in mice and humans.
J Biol Chem. 277:49175–49185. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang XP, Liu L, Wang P and Ma SL: Human
sulfatase-1 improves the effectiveness of cytosine deaminase
suicide gene therapy with 5-fluorocytosine treatment on
hepatocellular carcinoma cell line HepG2 in vitro and in vivo. Chin
Med J (Engl). 128:1384–1390. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bret C, Moreaux J, Schved JF, Hose D and
Klein B: SULFs in human neoplasia: Implication as progression and
prognosis factors. J Transl Med. 9:722011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zaghloul RA, Al-Gayyar MM, El-Shishtawy MM
and Ebrahim MA: Cytotoxic effects of antiglypican-3 against HepG2
cell lines. J App Pharm Sci. 3:31–35. 2013.
|
|
34
|
Zaghloul RA, El-Shishtawy MM, El Galil KH,
Ebrahim MA, Metwaly AA and Al-Gayyar MM: Evaluation of
antiglypican-3 therapy as a promising target for amelioration of
hepatic tissue damage in hepatocellular carcinoma. Eur J Pharmacol.
746:353–362. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Al-Gayyar MM, Abbas A and Hamdan AM:
Chemopreventive and hepatoprotective roles of adiponectin (SULF2
inhibitor) in hepatocelluar carcinoma. Biol Chem. 397:257–267.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zheng X, Gai X, Han S, Moser CD, Hu C,
Shire AM, Floyd RA and Roberts LR: The human sulfatase 2 inhibitor
2,4-disulfonylphenyl-tert-butylnitrone (OKN-007) has an antitumor
effect in hepatocellular carcinoma mediated via suppression of
TGFB1/SMAD2 and Hedgehog/GLI1 signaling. Genes Chromosomes Cancer.
52:225–236. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Stepp MA, Pal-Ghosh S, Tadvalkar G and
Pajoohesh-Ganji A: Syndecan-1 and its expanding list of contacts.
Adv Wound Care (New Rochelle). 4:235–249. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Baghy K, Tátrai P, Regős E and Kovalszky
I: Proteoglycans in liver cancer. World J Gastroenterol.
22:379–393. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Götte M, Kersting C, Radke I, Kiesel L and
Wülfing P: An expression signature of syndecan-1 (CD138),
E-cadherin and c-met is associated with factors of angiogenesis and
lymphangiogenesis in ductal breast carcinoma in situ. Breast Cancer
Res. 9:R82007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Metwaly HA, Al-Gayyar MM, Eletreby S,
Ebrahim MA and El-Shishtawy MM: Relevance of serum levels of
interleukin-6 and syndecan-1 in patients with hepatocellular
carcinoma. Sci Pharm. 80:179–188. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Schulze D, Plohmann P, Höbel S and Aigner
A: Anti-tumor effects of fibroblast growth factor-binding protein
(FGF-BP) knockdown in colon carcinoma. Mol Cancer. 10:1442011.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gao B, Li S, Tan Z, Ma L and Liu J: ACTG1
and TLR3 are biomarkers for alcohol-associated hepatocellular
carcinoma. Oncol Lett. 17:1714–1722. 2019.PubMed/NCBI
|
|
43
|
Metwaly HA, El-Gayar AM and El-Shishtawy
MM: Inhibition of the signaling pathway of syndecan-1 by synstatin:
A promising anti-integrin inhibitor of angiogenesis and
proliferation in HCC in rats. Arch Biochem Biophys. 652:50–58.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Aggio A, Grassi D, Onori E, D'Alessandro
A, Masedu F, Valenti M and Ferri C: Endothelium/nitric oxide
mechanism mediates vasorelaxation and counteracts vasoconstriction
induced by low concentration of flavanols. Eur J Nutr. 52:263–272.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jeon Y, Jang ES, Choi YS, Kim JW and Jeong
SH: Glypican-3 level assessed by the enzyme-linked immunosorbent
assay is inferior to alpha-fetoprotein level for hepatocellular
carcinoma diagnosis. Clin Mol Hepatol. 22:359–365. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Stigliano I, Puricelli L, Filmus J,
Sogayar MC, Bal de Kier Joffé E and Peters MG: Glypican-3 regulates
migration, adhesion and actin cytoskeleton organization in mammary
tumor cells through Wnt signaling modulation. Breast Cancer Res
Treat. 114:251–262. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cheng W, Tseng CJ, Lin TT, Cheng I, Pan
HW, Hsu HC and Lee YM: Glypican-3-mediated oncogenesis involves the
Insulin-like growth factor-signaling pathway. Carcinogenesis.
29:1319–1326. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ho M: Advances in liver cancer antibody
therapies: A focus on glypican-3 and mesothelin. BioDrugs.
25:275–284. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Nakano K, Ishiguro T, Konishi H, Tanaka M,
Sugimoto M, Sugo I, Igawa T, Tsunoda H, Kinoshita Y, Habu K, et al:
Generation of a humanized anti-glypican 3 antibody by CDR grafting
and stability optimization. Anticancer Drugs. 21:907–916. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sun CK, Chua MS, He J and So SK:
Suppression of glypican 3 inhibits growth of hepatocellular
carcinoma cells through up-regulation of TGF-β2. Neoplasia.
13:735–747. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Miura M, Fujinami N, Shimizu Y, Mizuno S,
Saito K, Suzuki T, Konishi M, Takahashi S, Gotohda N, Suto K, et
al: Usefulness of plasma full-length glypican-3 as a predictive
marker of hepatocellular carcinoma recurrence after radial surgery.
Oncol Lett. 19:2657–2666. 2020.PubMed/NCBI
|
|
52
|
Elewa MA, Al-Gayyar MM, Schaalan MF, Abd
El Galil KH, Ebrahim MA and El-Shishtawy MM: Hepatoprotective and
anti-tumor effects of targeting MMP-9 in hepatocellular carcinoma
and its relation to vascular invasion markers. Clin Exp Metastasis.
32:479–493. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jayo A and Parsons M: Fascin: A key
regulator of cytoskeletal dynamics. Int J Biochem Cell Biol.
42:1614–1617. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Huang X, Ji J, Xue H, Zhang F, Han X, Cai
Y, Zhang J and Ji G: Fascin and cortactin expression is correlated
with a poor prognosis in hepatocellular carcinoma. Eur J
Gastroenterol Hepatol. 24:633–639. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Oh SY, Kim YB, Suh KW, Paek OJ and Moon
HY: Prognostic impact of fascin-1 expression is more significant in
advanced colorectal cancer. J Surg Res. 172:102–108. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hayashi Y, Osanai M and Lee GH: Fascin-1
expression correlates with repression of E-cadherin expression in
hepatocellular carcinoma cells and augments their invasiveness in
combination with matrix metalloproteinases. Cancer Sci.
102:1228–1235. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lai JP, Thompson JR, Sandhu DS and Roberts
LR: Heparin-degrading sulfatases in hepatocellular carcinoma: Roles
in pathogenesis and therapy targets. Future Oncol. 4:803–814. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Abdel-Hamid NM: Premalignant variations in
extracellular matrix composition in chemically induced
hepatocellular carcinoma in rats. J Membr Biol. 230:155–162. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
de los Reyes GC, Koda RT and Lien EJ:
Glucosamine and chondroitin sulfates in the treatment of
osteoarthritis: A survey. Prog Drug Res. 55:81–103. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang L, Liu WS, Han BQ, Peng YF and Wang
DF: Antitumor activities of D-glucosamine and its derivatives. J
Zhejiang Univ Sci B. 7:608–614. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Tan HY, Eskandari R, Shen D, Zhu Y, Liu
TW, Willems LI, Alteen MG, Madden Z and Vocadlo DJ: Direct one-step
fluorescent labeling of O-GlcNAc-modified proteins in live cells
using metabolic intermediates. J Am Chem Soc. 140:15300–15308.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tayel A, Ebrahim MA, Ibrahim AS, El-Gayar
AM and Al-Gayyar MM: Cytotoxic effects of suramin against HepG2
cells through activation of intrinsic apoptotic pathway. J BUON.
19:1048–1054. 2014.PubMed/NCBI
|
|
63
|
Al-Gayyar MMH, Ebrahim MA and Shams MEE:
Measuring serum levels of glycosaminoglycans for prediction and
using viscum fraxini-2 for treatment of patients with
hepatocellular carcinoma. J Pharm Res. 7:571–575. 2013.
|
|
64
|
Bezabeh T, Ijare OB, Albiin N, Arnelo U,
Lindberg B and Smith IC: Detection and quantification of
D-glucuronic acid in human bile using 1H NMR spectroscopy:
Relevance to the diagnosis of pancreatic cancer. MAGMA. 22:267–275.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Attallah AM, Toson el-SA, El-Waseef AM,
Abo-Seif MA, Omran MM and Shiha GE: Discriminant function based on
hyaluronic acid and its degrading enzymes and degradation products
for differentiating cirrhotic from non-cirrhotic liver diseased
patients in chronic HCV infection. Clin Chim Acta. 369:66–72. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Aruffo A, Stamenkovic I, Melnick M,
Underhill CB and Seed B: CD44 is the principal cell surface
receptor for hyaluronate. Cell. 61:1303–1313. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Varki NM and Varki A: Diversity in cell
surface sialic acid presentations: Implications for biology and
disease. Lab Invest. 87:851–857. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Arif S, Najeeb-ul-Haq, Hanif R, Khan AS,
Jamil-ur-Rehman and Mufti TA: Variations of serum sialic acid level
in liver cirrhosis. J Ayub Med Coll Abbottabad. 17:54–57. 2005.
|
|
69
|
Liu J, Wen X, Liu B, Zhang Q, Zhang J,
Miao H and Zhu R: Diosmetin inhibits the metastasis of
hepatocellular carcinoma cells by downregulating the expression
levels of MMP-2 and MMP-9. Mol Med Rep. 13:2401–2408. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tomizawa M, Shinozaki F, Motoyoshi Y,
Sugiyama T, Yamamoto S and Ishige N: Niclosamide suppresses
migration of hepatocellular carcinoma cells and downregulates
matrix metalloproteinase-9 expression. Oncol Lett. 10:3515–3518.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu Z, Dou C, Jia Y, Li Q, Zheng X, Yao Y,
Liu Q and Song T: RIG-I suppresses the migration and invasion of
hepatocellular carcinoma cells by regulating MMP9. Int J Oncol.
46:1710–1720. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chen X, Bo L, Zhao X and Chen Q:
MicroRNA-133a inhibits cell proliferation, colony formation
ability, migration and invasion by targeting matrix
metallopeptidase 9 in hepatocellular carcinoma. Mol Med Rep.
11:3900–3907. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xu L, Wang T, Meng WY, Wei J, Ma JL, Shi M
and Wang YG: Salinomycin inhibits hepatocellular carcinoma cell
invasion and migration through JNK/JunD pathway-mediated MMP9
expression. Oncol Rep. 33:1057–1063. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hsieh MJ, Lin CW, Yang SF, Chen MK and
Chiou HL: Glabridin inhibits migration and invasion by
transcriptional inhibition of matrix metalloproteinase 9 through
modulation of NF-κB and AP-1 activity in human liver cancer cells.
Br J Pharmacol. 171:3037–3050. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yuxian X, Feng T, Ren L and Zhengcai L:
Tanshinone II-A inhibits invasion and metastasis of human
hepatocellular carcinoma cells in vitro and in vivo. Tumori.
95:789–795. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Darweish MM, Abbas A, Ebrahim MA and
Al-Gayyar MM: Chemopreventive and hepatoprotective effects of
Epigallocatechin-gallate against hepatocellular carcinoma: Role of
heparan sulfate proteoglycans pathway. J Pharm Pharmacol.
66:1032–1045. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen XP, Luo JS, Tian Y, Nie CL, Cui W and
Zhang WD: Downregulation of heparanase expression results in
suppression of invasion, migration, and adhesion abilities of
hepatocellular carcinoma cells. Biomed Res Int. 2015:2419832015.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chen Z, Zhu L, Li X, Tian H, Fang Y, Liu
H, Li S, Li L, Yue W and Li W: Down-regulation of heparanase leads
to the inhibition of invasion and proliferation of A549 cells in
vitro and in vivo. Acta Biochim Biophys Sin (Shanghai). 45:188–193.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu CJ, Chang J, Lee PH, Lin DY, Wu CC,
Jeng LB, Lin YJ, Mok KT, Lee WC, Yeh HZ, et al: Adjuvant heparanase
inhibitor PI-88 therapy for hepatocellular carcinoma recurrence.
World J Gastroenterol. 20:11384–11393. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu CJ, Lee PH, Lin DY, Wu CC, Jeng LB,
Lin PW, Mok KT, Lee WC, Yeh HZ, Ho MC, et al: Heparanase inhibitor
PI-88 as adjuvant therapy for hepatocellular carcinoma after
curative resection: A randomized phase II trial for safety and
optimal dosage. J Hepatol. 50:958–968. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Alyoussef A and Al-Gayyar MMH: Cytotoxic
and partial hepatoprotective activity of sodium ascorbate against
hepatocellular carcinoma through inhibition of sulfatase-2 in vivo
and in vitro. Biomed Pharmacother. 103:362–372. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chen G, Nakamura I, Dhanasekaran R, Iguchi
E, Tolosa EJ, Romecin PA, Vera RE, Almada LL, Miamen AG,
Chaiteerakij R, et al: Transcriptional induction of periostin by a
sulfatase 2-TGFβ1-SMAD signaling axis mediates tumor angiogenesis
in hepatocellular carcinoma. Cancer Res. 77:632–645. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gao W, Kim H and Ho M: Human monoclonal
antibody targeting the heparan sulfate chains of glypican-3
inhibits HGF-mediated migration and motility of hepatocellular
carcinoma cells. PLoS One. 10:e01376642015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Gao H, Li K, Tu H, Pan X, Jiang H, Shi B,
Kong J, Wang H, Yang S, Gu J and Li Z: Development of T cells
redirected to glypican-3 for the treatment of hepatocellular
carcinoma. Clin Cancer Res. 20:6418–6428. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Liu S, Li Y, Chen W, Zheng P, Liu T, He W,
Zhang J and Zeng X: Silencing glypican-3 expression induces
apoptosis in human hepatocellular carcinoma cells. Biochem Biophys
Res Commun. 419:656–661. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Qi XH, Wu D, Cui HX, Ma N, Su J, Wang YT
and Jiang YH: Silencing of the glypican-3 gene affects the
biological behavior of human hepatocellular carcinoma cells. Mol
Med Rep. 10:3177–3184. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yu D, Dong Z, Yao M, Wu W, Yan M, Yan X,
Qiu L, Chen J, Sai W and Yao D: Targeted glypican-3 gene
transcription inhibited the proliferation of human hepatoma cells
by specific short hairpin RNA. Tumour Biol. 34:661–668. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yao M, Wang L, Dong Z, Qian Q, Shi Y, Yu
D, Wang S, Zheng W and Yao D: Glypican-3 as an emerging molecular
target for hepatocellular carcinoma gene therapy. Tumour Biol.
35:5857–5868. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ikeda M, Ohkawa S, Okusaka T, Mitsunaga S,
Kobayashi S, Morizane C, Suzuki I, Yamamoto S and Furuse J:
Japanese phase I study of GC33, a humanized antibody against
glypican-3 for advanced hepatocellular carcinoma. Cancer Sci.
105:455–462. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sawada Y, Sakai M, Yoshikawa T, Ofuji K
and Nakatsura T: A glypican-3-derived peptide vaccine against
hepatocellular carcinoma. Oncoimmunology. 1:1448–1450. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhu AX, Gold PJ, El-Khoueiry AB, Abrams
TA, Morikawa H, Ohishi N, Ohtomo T and Philip PA: First-in-man
phase I study of GC33, a novel recombinant humanized antibody
against glypican-3, in patients with advanced hepatocellular
carcinoma. Clin Cancer Res. 19:920–928. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Huang N, Lin J, Ruan J, Su N, Qing R, Liu
F, He B, Lv C, Zheng D and abd Luo R: MiR-219-5p inhibits
hepatocellular carcinoma cell proliferation by targeting
glypican-3. FEBS Lett. 586:884–891. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang K, Kievit FM, Sham JG, Jeon M,
Stephen ZR, Bakthavatsalam A, Park JO and Zhang M: Iron-oxide-based
nanovector for tumor targeted siRNA delivery in an orthotopic
hepatocellular carcinoma xenograft mouse model. Small. 12:477–487.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hanaoka H, Nakajima T, Sato K, Watanabe R,
Phung Y, Gao W, Harada T, Kim I, Paik CH, Choyke PL, et al:
Photoimmunotherapy of hepatocellular carcinoma-targeting glypican-3
combined with nanosized albumin-bound paclitaxel. Nanomedicine
(Lond). 10:1139–1147. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Li SQ, Lin J, Qi CY, Fu SJ, Xiao WK, Peng
BG and Liang LJ: GPC3 DNA vaccine elicits potent cellular antitumor
immunity against HCC in mice. Hepatogastroenterology. 61:278–284.
2014.PubMed/NCBI
|